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Abstract

Background: PubChem is a free and publicly available resource containing substance descriptions and their
associated biological activity information. PubChem3D is an extension to PubChem containing
computationally-derived three-dimensional (3-D) structures of small molecules. All the tools and services that are a
part of PubChem3D rely upon the quality of the 3-D conformer models. Construction of the conformer models
currently available in PubChem3D involves a clustering stage to sample the conformational space spanned by the
molecule. While this stage allows one to downsize the conformer models to more manageable size, it may result in
a loss of the ability to reproduce experimentally determined “bioactive” conformations, for example, found for PDB
ligands. This study examines the extent of this accuracy loss and considers its effect on the 3-D similarity analysis of
molecules.

Results: The conformer models consisting of up to 100,000 conformers per compound were generated for 47,123
small molecules whose structures were experimentally determined, and the conformers in each conformer model
were clustered to reduce the size of the conformer model to a maximum of 500 conformers per molecule. The
accuracy of the conformer models before and after clustering was evaluated using five different measures:
root-mean-square distance (RMSD), shape-optimized shape-Tanimoto (STST-opt) and combo-Tanimoto (ComboTST-opt),
and color-optimized color-Tanimoto (CTCT-opt) and combo-Tanimoto (ComboTCT-opt). On average, the effect of
clustering decreased the conformer model accuracy, increasing the conformer ensemble’s RMSD to the bioactive
conformer (by 0.18 ± 0.12 Å), and decreasing the STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt scores
(by 0.04 ± 0.03, 0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively).

Conclusion: This study shows the RMSD accuracy performance of the PubChem3D conformer models is operating
as designed. In addition, the effect of PubChem3D sampling on 3-D similarity measures shows that there is a linear
degradation of average accuracy with respect to molecular size and flexibility. Generally speaking, one can likely
expect the worst-case minimum accuracy of 90% or more of the PubChem3D ensembles to be 0.75, 1.09, 0.43, and
1.13, in terms of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt, respectively. This expected accuracy improves
linearly as the molecule becomes smaller or less flexible.
Background
The advent of combinatorial chemistry and high-
throughput screening technology has made it possible
to perform a rapid test of biological activity on a vast
number of small molecules, generating a massive
amount of biological activity data. While this explosion
of information presents scientists with great opportun-
ities to facilitate the identification of potential drug
candidates and chemical probes, its benefit is enhanced
when this data is combined with that of the others and
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reproduction in any medium, provided the or
made available to all. Dissemination of such information
requires a public repository that collects and stores the
heterogeneous data from various contributors. An
example of such a repository is PubChem [1-4] (http://
pubchem.ncbi.nlm.nih.gov), launched in 2004 as a com-
ponent of the Molecular Libraries Roadmap Initiatives
of the U.S. National Institutes of Health. PubChem
archives biological activity screening data and other in-
formation from diverse data sources and offers its
contents free of charge to the biomedical research com-
munity, facilitating research that benefits human health.
PubChem consists of three primary databases:

Substance, Compound, and BioAssay. The PubChem
Substance database contains sample descriptions provided
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by individual depositors and the PubChem Compound
database contains the unique standardized chemical struc-
ture contents extracted from the PubChem Substance
database. The PubChem BioAssay database contains
biological assay descriptions and results. As of June 2012,
PubChem contains more than 92 million substance
descriptions, 32 million unique small molecules, 600 thou-
sand biological assays, and 170 million biological assay
outcomes (each outcome is a set of results from a sub-
stance being tested in an assay). PubChem provides
search, analysis, and download tools for the efficient use of
this vast amount of chemical information. Many of these
tools exploit the concept of molecular similarity at some
level. One method in which PubChem evaluates chemical
similarity between two molecules is to use a two-
dimensional (2-D) dictionary-based fingerprint [5] and the
Tanimoto equation [6,7]:

Tanimoto ¼ AB
Aþ B� AB

ð1Þ

where A and B are the respective counts of the set binary
fingerprint bits for the two molecules and AB is the count
of set bits in common to both molecules. Because the 2-D
molecular similarity computation is very fast (typically at a
rate of one million pair-wise comparisons per second per
CPU core), it is appropriate for searching a large database
like PubChem. However, there are many diverse chemical
structures with similar biological efficacies against targets
available in PubChem that can be difficult to interrelate
using traditional 2-D similarity methods [8-11]. To assist
in biological activity analysis of these molecules, a new
layer called PubChem3D [8-15] was added to PubChem.
PubChem3D generates a 3-D conformer model de-

scription for each record in the PubChem Compound
database, when it satisfies the following conditions [13]:
(1) not too large (with 50 or fewer non-hydrogen atoms);
(2) not too flexible (with no more than 15 rotatable
bonds); (3) has only a single covalent unit (i.e., not a salt
or mixture); (4) consists of only supported elements
(H, C, N, O, F, Si, P, S, Cl, Br, and I); (5) contains only
atom-types recognized by the Merck Molecular Force
Field (MMFF94s) [16,17]; and (6) five or fewer undefined
atom (R,S) and bond (E,Z) stereo centers. This 3-D de-
scription can be employed to enhance existing PubChem
search and analysis methodologies by means of 3-D
similarity [10], helping the user identify useful structure-
activity relationships that might go unrecognized by the
PubChem 2-D similarity method. A diverse conformer
ordering [10] gives a maximal description of the con-
formational space of a molecule when only a subset of
available conformers is used. A pre-computed search per
compound record gives immediate access to a set of 3-D
similar compounds (called “Similar Conformers” [8]) in
PubChem and their respective superpositions, augmen-
ting the complementary “Similar Compounds” relation-
ship, computed using the PubChem 2-D similarity method.
Systematic augmentation of PubChem resources to include
a 3-D layer provides users with new capabilities to search,
subset, visualize, analyze, and download data [10].
All the tools and services in PubChem3D rely upon

the quality and applicability of the computationally-
derived 3-D conformer models of small molecules. Con-
sidering the size of PubChem, all these conformer
models by necessity must be pre-computed and stored
to allow the user “real-time” access to identify structur-
ally similar conformers and to analyze biological activity
patterns. Among many different conformer generation
programs that exist [18-24], PubChem3D uses the
OMEGA C++ toolkit [25-28] to generate conformer
ensembles. In our previous study [13], an optimal set of
adjustable parameters were determined to maximize the
“accuracy” of OMEGA (i.e., the ability to reproduce
experimentally-determined “bioactive” conformations,
for example, found in protein-ligand complexes). Using
experimentally determined structures of 25,972 small-
molecule ligands found in the Protein Databank (PDB)
[29], the effects of parameter values used in OMEGA
upon the root-mean-square distance (RMSD) between
the computationally-derived conformer models and their
experimentally-determined bioactive conformations were
analyzed in terms of the non-hydrogen (heavy) atom
count (NNHA) and effective rotor count (NER), as mea-
sures of molecular size and flexibility, respectively [30].
Note that NER is given by the following equation and
takes into account molecular flexibility due to rotatable
bonds and ring flexibility:

NER ¼ NR þ NNARA

5
ð2Þ

where NR is the number of rotatable bonds, and NNARA

is the number of non-aromatic sp3-hybridized ring
atoms. The root-mean-square distance (RMSD) accuracy
of the computationally-derived conformer models was
found to strongly depend on molecular size and flexibil-
ity, leading to the following formula [13] that estimates
the worst-case RMSD accuracy of nearly all the con-
former models using only the values of NNHA and NER:

RMSDpred ¼ 0:219þ 0:0099� NNHA þ 0:040
� NER ð3Þ

where RMSDpred is the predicted upper limit of the
RMSD accuracy to ensure at least 90% of conformer
models generated by OMEGA using the selected
PubChem parameter set for the 25,972 PDB ligands had
at least one “bioactive” conformer whose RMSD distance



Figure 1 Molecular size and flexibility of bioactive ligand data
set. Frequency of (a) the non-hydrogen (heavy) atom count and (b)
the rotatable bond count and the effective rotor count for the
47,123 experimentally determined “bioactive” ligand structures in the
MMDB data set. The effective rotor counts were binned to the
nearest whole numbers.
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from the experimentally determined conformation was
closer than the value predicted using Equation (3).
Using this accuracy-calibrated OMEGA parameter set,

PubChem3D generates up to 100,000 conformers for
each chemical structure stereo configuration. However,
it is still not feasible to store all the conformers in a
database and use them in a very efficient way. Therefore,
the conformers in each ensemble are sampled through
clustering with the RMSDpred value, after rounding to
the nearest 0.2 increment as defined in the following
equation,

RMSDcluster ¼ int 0:5þ RMSDpred�5� �

5
ð4Þ

where “int( )” gives the whole number, irrespective of
any remaining fraction and where this RMSD threshold
is referred to as RMSDcluster to emphasize its usage for
clustering purposes (rather than accuracy prediction).
Each sampled conformer represents a cluster containing
all conformers within the designated RMSD threshold,
thus reducing the count of conformers per conformer
model. If the conformer model after cluster sampling
has more than a maximum of 500 conformers, it is re-
clustered using an RMSDcluster value incremented by a
further 0.2. This process is repeated as many times as
necessary to reduce the overall conformer count to 500
or less. Although this clustering process makes the con-
former models more manageable in size and better sui-
ted for a large database such as PubChem, it may be
accompanied with an undesirable loss of overall accur-
acy of the conformer model. Therefore, in the present
study, we investigated the effect of the conformer model
clustering upon the accuracy of the conformer models
as a follow-up to our previous study [13] in order to ad-
dress key questions as to the performance of PubChem
3D sampled conformers to reproduce “bioactive” ligand
geometries: as a function of molecular size and flexibil-
ity, with respect to the established PubChem3D similar-
ity measures, and with an eye towards their expected
performance relative to biological activity data analysis.

Results and discussion
Molecular size and flexibility of the MMDB ligands
This study considers 47,123 small molecules with experi-
mental 3-D coordinates available from the Molecular
Modeling Database (MMDB) [31] deposition in PubChem
(Additional file 1). The molecular connectivity of these
MMDB ligands is derived from the 3-D coordinates of the
protein-bound small molecules taken from PDB [29]
records. Note that the “experimental” structures of small
molecules in PDB are known to, at times, have non-trivial
issues or uncertainty concerning their precise chemical
identity, protein binding geometry, or crystal structure
location [13,32-36]. The present study largely ignores such
potential issues and considers all the 3-D ligand structures
as experimental facts.
The effects of conformer ensemble clustering upon the

accuracy of the conformer ensemble were analyzed as a
function of NNHA and NR (as measures of molecular size
and flexibility, respectively). Additionally, NER [Equation
(2)] was also employed to represent molecular flexibility.
Although the value of NER is not necessarily an integer, it
was rounded to the nearest integer in the present study.
Figure 1 shows the distributions of the values of NNHA,
NR, and NER for the experimental structures for the 47,123
MMDB ligands considered. On average, the structures
had 18.3 ± 10.5 non-hydrogen (heavy) atoms, 4.7 ± 3.5
rotatable bonds, and 5.4 ± 3.7 effective rotors. Approxi-
mately 90% of the ligands had less than 31 non-hydrogen
atoms, 9 rotatable bonds, and 10 effective rotors.
PubChem3D generates a maximum of 100,000 confor-

mers per compound stereo configuration for efficiency
considerations. Reaching this “100-K” limit suggests a
loss in conformational space considered, possibly result-
ing in less accurate conformer models [13]. As shown in
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Figure 2, the fraction of the molecules hitting the 100-K
limit increases rapidly as the molecule becomes larger
and more flexible. This suggests that, beyond 25 heavy
atoms and six rotatable bonds, exploration of conform-
ational space in some PubChem3D conformer models
may be truncated due to this limitation.

RMSD clustering threshold
After generating conformers for each molecule, Pub-
Chem3D samples the conformers in each ensemble,
using an RMSD threshold determined according to
Equation (3) and Equation (4). Figure 3 shows the distri-
bution of the RMSDcluster values used to cluster the con-
formers in the conformer ensemble for the 47,123
MMDB ligands considered in the present study. The
RMSDcluster values range from 0.4 Å to 2.2 Å (in discrete
0.2 Å increments), with an average and standard deviation
of 0.75 Å ± 0.33 Å. Approximately 85% of the 47,123 PDB
ligands have an RMSDcluster value of ≤ 1.0 Å.
The distributions of the RMSD “accuracy” of the resul-

ting conformer ensembles to the experimental PDB ligand
geometries are shown in Figure 4 and their average and
Figure 2 The 100-K limit cases vs. molecular size and flexibility.
The fraction of the 47,123 MMDB ligands reaching the limit of
100,000 conformers per compound during the conformer
generation step as a function of: (a) the non-hydrogen atom count
and (b) the rotatable bond count and the effective rotor count.
standard deviations are summarized in Table 1. It is im-
portant to note that, for the purpose of this study, the
RMSD “accuracy” value of a computationally-derived con-
former ensemble to the experimental “bioactive” conform-
ation is defined as the single best (i.e., least) non-hydrogen
atom-pairwise RMSD between the experimentally deter-
mined 3-D conformation PDB ligand and a 3-D con-
former in the ensemble. This RMSD “accuracy” should
not be confused with the clustering RMSD (RMSDcluster).
As expected, the PubChem3D conformer sampling

procedure results in a loss of the conformer ensemble
RMSD accuracy relative to experiment. On average, this
overall loss is 0.18 Å (from 0.39 Å to 0.57 Å). The stand-
ard deviation of this average also increases by 0.12 Å
(from 0.24 Å to 0.36 Å) and may reflect the rounding of
RMSDcluster to the nearest 0.2 increment, potentially sug-
gesting the ± 0.1 nature of such a change. In the aggre-
gate, 90% of all conformer models in this study reflect
RMSD accuracies better than 1.1 Å after clustering.
In the study by Hawkins et al. [18], an RMSD value of

1.25 Å or less was employed as the definition of a “close”
reproduction of the experimental conformation. They
also pointed out that an RMSD of 2.0 Å could have been
used as a cut-off because it is a common upper bound
for successful reproduction of an experimental structure
in molecular docking. With these criteria in mind, the
after-clustering conformer models in the present study
may be considered to be of high quality, although the
choice of the cut-off for “close” reproduction of the ex-
perimental structure is still arbitrary and subjective.
Figure 5 illustrates the percentage of the conformer

models with accuracy better than the RMSDcluster value
(i.e., with an RMSD accuracy value less than RMSDcluster)
before and after the conformer sampling procedure. For
comparison purposes, those conformer models with the
accuracy better than RMSDcluster + 0.1 Å are also included
to show the effects of the rounding of RMSDpred to the
nearest 0.2 (i.e., RMSDcluster). It is important for two rea-
sons to note that more than 90% of the conformer models
before clustering have an RMSD accuracy better than
RMSDcluster. Firstly, this shows that, although the majority
of conformer models with more than 25 heavy atoms and
six rotatable bonds hit the 100-K limit in conformer
generation as shown in Figure 2, there is no significant
adverse effect on the conformer model accuracy beyond
that already reflected by Equation (4). Secondly, this indi-
cates the resilience of OMEGA to generate biologically
relevant conformers, favoring a breadth-first exploration
of conformer space as a function of energy threshold
(i.e., considering low-energy conformational spaces first),
thus ensuring an even coverage of conformer space up to
the PubChem3D 100-K conformer limit in the conformer
generation phase. For the remaining cases where the con-
former models before clustering are not more accurate



Figure 3 RMSDcluster conformer model sampling threshold. The frequency of the RMSD clustering threshold (RMSDcluster) values used during
the conformer clustering procedure for the 47,123 MMDB ligand conformer models.
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than the RMSDcluster threshold, OMEGA does not even
come close to reproducing the experimental geometry
using the PubChem3D choice of parameters, considering
that an increase of 0.1 Å from RMSDcluster does not find
many additional “missed” pre-clustered conformer mo-
dels, as Figure 5 shows. Whereas potential reasons for this
are numerous, one can likely attribute it to: improper per-
ception of atom hybridization or charge state from PDB
atom coordinates in the MMDB deposition (leading to an
inaccurate chemical structure, as PDB records tend not to
include hydrogen atom or bond order information); some
combination of errors, uncertainty, or omissions in the
PDB ligand information (as mentioned previously); or a
general inability of OMEGA to reproduce some “bio-
active” 3-D chemical structure configurations.
Figure 4 Overall RMSD accuracy of the conformer models. The
RMSD accuracy (binned in 0.1 Å increments) of the 47,123 MMDB
ligand conformer models to the corresponding experimental 3-D
structure, before and after the conformer model clustering
procedure, by frequency and cumulative % frequency.
As shown in Figure 5, after clustering, the fraction of the
conformer models with accuracy better than RMSDcluster

decreased by no more than 12% in general, except for
RMSDcluster = 1.6 Å (34%). When the conformer model
accuracy was predicted in a more conservative way using
the limit RMSDcluster + 0.1 Å (rather than RMSDcluster), the
difference between the conformer models with accuracy
better than this limit before and after clustering was no
more than 6%, except for RMSDcluster = 1.6 Å (23%), sho-
wing that the realized sampling effects are local in nature.
It appears that most of the structures with decreased con-
former model accuracy at RMSDcluster = 1.6 Å are simply
due to an unfortunate culmination of pronounced
partition-based clustering edge-effects for a set of flexible
di- and tri-phosphate containing structures. In other
words, for these particular computationally-derived con-
former models, a conformation most similar to the experi-
mental structures happened to be near the boundaries of
the clusters generated with the RMSDcluster = 1.6 Å, and
therefore, they were not included in the conformer models
after the clustering procedure. As a result, clustering
a given conformer model using a different conformer
ordering with the same clustering procedure could have
yielded results closer to the pre-clustering result.
Table 1 Summary statistics of overall conformer model
accuracy

Accuracy
measure

Before clustering After clustering Difference

μ σ μ σ μ σ

RMSD (Å) 0.39 0.24 0.57 0.36 0.18 0.12

STST-opt 0.95 0.06 0.91 0.09 −0.04 0.03

ComboTST-opt 1.74 0.20 1.57 0.27 −0.16 0.09

CTCT-opt 0.85 0.13 0.75 0.17 −0.09 0.05

ComboTCT-opt 1.77 0.20 1.61 0.27 −0.15 0.09

Overall average (μ) and standard deviation (σ) of the accuracy of the 47,123
MMDB ligand conformer models to the corresponding experimental 3-D
structure before and after conformer sampling clustering.



Figure 5 Conformer models with accuracy better than RMSDcluster. The fraction of the conformer models of the 47,123 MMDB ligands with
an RMSD to the corresponding experimental 3-D structure less than the RMSD clustering threshold (RMSDcluster) (solid line) and RMSDcluster + 0.1 Å
(dashed line).
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Figure 6 illustrates the cumulative % distribution of
the RMSD accuracy of the conformer models for each
discrete value of RMSDcluster. As mentioned above, the
RMSDcluster value determination using Equation (3) was
intended to ensure that 90% of conformer models have
an RMSD accuracy below RMSDcluster before sampling;
however, the RMSD accuracy after sampling to ensure
Figure 6 Accuracy of conformer models as a function of RMSDcluster. T
(binned in 0.1 Å increments) of the 47,123 MMDB ligand conformer model
RMSD clustering threshold (RMSDcluster): (a) before clustering and (b) after c
from this and some other figures for clarity].
90% of conformers are found is expected to be within
the range of RMSDcluster ± 0.1, when considering the
effects of the rounding of RMSDcluster to the nearest in-
crement of 0.2 [as performed in Equation (4)]. If one
looks across the 90% line in panel (a) of Figure 6, the
RMSD accuracies of 90% of the conformer models before
clustering are smaller than RMSDcluster for the entire range
he cumulative % distribution of the RMSD accuracy
s to the corresponding experimental 3-D structure as a function of
lustering. [Note the three conformer models at 2.2 Å were removed
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in general, with almost no difference at RMSDcluster =
1.4 Å. The 90% levels of the after-clustering RMSD accur-
acies [in panel (b) of Figure 6], are within the expected
range in general, except for RMSDcluster = 1.4 Å and 1.6 Å,
where the RMSD accuracy for 90% of the conformer mod-
els is not reached until 1.6 Å and 1.8 Å, respectively.
One readily notices for each RMSDcluster value in

Figure 6 that conformer model clustering shifts the cu-
mulative % distribution curves toward the right-hand
side, indicating a decrease in the conformer model ac-
curacy as a result of the PubChem sampling procedure.
Looking at the 90% level of conformer models before
and after clustering, there are some variances in the
change of the conformer model accuracy, depending on
the RMSDcluster value. For example, the difference be-
tween the RMSD accuracies at the 90% level before and
after clustering with RMSDcluster of 0.4 Å and 0.6 Å is
0.1 Å (0.25 Å vs. 0.35 Å for RMSDcluster = 0.4 Å, and
0.5 Å vs. 0.6 Å for RMSDcluster = 0.6 Å). However, for the
RMSDcluster values between 0.6 Å and 1.6 Å, the corre-
sponding differences range between 0.2 Å and 0.3 Å. In
general, it is very reassuring to see that most of these
conformer models at the 90% level are within the
expected range for most RMSDcluster values. Although
sampling by its very nature will increase the distance be-
tween conformers, this increase does not appear to
severely impact the accuracy of the conformer models in
PubChem.

Comparison of ensemble accuracy measures
Evaluation of the conformer model accuracy using
RMSD is an intuitive and convenient choice, as the
conformer model clustering in PubChem3D uses an
RMSD value as a clustering threshold; however, in
practice, PubChem3D primarily uses three measures
in 3-D similarity comparison between molecules:
shape-Tanimoto (ST), color-Tanimoto (CT), and combo-
Tanimoto (ComboT) [37-40]. Therefore, the present study
also employed PubChem3D similarity measures as add-
itional conformer model accuracy measures. The ST
[37-40] similarity measure, which quantifies the shape
similarity between molecules, is defined as the following
equation:

ST ¼ VAB

VAA þ VBB � VAB
ð5Þ

where VAA and VBB are respective self-overlap volume of
the two molecules, and VAB is the overlap volume between
the two molecules. The CT [37,38] similarity measure, on
the other hand, evaluates the pharmacophore feature
similarity between molecules, by comparing the 3-D
orientation of fictitious atoms (also called feature atoms)
representing six functional group types (hydrogen-bond
donors, hydrogen-bond acceptors, cations, anions, hy-
drophobes, and rings) by means of the equation:

CT ¼

X

f

V f
AB

X

f

V f
AA þ

X

f

V f
BB �

X

f

V f
AB

ð6Þ

where the index “f” is one of the six functional-group
types, VAA

f and VBB
f are the self-overlap volume for the

functional group type “f” of the two molecules, respect-
ively, and VAB

f is the overlap volume for the functional
group type “f” between the molecules. The ComboT
[37,38] similarity measure, which is defined as the arith-
metic sum of the ST and CT scores, allows one to consider
the two different similarities simultaneously. Because both
the ST and CT scores range from 0 (for no similarity) to
1 (for identical molecules), the ComboT score ranges
from 0 to 2 (without normalization, due to pre-existing
convention).
The present study used two different approaches

to compute these three 3-D similarity scores: the
shape-optimized (or ST-optimized) approach and feature-
optimized (or CT-optimized) approach. In the shape-
optimized approach, the superposition of two molecules is
optimized to have a maximum ST score and then the CT
score is computed in that shape-optimized alignment. In
the feature-optimized approach, the color and shape of
the two conformers will be considered simultaneously to
find the best superposition between them, as in the
current version of ROCS [37]. In the present paper, the
shape-optimized and feature-optimized methods are
denoted using the superscripts “ST-opt” and “CT-opt”,
respectively. As a result, there are six different 3-D
similarity scores (i.e., STST-opt, CTST-opt, ComboTST-opt,
STCT-opt, CTCT-opt, and ComboTCT-opt). Along with
RMSD, four of these six scores are used to analyze
the accuracy of the clustered conformer models rela-
tive to the experimentally determined 3-D geometries:
STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt.
As shown so far in this study, the conformer sampling

procedure decreases ensemble accuracy to reproduce ex-
perimentally determined ligand geometries, resulting in
an increase in the RMSD values. This loss in accuracy is
also seen for the four 3-D similarity values as shown in
Table 1. On average, whereas the clustering increases
the RMSD value of the conformer ensemble by 0.18 ±
0.12 Å, it decreases the STST-opt, ComboTST-opt, CTCT-opt,
and ComboTCT-opt scores by 0.04 ± 0.03, 0.16 ± 0.09,
0.09 ± 0.05, and 0.15 ± 0.09, respectively. Although the
ComboTCT-opt values are (in the aggregate) slightly
greater than the ComboTST-opt values, the decreases of
the two similarity measures upon clustering are nearly
identical in magnitude to each other, suggesting a
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general insensitiveness of the ComboT scores to the
optimization type. Perhaps more interesting is the rela-
tively small change in the STST-opt average of 0.04,
whereas the CTCT-opt average difference is more than
twice as large, indicating a much greater sensitivity of
CTCT-opt to clustering. This is not surprising, as shape is
less discriminating than features (e.g., with a nitrogen
atom and carbon atom being nearly identical from a
shape perspective but completely different in their cap-
ability to make intermolecular interactions). As shown in
Figure 7, after the conformer sampling procedure, 90% of
all the conformer models had accuracies better than 0.75,
1.09, 0.43, and 1.13, in terms of STST-opt, ComboTST-opt,
CTCT-opt, and ComboTCT-opt, respectively.
Figures 8, 9, 10, 11, and 12 show the five different mea-

sures of the conformer ensemble accuracy used (i.e., RMSD,
STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt) as a
function of molecular size and flexibility. [A further break-
down of RMSD and STST-opt values as a function of
molecular size and flexibility and the correlation between
RMSD and STST-opt can be found in Additional file 2:
Figures S1-S7]. The linear nature of these curves demon-
strates a clear association of the average PubChem3D
conformer model accuracy with molecular size and flexibil-
ity. Least-squares fitting to the form of “y = a + bx” for each
Figure 7 Overall 3-D similarity accuracy of the conformer models. The
conformer models to the corresponding experimental 3-D structure, before
and cumulative % frequency for the 3-D similarity metrics: (a) STST-opt, (b) C
data series in the plots from panel (d) in Figures 8, 9, 10,
11, and 12 is summarized in Table 2. The least-squares fit-
ting was also performed for the other data series in panels
(a-c) of Figures 8, 9, 10, 11, and 12, but reported in
Additional file 3 for brevity. As the RMSDcluster value (as
well as NNHA, NR and NER) increases, all five conformer
model accuracies before and after clustering linearly chan-
ged. With the notable exception of NR, all R

2 values for
these fits were greater than 0.90. In the case of NR, not
taking into account the flexibility of rings reduces the R2

values to as low as 0.78. (In fact, the primary motivation of
the development of NER [30] was to account for “noise” in
linear fits of NR such as these, to properly account for
molecules that are effectively more flexible than their rotat-
able bond count would suggest.) While all the RMSD and
STST-opt average accuracy measures did linearly correlate
with the RMSDcluster value (Figures 8 and 9). However, for
the ComboTST-opt, CTCT-opt, and ComboTCT-opt, the diffe-
rence between before and after clustering accuracy values
did not always linearly correlate with the RMSDcluster value
[namely: Figure 10, panels (a,d); Figure 11 panels (a-d); and
Figure 12 panels (a,d)]. In the case of CTCT-opt, the average
differences appear to plateau just below 0.2, suggesting that
there may be some maximum error as a result of the Pub-
Chem conformer clustering procedure. Echoes of this
accuracy (binned in 0.05 increments) of the 47,123 MMDB ligand
and after the conformer model clustering procedure, by frequency
omboTST-opt, (c) CTCT-opt, and (d) ComboTCT-opt.



Figure 8 Average RMSD accuracy as a function of the molecular size, flexibility, and RMSDcluster. The average conformer model RMSD
accuracy of the 47,123 MMDB ligand conformer models to the corresponding experimental 3-D structures, before and after the conformer model
clustering procedure, as a function of: (a) the non-hydrogen atom count, (b) the rotatable bond count, (c) the effective rotor count, and (d) the
RMSD clustering threshold (RMSDcluster).

Figure 9 Average STST-opt accuracy as a function of the molecular size, flexibility, and RMSDcluster. The average conformer model
shape-optimized shape-Tanimoto (STST-opt) accuracy of the 47,123 MMDB ligand conformer models to the corresponding experimental 3-D
structure, before and after the conformer model clustering procedure, as a function of: (a) the non-hydrogen atom count, (b) the rotatable bond
count, (c) the effective rotor count, and (d) the RMSD clustering threshold (RMSDcluster).
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Figure 10 Average ComboTST-opt accuracy as a function of the molecular size, flexibility, and RMSDcluster. The average conformer model
shape-optimized combo-Tanimoto (ComboTST-opt) accuracy of the 47,123 MMDB ligand conformer models to the corresponding experimental 3-D
structure, before and after the conformer model clustering procedure, as a function of: (a) the non-hydrogen atom count, (b) the rotatable bond
count, (c) the effective rotor count, and (d) the RMSD clustering threshold (RMSDcluster).

Figure 11 Average CTCT-opt accuracy as a function of the molecular size, flexibility, and RMSDcluster. The average conformer model color-
optimized color-Tanimoto (CTCT-opt) accuracy of the 47,123 MMDB ligand conformer models to the corresponding experimental 3-D structure,
before and after the conformer model clustering procedure, as a function of: (a) the non-hydrogen atom count, (b) the rotatable bond count, (c)
the effective rotor count, and (d) the RMSD clustering threshold (RMSDcluster).
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Figure 12 Average ComboTCT-opt accuracy as a function of the molecular size, flexibility, and RMSDcluster. The average conformer model
color-optimized combo-Tanimoto (ComboTCT-opt) accuracy of the 47,123 MMDB ligand conformer models to the corresponding experimental 3-D
structure, before and after the conformer model clustering procedure, as a function of: (a) the non-hydrogen atom count, (b) the rotatable bond
count, (c) the effective rotor count, and (d) the RMSD clustering threshold (RMSDcluster).

Table 2 Linear behavior of average conformer model accuracy as a function of RMSDcluster value

Accuracy measure Data series a b σa σb σy R2

RMSD Before −0.06 0.63 0.087 0.061 0.11 0.93

After −0.07 0.90 0.083 0.059 0.11 0.97

Difference −0.01 0.27 0.045 0.032 0.06 0.90

STST-opt Before 1.06 −0.15 0.020 0.014 0.03 0.94

After 1.06 −0.21 0.025 0.018 0.03 0.95

Difference −0.00 0.06 0.012 0.009 0.02 0.85

ComboTST-opt Before 2.13 −0.53 0.057 0.040 0.07 0.96

After 1.99 −0.59 0.088 0.062 0.11 0.92

Difference 0.14 0.06 0.060 0.043 0.08 0.19

CTCT-opt Before 1.10 −0.34 0.038 0.027 0.05 0.95

After 1.01 −0.36 0.050 0.035 0.06 0.93

Difference 0.09 0.02 0.036 0.025 0.05 0.07

ComboTCT-opt Before 2.16 −0.54 0.058 0.041 0.07 0.96

After 2.03 −0.60 0.091 0.064 0.12 0.92

Difference 0.13 0.06 0.065 0.046 0.08 0.17

Results of linear least-squares fitting of the average conformer model accuracies vs. RMSD clustering threshold (RMSDcluster) to the form of “y = a + bx”. The sigma
values (σa, σb, and σy) correspond to the standard deviation of the fit to the predicted “a”, “b”, and “y” values. The “x” values are the discrete RMSDcluster values and
the “y” values are the corresponding average accuracy measures found in the data series from panel (d) in Figures 8, 9, 10, 11, and 12.
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appear to be present in the difference statistics for any
3-D similarity measure that involves the CT measure
(i.e., ComboTST-opt, CTCT-opt, and ComboTCT-opt).
Taking this all into account, in general, conformer

model clustering increases the conformer RMSD value
and decreases the four 3-D Tanimoto values, indicating
the reduced accuracy of the conformer ensemble due to
conformer clustering. The difference between the en-
semble accuracies before and after clustering increases
with the values of NNHA, NR, and NER, implying that the
effects of conformer clustering become more noticeable
in bigger and more flexible molecules, which is expected
considering that the RMSDcluster value gets larger [Equation
(3)]. As compared in Figures 9 and 11, the average con-
former CTCT-opt accuracy values show a larger decrease
upon clustering than the average conformer STST-opt values,
meaning that the conformer CTCT-opt values are more sen-
sitive to clustering than the conformer STST-opt values.
However, conformer clustering decreases the average
ComboTST-opt and average ComboTCT-opt values (Figures 10
and 12) in a similar amount, again showing the insensitive-
ness of the ComboT value to the optimization type.
A similar insensitiveness of the ComboT value to the
optimization type was also observed in our previous studies
[9,11], in which the distribution of the ComboTST-opt scores
between randomly selected conformers were found very
similar to that of the ComboTCT-opt.
What does this all mean? The average loss of accuracy

of PubChem3D conformer ensembles behaves in a pre-
dictable fashion, even after sampling, as a function of
molecular size and flexibility across PubChem3D simi-
larity measures. There is a linear degradation of accuracy
to reproduce bioactive conformers both before and after
sampling procedures. In general, there is a modest
amount of degradation of accuracy to reproduce bio-
activity as a part of this sampling procedure. Generally
speaking, one expects the worst-case minimum accuracy
of 90% of the PubChem3D ensembles to be (as stated pre-
viously from Figure 7) 0.75, 1.09, 0.43, and 1.13, in terms
of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt,
respectively. This expected minimum accuracy improves
linearly as the molecule becomes smaller or less flexible.
One may ask “how good or how bad are these worst-

case minimum accuracies?” To answer this question, it
is necessary to determine an appropriate cut-off value
for a “close” reproduction of the experimental structure,
and our recent study [11], which studied the statistical
significance of the ROCS-based similarity scores, pro-
vides some clues on an appropriate choice of the cut-off
values. In this study [11], the ROCS-based 3-D similarity
scores between randomly-selected biologically-tested
compounds were computed, and from the distribution
of these scores, conversion tables were generated which
convert a ROCS-based similarity score to the p-value of
getting that particular score by randomly selecting two
biologically-tested conformers. According to these con-
version tables, the p-value of getting a similarity score
equal to the worse-case minimum accuracy by selecting
two random conformers is 0.019, 0.002, 0.003, and 0.002
for STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt,
respectively. If the significance level (α) of 0.05 is
employed, these p-values are small enough to reject the
null hypothesis of getting a particular 3-D similarity
score by chance. Although this interpretation also
depends on the significance level one may choose, it is
still true that these worst-case minimum accuracies of
the conformer models (0.75, 1.09, 0.43, and 1.13, for
STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt,
respectively) are much greater than one may expect
from randomly selected conformer pairs (0.54 ± 0.10,
0.62 ± 0.13, 0.18 ± 0.06, and 0.59 ± 0.14, for STST-opt,
ComboTST-opt, CTCT-opt, and ComboTCT-opt, respectively)
[9,11], implying structural similarity between the con-
former model and the experimental structure. Also note
that this interpretation is consistent with the fact
that the 90% of the conformer models considered in
this study have RMSD accuracies better than 1.1 Å,
which is much tighter than the common upper bound
(RMSD 2.0 Å) for successful reproduction of an experi-
mental conformation in molecular docking, as men-
tioned above.
When it comes to biological activity data analysis, the

present study shows that there will be a definitive upper
limit to the PubChem3D conformer ensemble accuracy
based on the molecular size and flexibility. While the
results of the present study consider all sampled confor-
mers, PubChem3D search and analysis tools use a di-
verse subset of sampled conformers, where the diverse
subset selection criterion is the ComboTST-opt dissimilar-
ity. [The reason for using the ComboT dissimilarity is
that it considers both the ST and CT dissimilarity simul-
taneously. While the choice of the optimization type is
somewhat arbitrary, our previous studies [9,11] have
shown that the ComboT score is not very sensitive to
the optimization type in the aggregate.] The effects of
using a diverse set of sampled conformers will likely fur-
ther decrease performance beyond that reported in this
study. In addition, one can expect that, as the desired
3-D Tanimoto threshold increases in a given biological
activity analysis, the ability to interrelate larger and more
flexible molecules will decrease, not because they neces-
sarily lack common biologically accessible conformer
space, but because of the inherent similarity distance be-
tween the stored sampled conformers. This analysis also
suggests that the use of a single “one-size-fits-all” simi-
larity Tanimoto threshold for PubChem3D molecules
may not be an ideal choice for conformer models
sampled at different RMSD values. The results from this



Figure 13 Distribution of the conformer model accuracies for
the 157 high-quality ligands. Distribution of before- and
after-clustering accuracies of the conformer models from the 157
ligand molecules selected from the 47,123 PDB ligands considered
in the present study: (a) the RMSD accuracy, and
(b) the ComboTCT-opt accuracy.
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study suggest that conformer sampling may exacerbate
the molecular size/flexibility dependency already present
in conformer generation software [13]. Smaller and less
flexible molecules in PubChem3D will have a tighter
conformational sampling (with a smaller spacing be-
tween conformers) than larger and more flexible mole-
cules, and therefore, can interrelate more molecules at
a given Tanimoto value. In addition, smaller and less
flexible molecules will have fewer sampled conformers
in their respective conformer ensemble and will likely
have less of a reduction in accuracy due to the use of a
diverse subset. As a result, a search using a smaller and
less flexible molecule as a query is likely to return more
3-D similar molecules than a search using a larger and
more flexible query molecule. Furthermore, even if a
large or flexible molecule is used as a 3-D similarity
query, an increasing proportion of returned results are
likely to be smaller or less flexible as the Tanimoto value
is increased. This potential bias towards conformer
models with smaller sampling distances may be worth
further consideration and study to develop a more reli-
able 3-D similarity-based biological activity analysis
method.

Effects of experimental uncertainties upon conformer
model accuracies
Like any experimentally-derived measurements, the crystal
structures stored in PDB have uncertainties in their
atomic coordinates, and the interpretation of the accuracy
of a computationally-derived conformer model should
take into account the positional uncertainty of the corre-
sponding experimental ligand structure. For example, if
the positional uncertainty in the experimental structure is
greater than the RMSD value of the conformer model,
comparison between the experimental and theoretical
ligand structures are not particularly meaningful. The
average positional errors in atoms in a crystal structure
can be evaluated with the diffraction-component precision
index (DPI) [41,42], which can be approximated as pro-
posed by Blow [43], using information commonly con-
tained in the header of a PDB file. In the study by
Hawkins et al. [18], the crystal structures with the DPI of
< 0.42 Å were considered to be precise enough for the use
as a standard dataset for validation of conformer genera-
tors, and in this way, the conformer models with the
RMSD value of > 0.6 Å (= √2 × DPI [44]) were guaranteed
to be meaningful predictions.
Although the present study did not focus on potential

issues concerning the experimental uncertainties of PDB
structures [13,32-36], it is still valuable to test the con-
former model accuracy against a set of highly-reliable ex-
perimental structures. Therefore, a set of 157 high-quality
ligand molecules (Additional file 4) was constructed from
a set of 197 PDB structures recommended in the study by
Hawkins et al. [18] (see the Methods section). The distri-
bution of the RMSD and ComboTCT-opt accuracies for
these 157 structures are shown in Figure 13, and their
average and median values are compared in Table 3, with
those from the 197 molecules considered in the study by
Hawkins et al. [18] [The ComboTCT-opt accuracy is identi-
cal to the Tanimoto Combo in their study]. As shown in
Table 3, when going from the 47,123-ligand set to 157-
ligand set, the average RMSD value of the conformer
models increased by 0.08 Å (from 0.57 Å to 0.65 Å) and
the average ComboTCT-opt accuracy decreased by 0.06
(from 1.61 to 1.55). These differences do not seem very
meaningful, considering the standard deviations for the
RMSD and ComboTCT-opt accuracies of the two sets.
Note that the average RMSD value of the 157-ligand

set differed only by 0.02 from that of the 197-ligand set
from the study of Hawkins et al. (0.65 Å vs. 0.67 Å) [18].
The difference in the ComboTCT-opt accuracy between
the two sets were 0.01 (1.55 and 1.56 for the 157- and
197-ligand sets, respectively). Considering that our study



Table 3 Comparison of the average and median RMSD and ComboTCT-opt values between different PDB ligand sets

Accuracy
measure

47,123 Ligands 157 Ligands 197
Ligands
(Ref. [18])

Before clustering After clustering Before clustering After clustering

RMSD (Å) 0.39 (±0.24) / 0.30 0.57 (±0.36) / 0.50 0.40 (±0.26) / 0.33 0.65 (±0.31) / 0.61 0.67 / 0.51

ComboTCT-opt 1.77 (±0.20) / 1.85 1.61 (±0.27) / 1.70 1.75 (±0.22) / 1.83 1.55 (±0.25) / 1.58 1.56 / 1.64

Numbers before and after slash are the mean and median, respectively, and numbers in parentheses are the standard deviations. The 47,123-ligand set are all the
PDB ligand molecules considered in the present study, and the 157-ligand set contains 157 high-quality ligand molecules selected from the 47,123 compounds.
The 197-ligand set contains 197 high-quality ligand molecules from the study by Hawkins et al. [18].
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used OMEGA parameters different from those used in
their study, the conformer model accuracies from the
two studies do not seem very different.

Conclusion
In the present study, conformer ensembles for 47,123
PDB ligand molecules from MMDB were computation-
ally generated using the PubChem3D approach. The ac-
curacy of reproduction of the conformer models was
investigated in comparison to the experimentally-derived
structures as a function of the RMSD and the Pub-
Chem3D similarity scores (i.e., STST-opt, ComboTST-opt,
CTCT-opt, and ComboTCT-opt). The PubChem3D con-
former sampling procedure increased the RMSD value
of the conformer ensemble by 0.18 ± 0.12 Å, and
decreased the accuracy of the STST-opt, ComboTST-opt,
CTCT-opt, and ComboTCT-opt accuracies by 0.04 ± 0.03,
0.16 ± 0.09, 0.09 ± 0.05, and 0.15 ± 0.09, respectively
(see Table 1), indicating a decrease in the conformer en-
semble accuracy in general. For all five accuracy mea-
sures (RMSD, STST-opt, ComboTST-opt, CTCT-opt, and
ComboTCT-opt), the conformer model accuracies before
and after clustering linearly decreased with the increase
in the RMSDcluster value (as well as NNHA, NR and NER),
with R2 values to fit these curves greater than 0.91 (see
Figures 8, 9, 10, 11 and 12 and Table 2).
Whereas the change in the CTCT-opt accuracy (0.09 ±

0.05) upon clustering was much greater than the STST-

opt average difference (0.04 ± 0.03), the ComboTST-opt

and ComboTCT-opt changes had similar average and
standard deviations (0.16 ± 0.09 vs. 0.15 ± 0.09). This
implies that, in general, while the CTCT-opt accuracy is
more sensitive to the clustering than the STST-opt accur-
acy, the effect of the clustering upon the ComboT ac-
curacy is not sensitive to the optimization type.
Similarly, while the rate of the decrease of the STST-opt

accuracy with the increase in molecular size and flexi-
bility was much slower than that of the CTCT-opt accur-
acy (Figure 9 vs. Figure 11), the ComboTST-opt and
ComboTCT-opt accuracies decreased at a similar rate
(Figure 10 vs. Figure 12).
This study shows that there is a definitive limit in the

ability of the PubChem3D sampled conformer models to
reproduce the bioactive conformations found in PDB
ligands. This study also suggests that larger and more
flexible molecules may be less able to interrelate with
other larger and more flexible molecules at a given
Tanimoto value than smaller and less flexible molecules do.
[This is also supported by our recent study [8] on the
PubChem 3-D neighbors. The PubChem 3-D neighbors
(also known as “similar conformers”) are defined as any
two compounds that are structurally similar (with STST-opt

≥ 0.8 and CTST-opt ≥ 0.5), and it was found that com-
pounds without 3-D neighbors occur more frequently
among larger compounds than among smaller com-
pounds. In addition, smaller molecules tend to have more
3-D neighbors than larger molecules]. As a result, one
may want to consider such effects when performing a 3-D
similarity search or 3-D biological activity data analysis.
Specifically in the case of 90% of the PubChem3D con-
former models, in general, one can expect the worst-case
minimum accuracy to be 0.75, 1.09, 0.43, and 1.13, in terms
of STST-opt, ComboTST-opt, CTCT-opt, and ComboTCT-opt,
respectively (see Figure 7). These values are expected to
linearly improve as the molecules considered become smal-
ler and less flexible. In addition, these values may become
worse if a diverse subset of sampled conformers is used.
Methods
Datasets
The experimental 3-D structures of small molecules were
downloaded from the Molecular Modeling Database
(MMDB) ligand dataset [45,46] as available from the
PubChem Substance database at the National Center for
Biotechnology Information (NCBI) (as of July 1, 2010).
Ligands too small or too big were discarded by limiting
the non-hydrogen atom count to 6 – 50. Ligands too flex-
ible (with an effective rotor count greater than 15) were
also eliminated. This filtering stage resulted in a set of
47,123 3-D non-unique, organic (i.e., carbon containing)
3-D experimental reference structures, where a 3-D con-
former model could be generated. The distributions of
molecular size and flexibility of the dataset are depicted in
Figure 1.
To test effects of the experimental uncertainties upon

the evaluation of the conformer model accuracies, a
subset of the 47,123-ligand set, which contains 157
“high-quality” ligand structures, was constructed in the
procedures described below.
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(1) Select the PubChem Substance records associated
with the MMDB records for the 197 PDB structures
determined in the study by Hawkins et al. [18].
These PDB structures were determined by
considering the local quality of fit of the ligand to
its density, as well as global level metrics of the
protein structure. Because some of the 197 PDB
structures had multiple ligands, there were 265
PubChem Substance records associated with these
protein structures. Note that, because their study
provided a list of the PDB identifiers (without a
unique ligand identifier), it was difficult to
determine what ligands were actually included in
the 197-ligand set. Therefore, next filtering steps
similar to those used in their study were taken
subsequently.

(2) Select the PubChem Substance records that are
neither too rigid nor too flexible (3 ≤ NR ≤ 16), and
that are neither too small nor too large (8≤ NNHA ≤
50). This filtering stage resulted in 200 PubChem
Substance records.

(3) Select the PubChem Substance records with good
“local” quality of fit to the density. Hawkins et al.
[18] used three metrics for this purpose: the real-
space correlation coefficient (RSCC) [47], the real-
space R-value (RSR) [48], and the occupancy-
weighted B-factor (OWAB). In the present study,
the same criteria as used in their study (RSCC > 0.9,
RSR < 0.2, and 1 < OWAB < 50) were applied, after
downloading these data from the electron density
server (EDS) [49,50]. After this step, 176 structures
were remained.

(4) Some of the remaining 176 PubChem Substance
Records were associated with identical PubChem
Compound Records, or had the same three-letter
PDB ligand codes, implying that they were the same
ligand molecule. In these cases, the one with the
largest RSCC value was retained, and the others
were removed. After removing the redundancy,
there were 164 structures remained.

(5) When any pair of the remaining 164 structures had
the PubChem 2-D similarity score of > 0.9
(computed using the PubChem 2-D subgraph
fingerprints [5] and the Tanimoto equation [6,7]),
the one with the largest RSCC value was retained
and the other was removed. [In the study of
Hawkins et al. [18], the LINGOS method [51] was
used instead of the PubChem fingerprint to remove
too similar molecules.] There were 157 ligands
remained after this final filtering stage.

Conformer generation using OMEGA
The conformer ensemble for each molecule in the data-
set was generated using the OMEGA software [28] from
the OpenEye Scientific Software, Inc. The OMEGA
application performs conformer generation in two pri-
mary stages: fragment generation and torsion driving.
The fragment generation stage splits the input structure
into smaller pieces that are energy minimized and con-
formationally sampled to get diverse 3-D representations
for each molecule fragment. The torsion driving stage
reassembles and iterates over the fragments from the
first stage using particular rule-based torsion angles that
depend on the molecular environment between connect-
ing fragments. More detailed description of the OMEGA
software is given elsewhere [18,52].
OMEGA has many adjustable parameters to generate

conformations with particular attributes, and the optimal
set of parameter values used for the present study was
based on our recent study [13]. The Merck Molecular
Force Field (MMFF94s) without coulombic terms
(MMFF94s_NoEstat) was used with the "startfact" value
of 20. The energy window value of 25 kcal/mol was
employed for both model building and torsion driving
stages. The values used for other parameters were iden-
tical to those used in the previous study [13].
As pointed out in a recent review by Scior et al. [53],

because adequate conformational space coverage is an
important requirement for reliable 3-D similarity compu-
tations, it would be desirable to consider as many confor-
mations per molecule as possible. However, because it
would require tremendous computational resources, it is
inevitable to find a compromise between computational
cost and conformational coverage. The PubChem3D con-
former generation procedure generates a maximum of
100,000 conformers for each chemical structure. As
demonstrated in our previous study [13], this limit may
not be enough for very flexible and large molecules, result-
ing in truncation of conformational search. However, in
the same study [13], it was shown that the 100-K limit
does not cause a noticeable decrease in the “average” con-
former model accuracy for smaller and less flexible mole-
cules (i.e., with NNHA≤35 and NER≤15). Therefore, this
100-K limit seems adequate for these molecules in
general.

Clustering of conformer ensembles
After conformer models were produced, a data reduc-
tion was performed whereby conformers were sampled
to identify a random set of conformers that have a mini-
mum RMSD distance to each other. This minimum
RMSD distance was determined by rounding the
RMSDpred value [in Equation (3)] to the nearest 0.2 in-
crement [i.e., Equation (4)]. The conformers in each
conformer ensemble were down-sampled using a
partition-based clustering scheme, as described in our
previous study [15], with the RMSD as a distance
threshold between conformers (that is, RMSDcluster) and
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the lowest-energy conformer in each partition as an ini-
tial “seed” structure for clustering of that partition. The
centroid of each cluster was selected as the representa-
tive conformer of that cluster to construct a smaller
conformer model with 500 conformers or less. If the
conformer model had more than 500 conformers after
sampling, it was re-clustered with the RMSDcluster value
incremented by a further 0.2. This re-clustering process
was repeated as many times as necessary to reduce the
overall conformer count to be 500 or less. Note that,
because the lowest-energy conformer in each partition
was used as an initial seed, low-energy conformers are
more likely to be included than high-energy conformers
when all partitions are combined together for next
round of clustering. As a result, the final conformer
model sampled though clustering is more likely to in-
clude low-energy conformers than high-energy confor-
mers. All RMSD values computed in this study used the
OEChem OERMSD function with: “overlay” turned on
to allow rotation/translation to yield the lowest possible
RMSD value; and “automorph” detection turned on to
allow proper treatment of symmetrically equivalent
atoms, except when its use resulted in excessive run-
time [an extremely rare event (at a rate of about 1 in
10,000) generally caused by large, nearly symmetric
molecules].

Evaluation of ensemble accuracies
The accuracy of the clustered ensembles was estimated
using five different accuracy measures: RMSD, STST-opt,
ComboTST-opt, CTCT-opt, and ComboTCT-opt. The latter four
accuracy measures were computed using ROCS [37,38,52].
Note that the generated conformer model had up to 500
conformers, and the accuracy of the conformer model was
evaluated by selecting the best conformer that was closest
to the experimental structure (that is, the one with the
smallest RMSD value or the largest ROCS-based similarity
values).

Additional files

Additional file 1: List of the 47,123 small-molecule ligands
considered in the study. This file contains a list of the PC Substance ID
for small molecules considered in this study.

Additional file 2: Distribution of the conformer ensemble
accuracies. This file contains figures that show the distributions of the
RMSD and the STST-opt accuracies of the conformer models as a function
of NNHA, NR, and NER (Additional file 2: Figures S1-S6) and correlation
between the two accuracy measures (Additional file 2: Figure S7).

Additional file 3: Least-squares fitting of the plots of conformer
model accuracy vs. NNHA, NR, NER, and RMSDcluster. This file contains
results of linear least-squares fitting of the plots (in Figures 8, 9, 10, 11,
and 12) of the average conformer model accuracies vs. each of three
independent variables [i.e., the non-hydrogen atom count (NNHA), the
rotatable bond count (NR), and the effective rotor count (NER)] to the
form of y = a + bx.
Additional file 4: List of the 157 high-quality ligands selected from
the 47,123 ligands. This file contains a list of the PC Substance ID for
157 high-quality ligands selected from the 47,123 molecules.
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