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Abstract

Background: In drug discovery, a positive Ames test for bacterial mutation presents a significant hurdle to
advancing a drug to clinical trials. In a previous paper, we discussed success in predicting the genotoxicity of
reagent-sized aryl-amines (ArNH2), a structure frequently found in marketed drugs and in drug discovery, using
quantum mechanics calculations of the energy required to generate the DNA-reactive nitrenium intermediate
(ArNH:+). In this paper we approach the question of what molecular descriptors could improve these predictions
and whether external data sets are appropriate for further training.

Results: In trying to extend and improve this model beyond this quantum mechanical reaction energy, we faced
considerable difficulty, which was surprising considering the long history and success of QSAR model development
for this test. Other quantum mechanics descriptors were compared to this reaction energy including AM1 semi-
empirical orbital energies, nitrenium formation with alternative leaving groups, nitrenium charge, and aryl-amine
anion formation energy. Nitrenium formation energy, regardless of the starting species, was found to be the most
useful single descriptor. External sets used in other QSAR investigations did not present the same difficulty using
the same methods and descriptors. When considering all substructures rather than just aryl-amines, we also noted
a significantly lower performance for the Novartis set. The performance gap between Novartis and external sets
persists across different descriptors and learning methods. The profiles of the Novartis and external data are
significantly different both in aryl-amines and considering all substructures. The Novartis and external data sets are
easily separated in an unsupervised clustering using chemical fingerprints. The chemical differences are discussed
and visualized using Kohonen Self-Organizing Maps trained on chemical fingerprints, mutagenic substructure
prevalence, and molecular weight.

Conclusions: Despite extensive work in the area of predicting this particular toxicity, work in designing and
publishing more relevant test sets for compounds relevant to drug discovery is still necessary. This work also shows
that great care must be taken in using QSAR models to replace experimental evidence. When considering all
substructures, a random forest model, which can inherently cover distinct neighborhoods, built on Novartis data
and previously reported external data provided a suitable model.

1. Introduction
1.1 Aims
In the field of drug-discovery, a positive Ames test can
halt development of a particular chemotype and possibly
work on an entire drug target because genotoxicity of a
potential therapeutic would be a serious issue that needs
to be avoided. Sufficiently nuanced rules do not exist to

fix such a problem while maintaining the careful balance
of potency and properties. Compounding this problem is
that impurities or metabolites that could be generated in
parts-per-million quantities (10 μg/day) are just as ser-
ious from a regulatory standpoint, which could eliminate
an essential core structure. Thus, prediction of whether
a starting material, degradation product, or drug will be
mutagenic in the Ames genotoxicity test is our primary
goal. More specifically, our initial focus was on aryl-
amines, which are commonly used reagent building
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blocks in many small molecule drug-discovery projects
and appear as a substructure in at least 13% of currently
marketed drugs [1]. Aryl-amines also have a known
mechanism for genotoxicity. In a previous article, we
have shown that an in silico assessment of aryl-amines
using quantum mechanics reaction energy calculations
can provide excellent detection of mutagenic aryl-
amines [2]. However, we were surprised that statistical
models incorporating additional descriptors did not
improve the performance of the single nitrenium forma-
tion energy parameter given the wealth of QSAR litera-
ture showing accuracy approaching or exceeding the
known experimental error. Additionally, we found that
the set of Novartis aryl-amines was surprisingly challen-
ging to model compared to those in the literature.
Our ultimate goal is to provide medicinal chemists

with usable models to improve the chances of avoiding
a toxicity trap that is often visible only after low-
throughput tests come back. The aryl-amines can be
predicted reliably with the nitrenium formation energy
calculation but comparing all-substructure external
Ames results to our Novartis results, we found that
these were also much harder. Other groups in pharma-
ceutical companies have noted difficulties in predicting
mutagenicity in aryl-amines [3], and in internal all-sub-
structure data sets using commercial software [4,5].
Previous to this article, differences between data sets

typically used in the literature for building mutagenicity
predictive methods and the data at pharmaceutical com-
panies have not been compared. This is key to the dis-
connect from literature studies and pharmaceutical
studies. The high level of performance of statistical
models in this arena with constructed test sets is mis-
leading and does not reflect performance in pharmaceu-
tically relevant sets. Here we show the relative difficulty
in predicting the Ames test result in the Novartis aryl-
amines and other substructures, in contrast to literature
sets.

1.2 The Significance of the Ames Test
Many compounds in the environment released from
industrial pollution and production are known to cause
cancer [6]. Regulatory agencies around the world in
cooperation with industry experts have adopted strin-
gent test methods to identify and regulate the use of
chemical mutagens that might be exposed to the envir-
onment or administered to humans directly as pharma-
ceuticals [7]. Carcinogenicity is usually determined by
an array of in-vivo and in-vitro surrogate tests, which
are specified by regulatory authorities before administra-
tion to man. The Ames bacterial test is a simple experi-
ment to perform and it is a mandatory regulatory test
that has been in use for almost 40 years and correlates

with life-time rodent carcinogenicity studies that require
2 years to complete [8,9].
At the molecular level, this test for mutagenicity

[10,11] detects a substance’s ability to cause mutations
in engineered strains of Salmonella typhimurium by
observing return of function by point mutations in an
altered His operon gene. The mutations in the His
operon strains prevents histidine biosynthesis, thus ran-
dom mutations or mutations due to an external agent
must occur for colony growth on histidine-deficient
medium. Many compounds are converted to mutagenic
compounds after metabolism, so the test is performed
with and without pre-incubation of the compound with
rat liver enzymes. The bacterial strains used in the test
have been further engineered to have permeable cell
membranes, a reasonably high spontaneous mutation
rate, and diminished DNA repair capacity [12].
Although the result of the Ames test can be reported

as a standardized quantity of the number of colonies
formed, in most recent studies and databases, including
the Novartis internal test results, are reported as catego-
rical results: “Ames-positive” (Ames+) or “Ames-nega-
tive” (Ames-). Additionally, it has been shown that the
qualitative carcinogenicity result is not improved by
quantitative mutagenicity potency data [8]. An increase
in number of colonies over control by at least a factor
of 2 and a clear dose dependence in the mini-Ames
screening test [13] is classified as a positive result.
Although high-throughput screening assays exist, they
do not faithfully predict the result of the Ames test and
at the same time require a significant investment
[14,15]. Consequently, the volume of data available for
the Ames test is fairly limited. The turnaround time and
cost for Ames testing makes accurate in silico models
quite useful.
There are some limitations of the Ames test that pre-

sent a challenge to building accurate in silico models.
The exact sensitivity of the test for carcinogenicity is
somewhat controversial [8], but in a recent retrospective
analysis by FDA and EPA researchers of carcinogenicity
and surrogate test results showed the Ames test is posi-
tive for 49% (275Ames+/557 rodent carcinogens) of car-
cinogenic compounds but only 19% of the Ames+
compounds are not carcinogenic to rats (85 Ames+/431
rodent non-carcinogens) [16]. Reproducibility both
across and inside one laboratory conducting the test is
another serious issue. Both literature and internal intra-
laboratory assessments of the test, at least in a 2-strain
screening version of the test, have found discrepancies
on the order of 15-20% [9]. Based on a retrospective
analysis of 237 compounds at Novartis with multiple
Ames screen test results, this is a realistic estimate;
there were 49 (21%) with discrepant results. Among aryl
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amines, 13 out of 57 compounds with multiple test
results were discordant (23%). The test is sensitive and
uses high concentrations of the test chemical, which can
increase the effect of impurities including metals [17],
degradation products, or reagents [18,19]. The chemical
can also be toxic to the bacterial system, most notably
antibacterials or cytotoxic compounds, but must still be
tested to the maximum possible concentration [7].

1.3 Substructure alert and QSAR methods
The cause of cancer through the action of chemicals has
been studied extensively, and the process typically
begins with the chemical, or one of its metabolites,
interacting with DNA, which subsequently leads to
mutations [20]. The principle of mutagenicity through
reaction of DNA with electrophiles has been especially
useful in rationalizing and deriving “toxicophores,” sub-
structures that are strongly associated with mutagenicity
[21,22]. Some of these mechanisms have been studied
carefully in vitro and in vivo [23], and DNA or protein
adducts can be measured and observed experimentally
[24,25]. The first line of defense in avoiding carcinogeni-
city in drug design is through the use of alerts to chemi-
cals commonly associated with carcinogenicity, mostly
derived from environmental testing [22,26]. Kazius et al.
provided an analysis of mutagenicity data correlating
chemical substructures to mutagenicity [21,27,28]. Most
of these toxicophores are associated with Michael accep-
tors, electrophiles, or enophiles including a,b-unsatu-
rated carbonyl systems, aziridines and epoxides,
aliphatic halides, azides, and acid halides. Others such as
aryl-amines and nitroaromatics are known to be con-
verted to more reactive species through oxidation,
reduction, and conjugation metabolism reactions [29].
The simplest of prediction systems search a chemical
for these substructures and uses rules to correctly pre-
dict the Ames+ compounds for known mutagenic sub-
structures. However, despite the inclusion of detoxifying

rules, these methods misclassify many of the Ames-
compounds as positive. For chemical sets containing
many unknown classes of mutagens, structural alert sys-
tems like DEREK correctly predict only around 50% of
the Ames+ compounds [5,30,31]. A similar result (55%
sensitivity) was found for compounds tested at Novartis
(all mini-Ames screening results, August 2009) using an
internally modified DEREK rule set [32]. There is a long
history of modeling mutagenicity on chemicals expected
to be encountered from environmental and food expo-
sure [9,33-37]. Recent reviews on statistical models of
mutagenicity [9,33,38,39] and a recent collaborative
head-to-head mutagenicity prediction challenge sum-
marize the current state of the art for external sets [40].
A summary of some recent models is included in the
Supporting Information (Additional file 1) which pro-
vided an accuracy in test set molecules ranging from
0.73-0.85 (approaching the known error in the experi-
ment) using a number of statistical approaches. A few
studies that could be described as using a hybrid
approach by identifying the most applicable out of a
selection of models have also been developed with extre-
mely good performance [40,41].

2. Methods
2.1 Data set preparation
Ames test data is available from a number of sources
including literature reviews, regulatory agencies, and
funding agencies [42]. For our analysis, we focused on
an internal Novartis set and two literature sets (com-
bined into one) for aryl-amines and four datasets cover-
ing all substructures as detailed in Table 1.
For the aryl-amine sets, molecules with other sub-

structures associated with mutagenicity, such as
nitroaromatic, nitrile oxide, N-nitroso substructures,
were removed from the analysis. Set A was from inter-
nal Novartis Ames screening test results tested in one
laboratory up to 2009. Set B is the aryl-amine subset

Table 1 Aryl-amine mutagenicity data sets considered in this study.

Set Description Number of molecules Number of Ames+ Number of Ames-

Aryl-amines Only

A Novartis 2009 327 72 255

B Kazius 2005[21]/Hansen 2009[38] 461 327 134

All compound classes

C Novartis 2754 360 2394

D Hansen[38] 6512 3503 3009

E Marketed Pharmaceuticals[44] 378 44 334

F Kazius[21]a 4195 2343 1852

Combined C, D, E, and Fa 9423a 3591b 5832b

aMW < 700
bAmes+ if either C, D, E, or F are Ames+
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from compilations published by Hansen et al [38,43]
and Kazius et al [21]. All Ames screening results at
Novartis excluding those with discrepant values com-
prised Set C. The complete set of Hansen et al. was
used as Set D. Set E represents a second pharmaceuti-
cally relevant set of marketed pharmaceuticals extracted
from a recent review by Brambilla and Martelli [44].
The complete Kazius set, Set F, was included in the ana-
lysis to give a combined collection of 9423 molecules. A
basic summary of the sets is shown in Table 1.

2.2 Computational studies
For all PLS and random forest models, a set of 185 2D
descriptors available in the MOE software program [45]
and a circular Morgan fingerprint [46,47] generated
with a radius of 3 bonds (ECFP6) hashed to 1024 count
variables using RDKit [48]. Quantum mechanics reac-
tion energies for nitrenium formation from the primary
amine were calculated as described in a previous publi-
cation considering conformation, tautomer, and spin
state [2] using B3LYP hybrid density functional theory
energies with a 6-31G* basis set for all C, F, H, O, S, N,
and P atoms and the LANL2DZ basis set and ECP for
Cl, Br, and I in Gaussian03 [49]. The nitrenium forma-
tion energy is equal to the energy of the lowest energy
amine conformation subtracted from the energy of the
lowest energy nitrenium ion plus hydride anion (ArNH2

® ArNH:+ + H-). The anion formation energy and radi-
cal formation energy were similarly calculated and gen-
erated and also used the 6-31G* basis set, though
improvement in the energy could be expected by adding
a diffuse function for the anion. The AM1 [50] HOMO
and LUMO orbital energies were calculated using the
MOPAC [51] module implemented in MOE. Nitrenium
ion charges were determined by using the lowest energy
B3LYP/6-31G* nitrenium ion conformation and calcu-
lating the NBO population analysis [52,53] using B3LYP
and a 6-311G* basis set in Gaussian03.
The random forest classification models used in this

article were constructed using the randomForest pack-
age [54] for R [55] using the approach developed by
Breiman [54,56]. The method was used by constructing
500 unpruned trees using a random sample of sqrt(N)
of the available predictors for each tree and a 0.632
bootstrap sample of the data for each tree. The remain-
ing data was predicted using the tree and averaged to
create the combined out-of-bag (OOB) predictions
depicted in the receiver operator characteristic (ROC)
plots.
The PLS classifications were done using a PLS regres-

sion implemented using the kernel algorithm available
in the PLS [57] package in R [55]. Variables showing lit-
tle variance among cases were removed using the near-
ZeroVar function in the caret [58] package and all

variables were centered by the mean and divided by the
standard deviation using the preProcess function in the
caret package. The response variable was 0 for Ames- or
1 for Ames+ in these models and the predicted value
found from the regression was used as a cutoff in con-
structing a classification model. All ROC plots and area-
under-the-curve (AUC) metrics used the ROCR package
[59] in R. Averaging of model performances in the ROC
plots was done with vertical averaging of performance at
a given false-positive rate, and error bars give the stan-
dard deviation. A random sample of 70% of the data
was used for training and the process was repeated 100
times representing in part how small batches of Ames
results might perform. Variables with zero variance were
removed prior to training thus removing 906 variables
for the Novartis set and 956 for Set B, and variables
were mean-centered and variance-scaled at each training
step.
The aryl-amine data sets were constructed as pre-

viously described [2]. The all-substructure sets were
combined using Pipeline Pilot [60] ignoring chirality due
to a lack of chirality in our 2D descriptors and after
generating a canonical tautomer. It is also worth noting
that absolute chirality determination cannot be done for
all compounds and inevitable data entry errors can
make this another source of error. A consensus Ames
result was used in these all-substructure data with the
definition that any Ames+ result in any of the sources
was an Ames+ result. Substructure counts were calcu-
lated using a Pipeline Pilot [60] protocol with substruc-
ture queries that were able to closely reproduce the
counts generated in the work of Kazius et al. [21] for
their data set (see Additional file 1, Figure S1 and Figure
S2 for queries and comparison to this reference). Mole-
cules with molecular weight greater than 700 g/mol
were excluded from analysis, which were more than
1.5x outside the interquartile region (IQR). The queries
used are provided as Additional file 2. The TOPKAT
Ames mutagenicity classification model in the Accelrys
ADMET component collection in Pipeline Pilot was
used for commercial model predictions. All public data
(Sets B, D, E, and F) are provided as a merged sd file as
Additional file 3.
The Self-Organizing Map [61] for the combined all-

substructure set was generated in Schrodinger Canvas
version 1.4 [62] with a 30 cell by 30 hexagonal cell out-
put grid. The program uses Euclidean distance to mea-
sure similarity between compounds, and the internal
Morgan[46]-type circular fingerprints [47,63] generated
with radius 2 and functional atom types were used as
descriptors (ECFP4). The TopKat mutagenicity predic-
tion was centered and scaled to give results from 0 to 1
and the random forest model provided probabilities
between 0 and 1 for the Ames+ class. The deviation was
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then the difference between either 1 for an experimen-
tally Ames+ or 0 for Ames- result and the model out-
put. For the aryl-amine set, the ‘kohonen’ package [64]
in R was used instead due to a discovered problem in
Canvas with applying trained maps to new compounds.
In this case, RDKit was used to generate circular Mor-
gan fingerprints hashed to 1024 count variables as
described for the statistical modeling.

3. Results and Discussion
In the following results, the differences in the sets are
examined in terms of their properties, presence of pre-
viously identified mutagenic substructures, and struc-
tural similarity and clustering visualized using Kohonen
self-organized maps. The difference in predictivity of
multiple statistical methods and descriptors between
pharmaceutically relevant data and literature compila-
tions is analyzed firstly for aryl-amines and then for sets
containing all substructures. For aryl-amines, the quan-
tum mechanically derived reaction energy for forming a
known reactive intermediate was shown to be a more
stable and accurate predictor than statistical models
with more descriptors.

3.1 Comparison of molecules in external Ames data sets
and pharmaceutically relevant sets
As can be seen in Table 1, the Novartis Set A of aryl-
amines and Set C of all substructures tested have a low
number of Ames+ compounds compared to their litera-
ture counterparts (Sets B and D). In aryl-amines (Set A),
only 22% of the molecules are Ames+, and in the entire

set of test results at Novartis (Set D), only 15% of the
molecules are Ames+. This low percentage is quite simi-
lar to other recent reports on Ames results at other
pharmaceutical companies such as the recent report
from Hillebrecht et al. from Roche [4] where 300/2335
= 13% of the internal compounds were Ames+. A paper
by Leach et al. [3] on aryl-amines from AstraZeneca had
a slightly higher percentage (109/312 = 35%) of Ames+
aryl-amines less than 250 g/mol. However, in the litera-
ture sets (Sets B and D): 71% of aryl-amines and 54% of
the entire chemical space are Ames+. Perhaps surpris-
ingly, the marketed pharmaceutical set, set E, has a non-
zero incidence of Ames+ test results but it is fairly low-
around 12%. An Ames+ test result is only part of a
potential drug’s profile but the risk of carcinogenicity in
later stage animal testing and added regulatory scrutiny
present a significant hurdle to drug development in a
competitive space.
Another major difference between the sets is the num-

ber of compounds of intermediate molecular weight
(200-500 g/mol). This range was nearly absent in the
benchmark sets shown in the left plot of Figure 1, but
for the Novartis and marketed drugs sets in the right
plot, there is a large percentage of the compounds. The
bias towards larger molecules likely reflects that the
Ames test has often been considered later in drug devel-
opment, when molecules and their precursors have
more complex structures. For all Novartis compounds
tested, the median weight was 415 with a fairly wide dis-
tribution from 80 to 600 g/mol as shown in Figure 1
(right). In contrast, the median weight for Set D is
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Figure 1 Molecular weight distributions of Ames test data sets. Molecular weight distributions of all six sets plotted up to molecular weight
of 700 g/mol with mean molecular weight marked with the dotted line of the same color. The literature sets are shown in the left plot, and the
Novartis (Sets A and C) and the marketed drugs compilation (Set E) are shown on the right.

McCarren et al. Journal of Cheminformatics 2011, 3:51
http://www.jcheminf.com/content/3/1/51

Page 5 of 20



about 229, with a slightly sharper distribution as shown
in the left plot in Figure 1. In quantitative terms, the
range of 400-600 g/mol in the literature set, Set D, con-
tains just 372 molecules (6% of the set) compared to
1380 compounds (50% of the set) found in the Novartis
Set D. The set of marketed pharmaceuticals with Ames
test results is shown in green in the right plot of Figure
1. It has a molecular weight distribution more like the
Novartis set, with a median weight of 309 g/mol.
For the aryl-amine sets, Sets A and B, the situation is

similar: the Novartis set, Set A, has a higher average
molecular weight but there is an even distribution of
weights from about 150-500 g/mol. In Set B, there are
only 3 aryl-amine data in the range of 400-600 g/mol.
In Set A, there are 93, which is almost 30% of the set.
The fact that there is such an even distribution, includ-
ing a large fraction of lower molecular weight com-
pounds, in the Novartis set may reflect the importance
of this class and the response to the issue of genotoxi-
city. When an issue is identified, the typical medicinal
chemistry approach is to synthesize dozens of molecules
and test all of them. Building blocks that are compo-
nents of larger molecules are often tested in case of
trace genotoxic impurities and for internal guidelines
are tested if used for a final clinical candidate. Also
drugs for different disease areas such as neuroscience
may require smaller molecules.

The “toxicophores” described in Kazius were used to
construct a further comparison of two of the all-sub-
structure sets, Set C (Novartis) and Set D (Hansen). Fig-
ure 2 portrays the overall count of these functional
groups in the two sets and Table 2 summarizes the per-
centage of Ames+ compounds in each class, done in a
filtered manner where nitroaromatic is the first class.
The labels “[OH, NH2][O, N]” and “ArN(CH2C)2”,
denote an alcohol or amine bonded to an oxygen or
nitrogen, such as a hydrazine or a hydroxylamine, and a
di-alkylarylamine respectively. Naturally, a number of
these functional groups are less common in drug design
because of their reactivity or under-represented in test
results or in the compounds synthesized due to con-
cerns for toxicity in the Ames test. Aryl-amines, aryl-
amine-amides, and dimethylarylamines are quite-well
represented and have a lower Ames+ rate. Nitroaro-
matics were not nearly as represented in this set and are
well-established as having a high probability of being
responsible for genotoxicity. Building statistical models
in the other data sets may benefit greatly from having a
feature so strongly associated with genotoxicity. The
structures in our set with a nitroaromatic group were
Ames+ 40% of the time and in Set D, 84% were Ames+.
Even within a distinct substructure, aryl-amines, the

pharmaceutically relevant set is much different from the
Ames test results typically presented in the literature.
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The use of Kohonen, or Self-Organizing, Maps [61]
(SOMs) was helpful for visualizing the differences
between the sets using distances between molecular fin-
gerprints of the molecules. This technique clusters
molecules with similar substructure with each other in
the best matching cell while also maintaining a 2-
dimensional grid of cells such that similar molecules
appear in adjacent cells. Multidimensional scaling and
simple clustering was also investigated for visualization
but yielded unsatisfactory neighbors in the first case,
and a less useful visualization tool in the second. A
SOM map built with the aryl-amines found in all sets is
shown in Figure 3 but colored by property. The left plot
is colored by where the aryl-amine is from: whether the
molecule is a Novartis aryl-amine (orange) or from the
external sets (blue). The center plot is colored by
whether the compound is Ames+ (red) or Ames-
(green). Finally, some representative structures are
shown in the approximate locations of the map in the
right plot. Cells with some of each class are colored as
pie charts depicting the relative fraction of each class
present. The approach knows nothing of the set mem-
bership of each compound, yet it shows a striking
separation of the 1005 aryl-amines both by whether they
are part of a drug company’s tested compounds or from
a literature Ames compilation. Due to the clustering by
substructure and that Set D is so largely Ames+, this
method also provides excellent separation of the Ames+
aryl-amines. Polyaromatic amines such as aminoacri-
dines, aminophenazines, or aminochrysenes are not
highly common in medicinal chemistry. However, they
are quite common in the available literature sets. These
structures are in Ames+ cells and can be easily repre-
sented using molecular fingerprints found in many
QSAR models. This makes these sets easier to model.
In Figure 3, we also show where commercial aryl-

amines that have been calculated by our model lie in
the map. A significant population exists near CF3-substi-
tuted anilines in the top right, which have historically
been Ames- (2nd plot) and have higher nitrenium forma-
tion energies. The top left of the map contains mostly
larger and more polar aryl-amines, which were purpo-
sely left out of the calculations because of the goal of

identifying safer starting materials and the better perfor-
mance of the predictor for lower molecular weight aryl-
amines. The center-right area of the map is where a
large proportion of the commercially available aryl-
amines are located avoiding some of the larger polyaro-
matic and triphenyl systems. It is also an area that has
cells that contain Ames+ and Ames- amines. The nitre-
nium formation energy predictor can clarify which com-
pounds in this area are safer bets as discussed in the
next section.
The set of 9423 unique compounds included in sets C,

D, E, and F are depicted in the SOM in Figure 4. The
left-most, top plot colors the SOM by whether it is from
Novartis (orange) or an external set (red), the center-top
plot shows the distribution of Ames+ (red) and Ames-
(green) compounds, and the upper-right plot shows the
population of the cells. For the aryl-amine SOM, the
population was somewhat uniform, but in the all-sub-
structure plot, the number of molecules per cell varies
from 1 to 66. This is natural due to the more extensive
differences in the set. The bottom three plots then
further characterize where certain substructures are dis-
tributed in the SOM. The blue cells show the presence
of a polyaromatic substructure in the bottom-left. The
aryl-amines are distributed throughout the area and
depicted in shades of red. Those molecules with multi-
ple aryl-amine substructures have an increasingly pink
hue sector of the pie marker. Finally in the bottom-right
plot, the nitroaromatics are highlighted in shades of
green. As in the case of the aryl-amines, multiple sub-
structures are given as separate pie-chart sectors of
increasing brightness. These are seen almost solely in
the external set and in regions of high mutagenicity.

3.2 Predicting aryl-amine mutagenicity using quantum
mechanically derived descriptors alone
In a previous report, we determined that for aryl-
amines, a case in which reactivity is a principle mode of
toxicity, a quantum mechanics reaction energy provides
an excellent classifier of Ames+ and Ames- compounds
across multiple aryl-amine data sets [2]. The principle of
reactivity has been included in models using energies of
the HOMO and LUMO orbitals calculated with a fast

Table 2 Prevalence of the Kazius toxicophores in Sets C and D.

Functional group Nitro ArNH2 ArNHC(O)R ArNHMe ArNMe2 aryl-amine alkylring ArNHSO2Me unspecified

Set C D C D C D C D C D C D C D C D

# of molecules (sequential filter) 18 973 466 562 401 195 13 22 11 53 274 28 28 13 1523 4660

% of total Set 1% 15% 17% 9% 15% 3% 0% 0% 0% 1% 10% 0% 1% 0% 55% 72%

# Ames+ 8 808 91 387 45 77 1 17 3 33 49 13 1 2 162 2160

% Ames+ 44% 83% 20% 69% 11% 39% 8% 77% 27% 62% 18% 46% 4% 15% 11% 46%

The % of total set is computed by sequentially filtering by substructure from left to right in the table such that a nitroaromatic molecule is labeled “Nitro” even if
it has an aromatic amine substructure “ArNH2”.
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semi-empirical quantum method such as AM1 or PM3
[34,65,66]. The HOMO energy correlates with the ioni-
zation potential, or the energetic cost of losing an elec-
tron, while the LUMO correlates to electron affinity, or
the gain of an electron. Good performance using these
descriptors has been achieved for small sets of aryl-
amines with only a few terms in linear classification and
regression models [35]. The HOMO energy also does
surprisingly well in discriminating Ames+ amines (Fig-
ure 5) despite the fact that it does not represent a
reaction.
A number of groups have also studied the utility of

studying the reactions of aryl-amines to understand
mutagenicity [2,3,35,67,68]. It was determined that the
most statistically significant factor for predicting Ames
toxicity was the reaction energy for forming the reactive

intermediate, the nitrenium ion, from the aryl-amine
[2,3]. This simple descriptor alone can provide a useful
prediction of mutagenicity [3,67,68]. These energies are
dependent on 3D conformation and the electronic spin
state of the reactive intermediate and thus require care
to ensure the calculated value is accurate. Using this
reaction energy for all Novartis aryl-amines was initially
disappointing since good to excellent performance was
observed in previous reports for other datasets, in addi-
tion to our prediction of external sets gathered for our
testing. Upon closer examination, it was clear that most
of the sets did not have a uniform distribution up to the
range of molecular weight of final pharmaceutical com-
pounds and natural products that comprise a significant
portion of the Novartis set. As shown in Figure 6, the
performance was much lower for molecules with higher

a. b.

Novartis External Ames+ Ames-
c. d.

Aryl-Amine landmarksNot calc. <278 <283 <288 <330
Figure 3 Self-organizing map of aryl-amine chemical space. Comparison of aryl-amines in Set C and D using a self-organizing map (SOM)
based on circular Morgan fingerprints, the SOM cells are shown in the top two plots with coloring applied based on a.) whether the compound
is from Novartis, or b.) whether an Ames+ result (red) exists for the molecules in the cells. In c.) commercial aryl-amines have been mapped to
the SOM trained on known aryl-amines and colored by their predicted Ames test result based on nitrenium formation energy in kcal/mol. Size
of the marker conveys the number of compounds in the cell. In d.), an approximate location of some Set D aryl-amines is given.
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Novartis External Ames+ Ames- 1 15 30 45 66Count:

NitroaromaticAryl aminePolyaromatic
Figure 4 Self organizing map of the chemical space of compounds considered colored by properties. SOM for all compounds in Sets C,
D, E, and F colored according to property (with pie charts to represent the percentage of molecules in the cell matching a property). The
properties labeled from top-left clockwise: whether the compound is in the Novartis deck, whether it has an Ames+ result, the number of
molecules in each cell, whether the polyaromatic substructure occurs in a cell, how many compounds have an aryl-amine substructure present,
or how many compounds have a nitroaromatic substructure.
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Figure 5 Beanplots of four QM descriptors considered in our study. The beanplot is a way to show all data while also conveying a sense of
the distribution. In this case, the Ames- points are plotted to the left of the center of each of the four plots with a green distribution and dark
points; Ames+ data points are plotted to the right of the center in each plot and shown as white whiskers on a red distribution plot. The mean
of each distribution is given as a long dark line. Reaction energies are given relative to aniline.
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molecular weight in Set A (orange dotted line). Consid-
ering that the principle toxicity mechanism of aryl-
amines requires metabolic activation, one possible expla-
nation is that larger molecules have more selectivity in
metabolic enzymes. Anecdotally, smaller molecular frag-
ments that present themselves as impurities, degradation
products or metabolic products were the most common
aryl-amine Ames problem at Novartis. Therefore, pre-
diction of lower molecular weight, reagent-like aryl-
amines were the principal interest.
Other groups have introduced other quantum

mechanics descriptors for aryl-amines in addition to
nitrenium forming reactions [2,3,67-70], including the
charge on the nitrenium ion nitrogen [68], relative
energy of anion formation and relative iron complexa-
tion energy in a CYP1A2 binding site model [70], and
finally reaction energy for aminyl radical formation,
another species that could be produced in the cyto-
chrome systems and has been associated with DNA
damage [71]. Some of the reactions that have been used
are summarized below in Equations 1-5 and these have
been compared for Set A. The Pearson correlation
matrix in Table 3 shows that all of the nitrenium form-
ing processes represented by Equations 1-3 are closely
correlated and all provide good discrimination. The
area-under-the-curve (AUC) for the ROC plot for each
of these parameters is given in Table 3 and shown gra-
phically in Additional file 1 (Figure S3).

The best single parameters include the nitrenium forma-
tion energy reactions and the AM1 HOMO orbital energy.
The Ames+ compounds have values tightly clustered in
these two parameters as shown in the beanplots in Figure
5 and show the expected relationship to the barrier of
forming the nitrenium intermediate. Larger HOMO orbi-
tal energies of the amine and lower reaction energies for
forming the reactive nitrenium ion would make it easier to
form the intermediate. Ames+ amines tend to have a
more negative charge on the nitrenium nitrogen, which
has been presented previously [68], but the relationship is
clearly not as strong. As suggested in a recent article [70],
we looked at the anion formation energy (Equation 5) and
though on its own it has little discrimination as shown in
Figure 5 and its AUC in Table 3, it appears to provide a
useful complement to the nitrenium formation energy.
Higher sensitivity at equivalent false-positive ratios in the
80-87% sensitivity region of the ROC curve (Additional
file 1, Figure S3) were possible. A PLS model using all of
the quantum mechanical descriptors showed a large load-
ing value in the first component for nitrenium formation
energies and the anion formation energy had the largest
loading value in the second component. The starting geo-
metries for the anions can be generated using the same
procedure for generating the nitrenium ions from the
B3LYP-optimized aryl-amines.
Out of all of the QM parameters, the most useful para-

meter by PLS loadings and Random Forest variable
importance (top ranked in all runs) using all of the data
was the nitrenium formation energy (Equation 1). This
particular reaction is also the easiest to calculate out of
Equations 1-3 since it reduces the number of atoms in
the system compared to losing -OH or -OAc as the leav-
ing group (Equations 2 and 3). While HOMO energy has
a high correlation with nitrenium formation energy
(0.84), the nitrenium formation energy provided better
overall performance in the 70-84% sensitivity range.

ArNH2 → ArNH:++−H (1)

ArNOAc → ArNH:+ + − OAc (2)

ArNOH + H3O+ → ArNH:+ + 2 H2O (3)

ArNH2 → ArNH. + H. (4)

ArNH2 + H2O → ArNH − + H3O+ (5)

3.3 Predicting aryl-amine Ames test results using
multivariate statistics
Multi-dimensional statistical models improving upon the
performance of the nitrenium formation energy

1.0

0.8
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ue

 p
os

iti
ve

 ra
te

0.4

0.6

Set A, MW<250
Set A 250 < MW < 500

0.2

Set A, 250 < MW < 500
Set B, MW<250
Set B, 250< MW <500
cutoff=282 kcal/mol
cutoff=283 kcal/mol
cutoff=284 kcal/mol

False positive rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0

Figure 6 ROC curve for using the single parameter nitrenium
formation energy for aryl-amine sets A and B. Using the
reaction energy for nitrenium intermediate formation (RNH2 ® RNH:
+ + H-) as a cutoff (labeled by shapes as indicated in the legend) for
Novartis and External aryl-amines for the subsets with MW < 250 g/
mol (solid line) and 250 < MW < 500 g/mol (dashed line).
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parameter alone were difficult to construct. A number
of available approaches including k-Nearest-Neighbors
(kNN), random forest, partial least squares (PLS), sup-
port vector machines (SVM), and PLS with discriminant
analysis provided similar performance for Set A. A com-
parison of these methods and other approaches to mod-
eling Ames toxicity when all mutagens are included
have already been presented in other studies [36]. We
have chosen to focus on PLS and random forest analysis
of the aryl-amine data for further discussion because of
the interpretability of PLS, the ability to include a large
number of correlated variables, and the straightforward
assessment of the importance of variables.

Figure 7 shows the receiver operator characteristic
(ROC) curve averaged over true-positive rates for 100
PLS models at identical false-positive rates for Set A
(left) and Set B (right) using 1, 2, and 3 components of
a PLS model. As summarized in Table 4, the perfor-
mance of the method on the Novartis set, Set A, was
highly variable and significantly poorer than for Set B.
The performance on the test set decreased dramatically
when adding a second component leading to a decrease
in average AUC of 0.12. The same approach for the
external set, Set B, resulted in a significantly higher
AUC performance in the test set of 0.79, 0.80, and 0.81
for a 1-, 2-, or 3-component PLS model respectively.

Table 3 Correlation matrix of quantum mechanics parameters for Set A and the single-parameter ROC AUC
performance.

1 2 3 4 5 6 7 8 9 10 AUC

1. NitFormE (Eq. 1) 1 1.0 1.0 0.8 -0.2 -0.8 -0.3 0.3 0.9 -0.3 0.74

2. NitFormE (Eq. 2) 1.0 1 1.0 0.8 -0.2 -0.8 -0.3 0.3 0.9 -0.3 0.73

3. NitFormE (Eq. 3) 1.0 1.0 1 0.7 -0.2 -0.8 -0.3 0.3 0.9 -0.3 0.73

4. RadicalFormE (Eq. 4) 0.8 0.8 0.7 1 0.0 -0.5 -0.2 0.2 0.7 -0.3 0.68

5. Anion Form. E. (Eq. 5) -0.2 -0.2 -0.2 0.0 1 0.4 0.8 0.6 0.1 0.2 0.60

6. AM1 HOMO E -0.8 -0.8 -0.8 -0.5 0.4 1 0.5 -0.3 -0.7 0.4 0.74

7. AM1 LUMO E -0.3 -0.3 -0.3 -0.2 0.8 0.5 1 0.7 -0.1 0.2 0.60

8. HOMO-LUMO E 0.3 0.3 0.3 0.2 0.6 -0.3 0.7 1 0.5 -0.1 0.56

9. Nitrenium Charge 0.9 0.9 0.9 0.7 0.1 -0.7 -0.1 0.5 1 -0.2 0.66

10. Expermental Ames (Ames+ = 1) -0.3 -0.3 -0.3 -0.3 0.2 0.4 0.2 -0.1 -0.2 1

See Additional file 1, Figure S3 for a graphical representation of the ROC curves.

Figure 7 Averaged ROC curves of PLS models for aryl-amine sets (MW < 250 g/mol). Performance using 1, 2, or 3 components using 100
randomly sampled test and training sets is shown with Set A on the left and Set B on right. The darker shades of lines have fewer components
(see scale) and the green ROC curves are for the 100 random test sets (30% sample) and the red for 100 training sets (remaining 70% of set)
both averaged over identical false positive rates. Error bars represent standard deviation.
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This was higher than the test set performance of Set A
by 0.17 for the PLS models in the test set. After 2 com-
ponents, the test set accuracy at a cutoff chosen in the
training set to produce 80% sensitivity began to decrease
for Set B. The random forest out-of-bag model perfor-
mance on the test set for Set B averaged over 100 runs
was significantly better than the 2-component PLS
model. The performance of a random forest model for
Set A was almost identical to the 1-component PLS
model, so the AUC performance difference between Set
A and Set B random forest models was an even higher
0.24.
For both Set A and Set B, the multiple-variable PLS

models offered an improved prediction over using nitre-
nium formation energy alone (dashed line) in the train-
ing set but not in the test set. The performance of the
Set A PLS model on the test set was much worse on
average than using this single parameter. The model in
Set B was slightly better but unfortunately, most of the
performance increase over the nitrenium formation
energy (0.03 in AUC) was in a low-sensitivity region of
the ROC curve (< 50% true positive rate). The predic-
tion in this range was not considered to be useful for
excluding Ames+ fragments. These results are frustrat-
ing but provoked thought about why the molecules
commonly used in the literature are different and easier
to model.
In an attempt to address the problem of overfitting in

this PLS model, a smaller selection of variables was cho-
sen guided by the PLS loading weights, Pearson correla-
tion between variables, and variable importances from a
random forest model of the set. The weights were aver-
aged over the 100 models and the largest 30 mean load-
ing weights were used. Table 5 shows the variable
loading and jack-knife significance testing run in the
PLS cross-validation as well as the mean decrease in
Gini coefficient over all trees for the random forest
model built with the widest selection of parameters.
Two additional descriptors (the Balaban j index [72] and
density) are given, which were suggested by random for-
est importance measures and their low correlation with

the other descriptors. The Balaban index was also iden-
tified as a discriminating variable in a previous investiga-
tion of aryl-amines and depends partly on the number
of rings [3].
The first principal component included the nitrenium

formation energy and other descriptors relating to elec-
trostatics, hydrophobicity, and indirect properties such
as the number of atoms. The variable chi0v_C (0cC),
[73] is a valence-modified carbon atom connectivity
index which depends on the number of carbon atoms in
the structure and how many non-hydrogen atoms are
connected to them. a_count and a_nH are simply the
number of atoms and hydrogens respectively. GCUT_-
SLOGP calculates log P based on atomic contributions
and a modified graph distance [74], while BCUT_SMR
calculates the molar refractivity based on atomic contri-
butions and bond order [75-77]. Q_VSA_POS is the
sum of atomic contributions to van der Waals surface
area where the sum of partial charges of the atoms are
positive [78], and density is the molecular weight
divided by total van der Waals volume.
The most interpretable variables in the second compo-

nent for Set B related to flexibility and included the
number of rotatable bonds and number of rotatable sin-
gle-bonds, b_rotN and b_1rotN respectively, the Kier
flexibility parameter [79], abbreviated here as KierFlex.
The number of oxygen atoms and a fingerprint bit asso-
ciated with an aryl-amine substructure was also
significant.
Using just the first component parameters shown in

bold in Table 5 resulted in less decrease in performance
between training and test sets and decreased perfor-
mance by less than 0.03 AUC. Fitting all data led to an
intermediate performance between the training and test
sets as would be expected. A random forest model using
only these descriptors performed much better than one
using all of the potential descriptors for Set A, and for
Set B this approach had similar but slightly lower per-
formance. The likely overfitting in the random forest
model was quite surprising and indicates a tendency for
many of the parameters to introduce conflicting results.

Table 4 Performance of prediction methods.

Model Set A, Training Set A, Test Set B, Training Set B, Test

PLS with NitFormE PC1 0.76 ± 0.02 0.63 ± 0.08 0.80 ± 0.02 0.78 ± 0.05

PC2 0.88 ± 0.03 0.56 ± 0.09 0.83 ± 0.01 0.80 ± 0.04

PLS without NitFormE PC1 0.76 ± 0.02 0.62 ± 0.08 0.80 ± 0.02 0.79 ± 0.05

PC2 0.89 ± 0.02 0.54 ± 0.09 0.84 ± 0.01 0.80 ± 0.04

Nitrenium Formation Energy Alone 0.72 ± 0.04 0.71 ± 0.09 0.78 ± 0.02 0.77 ± 0.05

Random Forest with NitFormE 0.62 ± 0.01 0.855 ± 0.003

Random Forest without Nitrenium Formation Energy 0.61 ± 0.01 0.851 ± 0.003

A single-parameter nitrenium formation energy as a model is compared to PLS and random forest models with and without the nitrenium formation energy
parameter.
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These results are summarized in Table 6 and the full
ROC curves are shown in Figures 8 and 9. The single
parameter nitrenium formation energy can met or
exceeded the performance of PLS models that were
given far more information. It was also able to perform
well on the challenging Novartis set.

3.4 Cross set performance-training with Set A and testing
Set B and vice versa
In a further attempt to characterize the differences in
Set A and Set B, the sets were used as a test set for a
model built from the other set. The results of this
experiment are shown in Table 7 and Figure 10. The
difference in performance was quite instructive and
shows that the performance of Set B is less able to
extrapolate to the aryl-amines in Set A than vice versa.
The performance of the Set A model was actually better
for Set B data than for the data used to train it while a
model based on Set B had clear difficulty in predicting

Set A. This can be quickly seen in Figure 10 which
shows the ROC curve for Set B predicted by a PLS
model built on Set A (solid red line, left graph) and the
ROC curve for Set A predicted by Set B (solid orange
line, right graph). The performance of the Set A model
on Set B (0.73) was almost identical by AUC to the Set
A performance (0.72), representing a decrease in AUC
of 0.07 from the Set B model performance. In fact even
the 9-descriptor Set A model gave a performance of
0.73 for Set B. PLS models built on Set B performed
extremely well on Set B with AUCs around 0.8. How-
ever, when these models were applied to Set A, the per-
formance was markedly worse and the 9-descriptor
model performed much better than the model with all
of the descriptors. The unscaled PLS scores are shown
in Figure 11 in the form of a boxplot for each model.
The Set A scores are broadly and almost normally dis-
tributed in the Set A model encompassing all of the
scores of the Set B data, mostly in the middle 50% of

Table 5 Selected variables important in statistical models of Set A and Set B.

Variable Set A PC1 Mean Decrease in Gini log p Set B PC1 Set B PC2 Mean Decrease in Gini log p

chi0v_C 0.153 (1) 0.4 (30) -5 0.148 (2) -0.070 (86) 1.5 (17) -8

GCUT_SLOGP_3 0.151 (4) 1.07 (1) -4 0.141 (5) -0.059 (102) 2.3 (8) -8

a_count 0.152 (2) 0.3 (62) -6 0.129 (19) -0.108 (51) 1 (54) -2

balabanJ -0.097 (60) 0.5 (15) -2 -0.128 (20) 0.004 (241) 2.6 (7) -8

a_nH 0.149 (5) 0.4 (40) -4 0.115 (35) -0.077 (76) 1 (52) -1

Density -0.108 (51) 0.4 (32) -2 -0.106 (47) -0.058 (103) 2.7 (6) -7

NitFormE -0.125 (26) 1.0 (2) -3 -0.104 (52) -0.04 (136) 8.9 (1) -8

Q_VSA_POS 0.129 (24) 0.6 (7) -3 0.061 (87) -0.052 (108) 1.4 (26) -1

BCUT_SMR_3 0.124 (28) 0.6 (9) -2 0.046 (111) -0.129 (32) 1.4 (24) -1

a_nC 0.146 (10) 0.3 (57) -4 0.148 (3) -0.073 (80) 0.8 (74) -12

Morgan0672 0.056 (111) 0.1 (130) 0 0.107 (44) -0.045 (123) 0.3 (144) -3

a_hyd 0.140 (15) 0.2 (121) -3 0.143 (4) -0.065 (94) 0.5 (114) -5

b_1rotN 0.075 (82) 0.05 (187) -1 0.001 (244) -0.154 (11) 0.3 (146) -4

KierFlex 0.085 (73) 0.3 (69) 0 -0.011 (206) -0.184 (4) 1.6 (14) -7

b_rotN 0.065 (97) 0.03 (217) -1 -0.004 (232) -0.16 (8) 0.3 (146) -5

Morgan0280 -0.042 (147) 0.02 (242) -1 -0.06 (88) -0.149 (14) 0.2 (160) -8

a_nO -0.04 (150) 0.03 (223) 0 -0.073 (75) -0.139 (25) 0.3 (148) -8

PLS loadings, the PLS jackknife significance estimate from leave-one-out cross-validation, and the random forest mean decrease in Gini coefficient for each
variable is given below with their overall rank by that measure. All variable abbreviations follow those in MOE. Bolded, italicized, and underlined text respectively
indicates variables chosen to be important in both Set A and Set B from the first principal component, important for Set B in the first component, and important
for Set B in the second component.

Table 6 Performance of PLS and random forest models on the aryl-amine sets.

Set A, Training Set A, Test Set B, Training Set B, Test

PLS with NitFormE PC1 0.76 ± 0.02 0.63 ± 0.08 0.80 ± 0.02 0.78 ± 0.05

PLS with 9 descriptors PC1 0.68 ± 0.03 0.66 ± 0.08 0.77 ± 0.02 0.76 ± 0.04

Random Forest With NitFormE 0.62 ± 0.01 0.855 ± 0.003

Random Forest With 9 descriptors 0.682 ± 0.008 0.844 ± 0.004

Nitrenium Formation Energy 0.72 ± 0.04 0.71 ± 0.09 0.78 ± 0.02 0.77 ± 0.05

The performance of statistical models for Set A and Set B, over 100 random samples of the data. For the random forest model, the performance is for the data
when it was out-of-bag in the construction of the trees and for PLS, it is for a 30% test sample when the model is trained with the other 70%.
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Figure 8 Averaged ROC curves for Set A aryl-amine PLS models. The plot on the left is for the model built with a full descriptor set and the
plot on the right is for a limited descriptor set. The left plot shows the averaged (identical false positive values) ROC curves for the test (dark
line) and training (lighter line) sets of 100 PLS models built on a random 70% sample of the Set A aryl-amine data (MW < 250 g/mol) and the
performance of a PLS model built on all of the data as a dashed line with all non-zero-variance descriptors. The right plot uses only 9
descriptors including nitrenium formation energy.
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Figure 9 Averaged ROC curves for Set B aryl-amine PLS models. The plot on the left uses a full descriptor set while the plot on the right is
for a model using a limited descriptor set. The left plot shows the averaged (identical false positive values) ROC curves for the test (dark line)
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the data (interquartile range). However, the Set B data is
not as centered in the model and most of the Set A
data is outside the middle 50% of the Set B scores.

3.5 Performance of a commercial model on aryl-amine
data-TOPKAT
The pre-built mutagenicity prediction model available to
us in TopKat [80] was explored as a possible prediction
method. The performance of the prebuilt model on the
327 aryl-amines in Set A was quite poor with an AUC
of the ROC curve of 0.59 for the molecular weight <
250 g/mol subset and 0.61 for the molecular weight ≥
250 g/mol subset. The model provides the Tanimoto

similarity with the most similar compound used to con-
struct the model as one way to assess model applicabil-
ity. Set A has an average closest Tanimoto distance of
0.41 ± 0.14 for aryl-amines less than 250 g/mol molecu-
lar weight and 0.57 ± 0.07 for those between 250 and
500 g/mol. At least a large portion of the aryl-amine
data in Set B was used to build the TOPKAT model
and the aryl-amines in this set have an average Tani-
moto distance close to zero and a fantastic AUC perfor-
mance of 0.92 for MW < 250 g/mol (N = 398) and

Table 7 Performance for PLS and random forest models
for the other set.

Set A Set B

Trained on 100% Set A

PLS 1-component 0.72 ® 0.73

PLS 1-component, 9 descriptors 0.67 ® 0.73

Random Forest 0.68* ® 0.72

Trained on 100% Set B

PLS 1-component all descriptors 0.65 ¬ 0.80

PLS 1-component 9 descriptors 0.68 ¬ 0.77

Random Forest 0.71 ¬ 0.84*

All of Set A or Set B is used as the training set, and the other is used as the
test set.

*performance when out-of-bag
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0.997 for MW ≥ 250 (N = 62). Although it could be
argued that these models require retraining when
applied to data far from the training set, such data are
often not available. A simple retraining using a three-
fold cross-validation experiment, resulted in only mar-
ginal improvement in performance for the Novartis set
with AUCs 0.60, 0.64, and 0.69 achieved in the three
test sets over the AUCs of 0.58, 0.63, and 0.57 obtained
for the default model for the respective sets. Most of the
improvement in the ROC curve was in the range of
more than 50% false positive performance, which would
not be considered a useful range. The ROC curves for
these investigations are shown in Figure 12. The good
performance for the aryl-amines in Set B suggests that
the aryl-amine substructure alone is not problematic in
developing these models. Previous publications have not
separated the performance by substructure, so it was
unclear that this would be true.

3.6 Modeling Ames test results for all substructures
Given the difficulty of addressing aryl-amines, we began
to search for reasons the set would be more difficult
and if the result would be true for more than just this
subspace. Literature reports have provided excellent
results for benchmark sets containing all mutagens and
small collections of aryl-amines or nitroaromatics. Even
better performance could be obtained using multiple

models based on the applicability domain of a mutagen
under consideration such as Sushko et al. [40] for multi-
ple substructures and Leong et al. [41] for just the aryl-
amine substructure. Though surveys of the poor perfor-
mance of pre-built commercial model performance on
proprietary sets has been presented, reports on models
of large proprietary sets and delineation of substructure
seemed to be lacking. A classification model given a col-
lection of distinct features strongly associated with
mutagenicity would be expected to perform better than
a model missing such clear-cut mutagenic features such
as nitroaromatics mentioned previously.
Table 8 and Figure 13 describes the performance of 2

global models, the TopKat pre-built commercial model
and a random forest model built from all data in Sets C,
D, E, and F. For clarity, substructure ROC plot perfor-
mance is shown only for the TopKat in the left plot.
Removing molecules with the typically mutagenic polyaro-
matic, aryl-amine, and nitroaromatic substructures
resulted in significant performance decreases in both mod-
els in both Set C (Novartis, orange, solid line to orange,
dashed line) and Set D (Hansen et al., red, solid line to
red, dashed line). The decreases in performance were
greater for the TopKat model and for Set D. The global
random forest model contained more training data which
improved the performance on Set D compared to TopKat,
and Set C had fewer of these mutagenic substructures as
was presented in Figure 2. The nitroaromatic mutagenic
substructure had much better performance in the TopKat
model and accounts for over 10% of Set D. However, the
nitroaromatic subset in the random forest global model
and the aryl-amine and polyaromatic mutagenic substruc-
ture performance in both models were equivalent or
slightly worse than the overall performance.
The performance of the random forest model built on

the global set was similar to the performance of local
random forest models built on the individual sets for
Sets C and D. It is important to note the extremely high
performance for the Kazius set which is a large portion
of the training data in the TopKat method. The random
forest model constructed from all of the data also did
well on this set which again indicates that it is inher-
ently a simpler set to model using the commonly used
descriptors. This all-data model has good performance
across the entire chemical space map as detailed in Fig-
ure 14 where greens indicate a successful prediction
(over 500 trees) while yellow indicates an equivocal pre-
diction and oranges and reds would be expected to give
the wrong prediction. In fact, a random forest model
built with just Set D provided a fairly good prediction
but gave more equivocal results in the regions occupied
mainly by Novartis compounds. As might be expected
from the good performance of TopKat on set D and
poor performance on the Novartis set, Figure 14 shows
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Figure 12 Performance of the TopKat Ames mutagenicity
prediction module on aryl-amines. Performance of the default,
prebuilt TopKat Ames mutagenicity model on Set A (orange) and
Set B (red) for MW < 250 g/mol (solid line) or for 250 < MW < 500
g/mol (dashed). Additionally, the vertically averaged performance of
a 3-fold random cross-validated retraining of the TopKat model
using Set A is shown in brown with standard deviation error bars.
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that most of the cells with Novartis compounds would
be misclassified by the TopKat model (red cells) but
also gets other regions wrong such as the lower left-
hand corner. Unlike the case of the aryl-amines, the
Novartis all-substructure model does not perform well
on regions occupied mostly by the other sets. The per-
formance map provides almost a perfect opposite to
TopKat, though the lower-left-hand corner is still diffi-
cult to predict with many equivocal cells. Looking at the
Ames+/Ames- coloring of the cells in the left-hand plot
gives an idea of why this might be possible. This region
of substructure space has many cells that contain a mix
of Ames+ and Ames- compounds.

4. Conclusions
In this article we have shown that there are significant
differences in the physicochemical and biological

properties of compounds used in drug discovery and
those in compiled Ames test results from the literature.
This includes molecular weight, substructure distribu-
tion, and the percentage of mutagenic compounds in
the data set. This is important to communicate, as
much of the literature data is being used to test predic-
tion methods as well as playing a role in current testing
strategy debates. The compounds in the Novartis test
results are mostly drug precursor molecules, while lit-
erature mutagenicity results are often petrochemicals
and pesticides of primary concern as environmental pol-
lutants. The size and complexity of the molecules tested
at Novartis was significantly larger on average than that
of molecules included in external sets, as visualized by
distributions in molecular weight. Chemical functional
groups or substructures that have a high association
with mutagenicity determined from the literature data

Table 8 Performance of models on subsets of the compiled all-substructure set.

Molecule set Random Foresta TopKat Localb, c Local (remaining data)

Set C 0.79 0.65 0.80 0.65

Not polyaromatic, ArNH2, ArNO2 0.78 0.62 -

Set D 0.88 0.90 0.89 0.69

Not polyaromatic, ArNH2, ArNO2 0.86 0.86 -

Set E 0.78 0.77 0.66 0.67

Kazius et al. 0.91 0.95 -

All 0.90b 0.89 -

Nitroaromatics 0.85 0.90 -

Aryl-amines (not nitroaromatic or polyaromatic) 0.87 0.87 -

Polyaromatic (not nitroaromatic) 0.75 0.86 -

The four columns denote a random forest model built on the full set of data, the default TopKat[76,77] model, a local random forest models built only on the
indicated set, and the performance of this local model on the rest of the compiled all-substructure set.
aGlobal model, trained on all data, bOOB performance, cTrained only on the particular set
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Figure 13 ROC curve performance for models on all-substructure data sets. The left plot shows the performance of the default TopKat
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are largely absent in the Novartis set taking away a valu-
able discrimination feature. Additionally, the proportion
of mutagens in external sets is higher and disturbingly
close to 50% as might occur from successive culling for
balanced model development. As a result of these fac-
tors, many drug discovery molecules are outside the
applicability domain of pre-built commercial models.
The data is also more difficult due to lack of strongly
associated structural features and would lead to worse
performance of these statistical models if they were
included in the training set. Therefore these models
cannot provide adequate performance to predict, let
alone, avoid a positive Ames test. The Ames test, as well
as other genotoxicity tests, continue to be a significant
problem in drug discovery, and companies should work
together to share data with the wider community of
scientists and organizations. The best-validated and
best-performing prediction available for low molecular
weight aryl-amines is still a quantum-mechanics reac-
tion energy representing the formation of the nitrenium
ion. Effective predictive models could be built for all-
substructure sets using the random forest methodology
and commonly available 2D descriptors and chemical
fingerprints. Performance was still significantly lower for

molecules from Novartis and marketed pharmaceuticals.
Despite extensive work in the area of predicting this
particular toxicity, work in designing more difficult test
sets and more adaptable models is still necessary.

Additional material

Additional file 1: Supplemental figures and tables. Supplemental
figures and tables referred to in the text of the article.

Additional file 2: Ames toxicophore queries. Compressed library of
Ames toxicophore queries as.mol files.

Additional file 3: Public structures used in the research. SDF file with
6812 structures and data in public sets B, D, E, and F of the paper. Fields
BrambillaMarketedDrug, Hansen, and Kazius indicate which set the
structure is in and if this is 1, the corresponding fields BrambillaExpAmes,
HansenExpAmes, or KaziusExpAmes respectively will indicate the Ames
result for that set. Sets D, E, and F are unfiltered, all-substructure sets: Set
D is from Hansen et al.,[38] Set E is the marketed drug set taken from
Brambilla et al. [44], and Set F is from Kazius et al.[21] Set B is an aryl
amine set which includes the union of Set D and F filtered by the aryl
amine substructure. Other fields are results of counting the query
substructures in Additional file 1.
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