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Abstract

Background: The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive,
but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between
“active/active” and “active/inactive” spaces? These questions are explored using 734,486 biologically tested chemical
structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools.

Results: The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested
compounds (all-against-all) from PubChem were utilized to help work towards an answer to the question: what is a
biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt,
CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ±
0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was
constructed using a single theoretical conformer per compound (the “default” conformer provided by PubChem),
further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the
compound set, the single conformer per compound results may still apply to the case of multi-conformer per
compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical
structures and biological assays, creating a statistical framework to build upon.
The second part of this study explored the question of whether it was possible to realize a statistically meaningful
3-D similarity value separation between reputed biological assay “inactives” and “actives”. Using the terminology of
noninactive-noninactive (NN) pairs and the noninactive-inactive (NI) pairs to represent comparison of the “active/
active” and “active/inactive” spaces, respectively, each of the 1,389 biological assays was examined by their 3-D
similarity score differences between the NN and NI pairs and analyzed across all assays and by assay category
types. While a consistent trend of separation was observed, this result was not statistically unambiguous after
considering the respective standard deviations. While not all “actives” in a biological assay are amenable to this
type of analysis, e.g., due to different mechanisms of action or binding configurations, the ambiguous separation
may also be due to employing a single conformer per compound in this study. With that said, there were a subset
of biological assays where a clear separation between the NN and NI pairs found. In addition, use of combo
Tanimoto (ComboT) alone, independent of superposition optimization type, appears to be the most efficient 3-D
score type in identifying these cases.

Conclusion: This study provides a statistical guideline for analyzing biological assay data in terms of 3-D similarity
and PubChem structure-activity analysis tools. When using a single conformer per compound, a relatively small
number of assays appear to be able to separate “active/active” space from “active/inactive” space.

Background
Recent advances in combinatorial chemistry [1-6] and
high-throughput screening technology [7-17] have made
the synthesis and screening of diverse chemical com-
pounds easier, helping to create a demand in the

biomedical research community for archives of publicly
available screening data. To help satisfy this demand,
the U.S. National Institutes of Health launched the Pub-
Chem project (http://pubchem.ncbi.nlm.nih.gov) [18-21]
as a part of its Molecular Libraries Roadmap Initiative.
PubChem archives contributed biological screening data
and chemical information from various data sources in
academia and industry, and offers its contents free of
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charge to biomedical researchers, helping to facilitate
scientific discovery.
PubChem consists of three primary databases: Sub-

stance, Compound, and BioAssay. While the PubChem
Substance database (unique identifier SID) contains
information provided by individual depositors, the Pub-
Chem Compound database (unique identifier CID) con-
tains the unique standardized chemical structure
contents extracted from the PubChem Substance data-
base. PubChem provides various analysis tools to relate
chemical structures to the biological activity data stored
in the PubChem BioAssay database (unique identifier
AID).
The PubChem3D project [22-25], launched, in part, to

help users identify useful structure-activity relationships,
generates a theoretical 3-D conformer model [22,23] for
each molecule in the PubChem Compound database,
whenever it is possible. An all-against-all 3-D neighbor-
ing relationship (known as “Similar Conformers”) [24] is
pre-computed to help users to locate related data in the
archive, augmenting the complementary “Similar Com-
pounds” relationship, based on 2-D similarity of the
PubChem subgraph binary fingerprint [26].
PubChem3D uses two 3-D similarity measures: shape-

Tanimoto (ST) [24,27-30] and color-Tanimoto (CT)
[24,27,28]. The ST score is a measure of shape similar-
ity, which is defined as the following:

ST =
VAB

VAA + VBB − VAB
(1)

where VAA and VBB are the self-overlap volume of
conformers A and B and VAB is the common overlap
volume between them. The CT score, given by Equa-
tion (2), quantifies the similarity of 3-D orientation of
functional groups used to define pharmacophores (hen-
ceforth referred to simply as “features”) between confor-
mers by checking the overlap of fictitious “color” atoms
[28] used to represent the six functional group types:
hydrogen-bond donors, hydrogen-bond acceptors,
cation, anion, hydrophobes, and rings.

CT =

∑
f
Vf
AB

∑
f
Vf
AA +

∑
f
Vf
BB −

∑
f
Vf
AB

(2)

where, the index “f“ indicates any of the six indepen-

dent fictitious feature atom types, Vf
AA

and Vf
BB

are the

self-overlap volumes for feature atom type f and Vf
AB

is

the overlap volume of conformers A and B for feature
atom type f. The ST and CT scores range between 0
(for no similarity) and 1 (for identical molecules). These
similarity metrics can be combined to create a Combo-

Tanimoto (ComboT), as specified by Equation (3):

ComboT = ST + CT (3)

The ST and CT similarity metrics attempt to cover
key aspects important for locating chemical structures
that may have similar biological activity. ST helps to
identify molecules that can adopt a particular 3-D
shape, e.g., of an inhibitor bound in a particular confor-
mational orientation in a protein binding pocket. Con-
sidering that a hydrocarbon and a drug molecule could
adopt the same shape, CT helps to identify molecules
with similar 3-D orientation of features, e.g., necessary
for making binding interactions between a small mole-
cule and protein binding pocket. This suggests that two
molecules with highly similar 3-D shape and 3-D feature
orientations may also have similar biological activity. It
should be no small wonder that such similarity metrics
have garnered widespread use in virtual screening
[31,32]. It leads one to wonder: what is a statistically
meaningful 3-D similarity score? Or, in other words, if
one was to examine the 3-D similarities between biolo-
gically tested compounds, what does the distribution
look like? In the case of 2-D similarity, one only needs
the molecule graph to make a comparison but, in the
case of 3-D similarity, molecules can potentially adopt a
number of different conformations. Is it sufficient to use
only a single conformer per compound and still realize
a statistically meaningful difference or separation
between the 3-D similarities of reputed actives and inac-
tives from a biological test?
In the present paper, two important questions con-

cerning ST, CT, and ComboT as 3-D similarity mea-
sures are investigated. The first question is “if we
randomly select any two conformers from the PubChem
Compound database, what values of ST, CT, and Com-
boT scores will be expected on the average?” With
knowledge of these values, one can evaluate a statistical
significance of the similarity score between any two con-
formers in PubChem (e.g., if their similarity score
becomes greater than what one expects for a random
conformer pair, it may be statistically more meaningful).
The second question we seek to answer in this study

is “for a given bioassay in PubChem, what is the average
difference in similarity scores between the noninactive-
noninactive (NN) pairs and the noninactive-inactive
(NI) pairs, when a single conformer per compound is
used for 3-D similarity computation?” The choice of ter-
minology of NN and NI are necessary considering that
the definition of an “active” is not always specified in
PubChem. Therefore, for the purposes of this study, we
consider “active space” to be anything not specified to
be “inactive”, thus the term “noninactive” is used in
place of “active”. This may help provide users with an
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idea on the separation in the 3-D shape and feature
spaces between the active and inactive compounds
tested in a given bioassay. An additional question we
will answer is: does an optimization type affect the simi-
larity scores? Currently, the PubChem 3-D neighboring
involves a shape superposition optimization that maxi-
mizes the ST scores [24], but it may be possible to opti-
mize a feature superposition that maximizes the CT
score. Will the ST-optimization and CT-optimization
make any changes in a 3-D similarity-based bioassay
data analysis?

Results and Discussion
A. Notations
In the present study, we consider six different similarity
measures: ST, CT, and ComboT for two different opti-
mization types (either ST-optimized or CT-optimized).
They are denoted with a superscript, which represents
the optimization type (either “ST-opt” or “CT-opt”), and
a subscript, which specifies the type of CID pairs ("NN”
for the NN pairs and “NI” for the NI pairs). The sub-
script “NN-NI” is used for the similarity score difference
between the NN and NI pairs. For example,

ComboTST−opt
NN

and ComboTST−opt
NI

indicate the ST-opti-

mized ComboT scores for the NN and NI pairs, respec-

tively, while ComboTST - opt
NN−NI

means the difference between

the two. The word “XT” is used when we refer to any of
the similarity measures (i.e., ST, CT, and ComboT), or a
similarity score in a general sense.
In the second part of this study, we analyze the aver-

age and standard deviation of the similarity scores of
CID pairs for a given AID, and these per-AID average
and standard deviation are denoted with Greek letters μ
and s, respectively, followed by the corresponding simi-

larity measure in parentheses [e.g., μ
(
ComboTST - opt

NN

)
and σ

(
ComboTST - opt

NN

)
]. The per-AID average and stan-

dard deviation of the similarity score difference between
the NN and NI pairs for a given AID are computed
using the following equations:

μ (XTNN−NI) = μ (XTNN) − μ (XTNI) (4)

σ (XTNN−NI) =

√
[σ (XTNN)]2

nNN
+
[σ (XTNI)]2

nNI

(5)

where XT is one of the six similarity measures (i.e.,
STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and
ComboTCT-opt), and nNN and nNI are the number of the
NN pairs and NI pairs for the AID, respectively. When
we refer to the average and standard deviation of the
per-AID statistical parameters over a set of AIDs, we use
additional Greek letters μ and s, respectively, followed

by the corresponding statistical parameter in brackets.

For example, μ
[
μ

(
STST−opt

NN−NI

)]
and σ

[
μ

(
STST−opt

NN−NI

)]
represent the overall average and standard deviation of

μ
(
STST−opt

NN−NI

)
over a set of AIDs, while μ

[
σ

(
STST−opt

NN−NI

)]
and σ

[
σ

(
STST−opt

NN−NI

)]
indicate the overall average and

standard deviation of σ
(
STST−opt

NN−NI

)
.

B. 3-D similarity score distribution of random conformer
pairs
B-1. Structural and chemical characteristics of the
biologically tested molecules
As of January 2010, the PubChem BioAssay database had
2,008 bioassay records, (ranging from AID 1 to AID
2310) and 734,486 molecules with a 3-D conformer
model were tested in at least one of these bioassays. The
structural and chemical characteristics of these biologi-
cally tested molecules are shown in Figures 1, 2 and 3,
and they are compared with those of the entire Pub-
Chem3D contents (26,157,365 CIDs as of September
2010) in Table 1. The average and standard deviation of
the heavy atom count per-CID are 24.6 ± 6.4, slightly less
than those across the entire PubChem3D contents (26.3
± 7.0). The conformer monopole volume (V) and three
components of the shape quadrupole moments (Qx, Qy,
and Qz, which give a sense of the conformer length,
width, and height dimensions, respectively) [25] of the
biologically tested molecules default conformer are also
slightly less than those across the entire PubChem3D
contents (474.1 ± 124.0 Å3 vs. 509.0 ± 137.1 Å3 for V,
12.6 ± 7.0 Å5 vs. 13.6 ± 7.8 Å5 for Qx, 3.3 ± 1.6 Å5 vs. 3.6
± 1.8 Å5 for Qy, 1.3 ± 0.6 Å vs. 1.5 ± 0.6 Å5 for Qz). As
shown in Figure 1(b) and Table 1, the 734,486 biologi-
cally tested molecules have 8.1 ± 2.6 features on average,
slightly less than the entire PubChem3D contents does
(8.5 ± 2.7). The count for each of the six feature types of
the biologically tested molecules is equal to or slightly
less than those of the entire PubChem3D contents.
B-2. Distribution of 3-D similarity scores for biologically
tested molecules
One key question this study attempts to answer is: what
are statistically meaningful 3-D similarity values for bio-
logically tested molecules? By using the entire set of
734,486 biologically tested molecules in PubChem (as of
late January 2010) and their 269,734,474,855 unique
CID pairs, we believe this to be a sufficient corpus to
make such a determination in a general sense. What
may be questionable (to some) is the intention to use
only a single conformer per compound for each of the
CID pairs.
The reasons for this choice are rather practical. The

use of two diverse conformers per compound yields four

Kim et al. Journal of Cheminformatics 2011, 3:26
http://www.jcheminf.com/content/3/1/26

Page 3 of 22



times more unique conformer pairs and using three
diverse conformers per compound makes the unique
conformer pair set nine times larger and so on. In other
words, the problem size scales as a square of the confor-
mers per compound considered. We could sample the
734,486 compounds into a smaller set, to say ten per-
cent of the original dataset and then consider three
diverse conformers per compound to yield approxi-
mately the same count of conformer pairs, but are three
diverse conformers per compound sufficient? If we
down sampled to 1% of the biologically tested com-
pounds and used ten diverse conformers per compound,
would ten diverse conformers per compound be suffi-
cient and would the random 1% of the compound set be
sufficient to represent biologically tested compounds?
For the purposes of this study, we will ignore the multi-
ple conformer representation issue and consider a single

conformer per compound to be sufficiently random to
provide a useful set of statistically meaningful 3-D simi-
larity thresholds; however, a more detailed study may be
necessary to determine the full effect of using multiple
conformers per compound, e.g., when picking the best
conformer pair per compound pair.
To investigate the average values of ST, CT, and Com-

boT for random conformer pairs, we downloaded all
734,486 biologically tested molecules from PubChem
that had a theoretical 3-D description, and the six simi-
larity scores [i.e., STST-opt, CTST-opt, ComboTST-opt, STCT-

opt, CTCT-opt, and ComboTCT-opt] were computed for all
269,734,474,855 unique CID pairs arising from all possi-
ble combination of the 734,486 CIDs, using a single
conformer per-CID. The distribution of these scores
represents the 3-D similarity scores one would get from
any two conformers randomly selected from the Pub-
Chem database. The distributions of the similarity
scores, binned in 0.01 increments, are shown in Figure 4
and their statistics are summarized in Table 2. The aver-
age and standard deviation for STST-opt, CTST-opt, Com-
boTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were
0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ±
0.06, and 0.59 ± 0.14, respectively. The conformer pairs
whose similarity scores are equal to or smaller than μ+s
account for 85% to 87% of the 269.7 billion CID pairs,
and the corresponding fractions for the μ+2s threshold
range from 96% to 98%. This information may be used
to evaluate the statistical significance of the similarity
score between any two conformers. For example, if the
STST-opt value between two conformers is 0.74, the prob-
ability of randomly getting a STST-opt score equal to or
higher than 0.74 is only 2%, and hence, one may con-
sider that the two conformers have statistically meaning-
ful similarity in terms of STST-opt.
Note that the PubChem “Similar Conformers” 3-D

neighboring requires the STST-opt ≥ 0.8 and CTST-opt ≥
0.5 for two molecules to become neighbors of each
other. The conformer pairs whose ST value is smaller
than 0.80 correspond to 99.32% of the random ST
score distribution. Similarly, the conformer pairs with
CTST-opt < 0.50 correspond to 99.98% of the random
CT score distribution. Therefore, if the STST-opt and
CTST-opt scores are assumed to be independent of each
other, the probability of two conformers being identi-
fied as 3-D “Similar Conformers” neighbors of each
other by chance is (100 - 99.32) × (100 - 99.98) =
0.0136% (or 1 in 7,353). Note that the CTST-opt score is
not completely independent of the STST-opt score
because it is evaluated at the ST-optimized alignment.
Therefore, the probability of random conformers being
identified as PubChem 3-D neighbors will be higher
than the estimated value of 0.0136%, but it will still be
smaller than 1%.

Figure 1 Atom and feature count histograms of biologically
tested compounds. Frequency (blue) and percent cumulative
frequency (red) of (a) heavy atom count and (b) total feature count
for the 734,486 molecules tested in at least one bioassay archived in
the PubChem BioAssay database.
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Figures 5, 6, and 7 show the distribution of the average
and standard deviation of the 3-D similarity scores per-
CID (computed from the similarity scores between one
CID of the 734-K conformer set and all the other confor-
mers in the set) for ST, CT, and ComboT for both ST-
optimized and CT-optimized superpositions, representing
the similarity scores that one may expect when a confor-
mer in PubChem is compared with a randomly selected
conformer. Most conformers have the average and stan-
dard deviation similar to those for the random conformers
listed in Table 2. However, in the case of STST-opt [Figure 5
(a)] there is a bit of skew in the distribution of average ST
value per CID towards the maximum value, peaking at
0.58, as opposed to the overall average of 0.54. Also of
interest in Figure 5 (a), the ST average per-CID rapidly
drops off as the ST average approaches 0.65. Note that a
small fraction of biologically tested CIDs in PubChem
have low average similarity scores per-CID, which indi-
cates their relative uniqueness in the 3-D shape space (i.e.,

their 3-D shape and/or feature orientations may be very
different from most biologically tested molecules in Pub-
Chem, resulting in low similarity scores on average).
Potentially surprising when looking at feature similar-

ity statistics in Table 2 is that standard deviation values
for CT are about half that found for ST. When looking
at the per-CID statistics in Figure 6, one sees that the
range of standard deviation of CT is comparable to that
of ST, although with a significant population of CIDs on
the lower end of the standard deviation. Why is this so?
Presumably, the 3-D orientation of features is substan-
tially more diverse than the 3-D molecular shape, keep-
ing both the average and standard deviation values low
when compared to all other biologically tested
compounds.
An important observation is that the overall Com-

boTST-opt and ComboTCT-opt scores have very similar
average values, as shown in Table 2. Whereas the STST-

opt average was greater by 0.13 than the STCT-opt

Figure 2 Conformer volume and quadrupole histograms of biologically tested compounds. Frequency (blue) and percent cumulative
frequency (red) of (a) volume, (b) Qx, (c) Qy, and (d) Qz for the 734,486 molecules tested in at least one bioassay archived in the PubChem
BioAssay database.
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average, the CT-optimization results in an average
CTCT-opt score greater by 0.11 than that of CTST-opt. As
a result, the difference in averages between ComboTST-

opt and ComboTCT-opt were only 0.03, implying that the
ComboT score is not very sensitive to the type of opti-
mization. A similar optimization-type dependency of the

ST, CT, and ComboT scores was observed in Figures 5,
6 and 7. That is, whereas the ST-optimization results in
an increased ST and decreased CT scores, the CT-opti-
mization gives a decreased ST and increased CT scores,
resulting in the average ComboT score that is relatively
constant regardless of the optimization type employed.

Figure 3 Individual feature histograms of biologically tested compounds. Frequency (blue) and percent cumulative frequency (red) of
respective feature atom count for the 734,486 molecules tested in at least one bioassay archived in the PubChem BioAssay database: (a)
hydrogen-bond donor count, (b) hydrogen-bond acceptor count, (c) anion count, (d) cation count, (e) hydrophobe count, and (f) ring count.
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However, as shown in Figure 7, the ComboTCT-opt data
had a narrower range of standard deviation variation
per-CID than ComboTST-opt and the standard deviation
for ComboTCT-opt per-CID appeared to linearly increase
as a function of the per-CID average value.

C. 3-D similarity score differences for the NN and NI pairs
The second part of this study examines the question: is
it sufficient to only use a single conformer per com-
pound and still realize a statistically meaningful differ-
ence or separation between the 3-D similarities of
reputed actives and inactives? Or, to say this in another
way, are noninactive and inactive compounds in a given
bioassay well separated in 3-D shape/feature space? If
so, one would expect to see some statistically significant
separation in 3-D similarity scores between the parti-
tioned noninactive-noninactive (NN) pairs and noninac-
tive-inactive (NI) pairs. This requires 3-D similarity
scores for both the NN pairs and NI pairs for each
assay considered. This information is already available in
the all-by-all similarity score matrices for the 734-K bio-
logically tested molecules computed in the first part of
this study. A detailed procedure for extracting the 3-D
similarity scores from these matrices on the per-AID
basis was described in the Materials and Methods
section.
It is important to note that 3-D similarity methodol-

ogies (or other analysis methodologies, for that matter)
are not expected to work for all biological assay data
sets. A tacit assumption of 3-D methodologies is that
chemical structures with similar shape and binding fea-
tures will have similar (if not the same) mode of action
of “activity”, e.g., of binding to a protein binding
pocket in the same fashion. In reality, some assays in
PubChem do not have a well-defined target, e.g., being
a whole cell, meaning that there could be a number of
targets and a number of different mechanisms of
action per target for the observed activity in a single
assay. In other cases, many chemical structures are
active for reasons that have little to do with binding to
a protein target, being aggregators, covalent binders,

Table 1 Summary statistics of chemical structure descriptors

Biologically Tested Compounds
(734,486 CIDs)

Entire PubChem3D Contents
(26,157,365 CIDs)

Heavy atom count 24.6 ± 6.4 26.3 ± 7.0

Monopole volume (Å3) 474.1 ± 124.0 509.0 ± 137.1

Qx (Å
5) 12.6 ± 7.0 13.6 ± 7.8

Qy (Å
5) 3.3 ± 1.6 3.6 ± 1.8

Qz (Å
5) 1.3 ± 0.6 1.5 ± 0.6

Total feature count 8.1 ± 2.6 8.5 ± 2.7

Hydrogen-bond acceptor count 2.9 ± 1.6 3.0 ± 1.6

Hydrogen-bond donor count 1.1 ± 1.0 1.2 ± 1.0

Anion count 0.2 ± 0.4 0.2 ± 0.4

Cation count 0.6 ± 0.8 0.7 ± 0.9

Hydrophobe count 0.3 ± 0.6 0.5 ± 0.8

Ring count 3.0 ± 1.2 3.0 ± 1.3

The average and standard deviation of heavy atom count, monopole volume, quadrupole components, and feature counts (by total and each of the six feature
types) for 734,486 CIDs biologically tested compounds considered in this study and those for the entire PubChem3D contents (26,157,365 CIDs as of September
2010).

Figure 4 Overall 3-D similarity statistics between biologically
tested compounds. Distribution of 3-D similarity scores of
269,734,474,855 conformer pairs, arising from the 734,486 molecules
tested in at least one bioassay archived in the PubChem BioAssay
database: (a) ST-optimized similarity scores and (b) CT-optimized
similarity scores. A single conformer was used for each compound.
All values binned in 0.01 increments.
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cytotoxic, or some other unintended mode giving rise
to the measured “activity” during the biological test (so
called “false positives”). As such, 3-D methodology
cannot be expected to work for false positives, as
reputed “active” molecules may not have any apparent
3-D correlation to each other. This is also true of
cases of molecules that would be “active” if not for
solubility or some other issue during the biological
experiment performed (so called “false negatives”).
These issues with biological tests will be nearly com-
pletely ignored for the purpose of this analysis. Instead,
by looking across a wide set of assays and assay types,
there is an expectation that, if there is some effect
whereby 3-D similarity averages between “actives” will
be greater than the averages between “actives” and
“inactives” using a single conformer per compound, a
certain subpopulation of assays will show this behavior.

C-1. Selection of AIDs from the PubChem BioAssay
database
Among the 2,008 AIDs archived in the PubChem
BioAssay database at the time of project initiation (Janu-
ary 2010), 1,744 AIDs had at least one molecule with a
3-D theoretical description. The bioassays in the Pub-
Chem BioAssay database can be classified into four cate-
gories, according to user-provided assay types (i.e.,
screening, confirmatory, summary, and other) and the
assay count for each category in the 1,744 AIDs is
shown in Figure 8 (a). Note that there is another cate-
gory, “Unspecified”, because the assay-type attribute for
these AID records are not provided. There were 523
screening assays (30%), 867 confirmatory assays (50%),
57 summary assays (3%), 192 other assays (11%), and
105 unspecified (6%).
For a given AID, comparison of the 3-D similarity scores

for the NN pairs with those for the NI pairs requires that
the AID has at least one NN pair and one NI pair. Among

Figure 5 Per-CID shape similarity statistics of biologically
tested compounds. Distribution of the average and standard
deviation of the ST scores for each of the 734,486 molecules tested
in at least one bioassay archived in the PubChem BioAssay
database: (a) ST-optimized ST (STST-opt) and (b) CT-optimized ST
(STCT-opt). All values binned in 0.01 increments.

Figure 6 Per-CID feature similarity statistics of biologically
tested compounds. Distribution of the average and standard
deviation of the CT scores for each of 734,486 molecules tested in
at least one bioassay archived in the PubChem BioAssay database:
(a) ST-optimized CT (CTST-opt) and (b) CT-optimized CT (CTCT-opt). All
values binned in 0.01 increments.

Table 2 Summary statistics for 3-D similarity over all biologically tested compounds

% Cumulative pair counta
Mean (μ) Std. Dev.(s) μ + s μ + 2s

μ + s μ + 2s

STST-opt 0.54 0.10 0.64 0.74 85% 98%

CTST-opt 0.07 0.05 0.12 0.17 86% 96%

ComboTST-opt 0.62 0.13 0.75 0.88 87% 97%

STCT-opt 0.41 0.11 0.52 0.63 85% 97%

CTCT-opt 0.18 0.06 0.24 0.30 87% 96%

ComboTCT-opt 0.59 0.14 0.73 0.87 85% 96%

Statistics of the similarity scores for 269,734,474,855 conformer pairs arising from all unique combinations of 734,486 CIDs tested in at least one bioassay
archived in the PubChem BioAssay database. a % Cumulative count of the conformer pairs whose similarity scores are equal to or less than μ + s or μ + 2s.
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the 1,744 AIDs, there were 1,441 AIDs that satisfy this
condition [Figure 8 (b)]. Further filtering was necessary to
remove AIDs in which the number of NN or NI pairs is
too small, because these AIDs may yield biased results. On
the contrary, we did not want to filter out more summary
assays, if it could be avoided, as there were only nine sum-
mary assays at this point. [Summary assays are final stages
of lead/probe screening processes and, as such, they have
a significantly smaller number of molecules provided (and
hence, a smaller number of the NN and NI pairs), com-
pared to other assay types.] Among the nine summary
assays in Figure 8 (b), AID 1844 had the smallest number

of the NN pairs, which was six, and this number was used
as a threshold for further filtering (i.e., AIDs with less than
six NN pairs or less than six NI pairs were excluded in any
subsequent analysis). After requiring an assay to have a
minimum of six compound pairs for each of the NN and
NI pairs (that is, 12 pairs per-AID in total), 1,389 AIDs
resulted. As shown in Figure 8 (c), there were 444 primary
screenings (32%), 742 confirmatory screenings (53%), 9
summary assays (1%), 97 other assays (7%), and 97 unspe-
cified (7%).
C-2. Differences between the 3-D similarity scores of NN
and NI pairs
With the set of 1,389 AIDs decided, the average and
standard deviation [i.e., μ(XT) and s(XT), respectively]
of the six different similarity values were determined for
the NN and NI pairs per-AID. The complete set of per-
AID results is available in Additional File 1, and the dis-
tributions of the per-AID average similarity scores for
the NN and NI pairs [i.e., μ(XTNN) and μ(XTNI), respec-
tively] across the 1,389 AIDs are shown in Figure 9. The
corresponding distributions of differences between the
average similarity scores for NN and NI pairs per-AID
[i.e., μ(XTNN-NI)] are provided in Figure 10, while Table
3 and Table 4 summarize by similarity optimization type
the per-AID statistics across all 1,389 AIDs [i.
e.,μ[μ(XT)], s[μ(XT)],μ[s(XT)] and s[s(XT)]], with
further break out by assay type category.
When looking at the distributions in Figure 9 of the
per-AID results, it is interesting to see, for a single con-
former per compound anyway, that the per-AID average
similarity distribution of NN pairs (primarily corre-
sponding to the reputed “active/active” compound
space) overlaps extensively with those of the NI pairs
(essentially the reputed “active/inactive” compound
space). The original hope was that there might be two
clearly separated distributions, as this would be a clear
signal that 3-D similarity using a single conformer per
compound is able to distinguish between “actives” and
“inactives” across all PubChem assays, but this is clearly
not the case. The average and standard deviation of the

μ
(
STST−opt

NN

)
and μ

(
STST−opt

NI

)
values per-AID over the

1,389 AIDs in Table 3 were 0.58 ± 0.05 and 0.57 ± 0.04,

respectively. The corresponding values for μ
(
CTST−opt

NN

)
and μ

(
CTST−opt

NI

)
were 0.11 ± 0.07 and 0.09 ± 0.05,

respectively. The small differences in these overall
averages between the NN and NI pairs per-AID should
not be considered statistically significant, considering
their standard deviations. In fact, the average of averages
per-AID for the NN and NI pairs are not significantly
different from the STST-opt and CTST-opt values for ran-
dom conformers (0.54 ± 0.10 and 0.07 ± 0.05, respec-
tively), listed in Table 2. For the same reason, the

Figure 8 Assay counts by category. Assay count for each assay-
type category in the PubChem BioAssay database: (a) for assays that
have at least one tested molecule with 3-D information (as of
January 28, 2010), (b) for assays that have at least one noninactive-
noninactive (NN) pair and one noninactive-inactive (NI) pair, and (c)
for assays that have at least six NN pairs and six NI pairs.

Figure 7 Per-CID shape plus feature similarity statistics of
biologically tested compounds. Distribution of the average and
standard deviation of the ComboT scores for each of the 734,486
molecules tested in at least one bioassay archived in the PubChem
BioAssay database: (a) ST-optimized ComboT (ComboTST-opt) and (b)
CT-optimized ComboT (ComboTCT-opt). All values binned in 0.01
increments.
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ComboTST-opt differences between the NN and NI pairs
are also not statistically significant. Note that, although
the μ

[
μ (XTNN−NI)

]
values primarily increase from pri-

mary screenings to confirmatory assays to summary
assays in general, this increase should also not be inter-
preted to be statistically meaningful, considering that
the σ

[
μ (XTNN−NI)

]
values increases even more rapidly,

as shown in Tables 3-4. The optimization type (i.e.,
either ST- or CT-optimization) was also found to not
make significant difference in μ(XTNN-NI) values.
Despite the significant overlap between the distribu-

tions for the NN and NI pairs in Figure 9, there are
very subtle differences between them; for all six similar-
ity scores, the NN-pair distributions, compared to the
NI-pair distributions, have smaller AID counts at the
peak and greater AID counts at the upper-tail region,
indicating a small shift of the NN-pair distribution

toward high similarity scores. This shift is also reflected
in sharp, (mostly) normal distributions of μ(XTNN-NI),
centered on the positive side just above zero in all cases
(Figure 10). This suggests that single conformer per
compound 3-D similarity is showing some of the antici-
pated effect of the “similarity principle”, which states
that structurally similar molecules are likely to have
similar biological activities [33-36], such that the
“active/active” space is separated from the “active/inac-
tive” space; however, for most assays in PubChem, this
effect is simply not large enough to be unambiguous for
all biological assays, as reflected in the μ[μ(XTNN-NI)]
values smaller than s[μ(XTNN-NI)] for all six similarity
measures. Tables 3 and 4 also clearly show that, in gen-
eral, there is no clear statistically meaningful separation
across assays or assay category type using a single con-
former per compound. For example, while there is

Figure 9 μ(XT) per-AID similarity histogram. The distribution of the average similarity scores for noninactive-noninactive (NN) pairs and
noninactive-inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay database: (a) shape-Tanimoto (ST), (b) color-Tanimoto (CT), and (c)
Combo-Tanimoto (ComboT). All values binned in 0.01 increments.
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clearly a positive average of NN-NI difference across all
similarity score types for all assays and all assay cate-
gories, ranging from 0.00-0.13 for μ[μ(XTNN-NI)], the
corresponding standard deviation of the average [i.e., “s
[μ(XTNN-NI)]"] is consistently larger than the average
value.
These results lead to a number of questions. Why

isn’t there a greater, unambiguous separation in the 3-
D similarity scores between the NN and NI pairs? Is it
that we are employing a single conformer per com-
pound in the analysis? After all, the current Pub-
Chem3D theoretical conformer generation approach
does not guarantee that the single (default) conformer
used for each molecule in the NN pairs is a (or “the”)
bioactive conformation. A general premise of the
interpretation of 3-D similarity between a NN pair
requires a “bioactive” conformation surrogate for both
noninactive molecules. Estimating 3-D similarity

between “non-bioactive” conformers of both mole-
cules, or between a “bioactive” conformer of one
molecule and a “non-bioactive” conformer of the
other, is essentially identical to 3-D similarity compar-
ison for the NI pairs. Therefore, the use of a single
conformer per compound is not likely to result in
enough similarity score difference between the NN
and NI pairs across a wide set of assays. Using multi-
ple conformers per compound may result in a greater
separation in similarity scores between the NN and NI
pairs, but performing the same analysis using multiple
conformers per compound is prohibitively expensive,
considering that we are dealing with 269.7 billion con-
former pairs arising from 734 thousand compounds
and optimizing each conformer pair by ST and then
by CT (9 TB of data gzip compressed). Any increase
in the count of conformers also increases the compu-
tational complexity (and data storage requirements) by

Figure 10 μ(XTNN-NI) per-AID similarity statistics. The distribution of the difference of the average similarity scores for noninactive-noninactive
(NN) pairs and noninactive-inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay database: (a) shape-Tanimoto (ST), (b) color-Tanimoto (CT),
and (c) Combo-Tanimoto (ComboT). All values binned in 0.01 increments.
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the square of the number of conformers per com-
pound considered.
From a gross statistical approach, there is not suffi-

cient separation across the averages of assays for a sin-
gle conformer per compound to say definitively there
is a clear separation between NN and NI pairs. It
could be that, by considering multiple conformers per
compound (and picking the best similarity conformer
pair per compound pair), a clearer separation may
occur, but this is a study for another day (and a bigger
computer cluster and a bigger data storage system).
There are, however, clear examples where some AIDs
do show a clear separation, as shown in the tail
regions of Figure 10, using only a single conformer per
compound.

C-3. Outliers
Although the overall average differences in similarity
scores between the NN and NI pairs were not statisti-
cally significant, some AIDs do have substantial (and
statistically meaningful) NN-NI differences. These “out-
lier” cases correspond to the tail regions of the distribu-
tion curves in Figure 10. For each of the six similarity
measures, the AIDs that lie outside the
μ

[
μ (XTNN−NI)

] ± σ
[
μ (XTNN−NI)

]
region were

extracted and are henceforth defined as “outliers”. Fig-
ure 11 shows Venn diagrams detailing the outlier over-
lap as a function of 3-D similarity score type. To aid in
discussion, the AIDs that have a statistically significant
positive value of average NN-NI difference are deemed
“upper-bound” cases [Figure 11(b) and 11(d)] and the

Table 3 Summary statistics per-AID for shape-Tanimoto (ST) optimized 3-D similarity

XT=STST-opt XT=CTST-opt XT=ComboTST-opt

Y=NN Y=NI Y=NN-NI Y=NN Y=NI Y=NN-NI Y=NN Y=NI Y=NN-NI

μ[μ(XTY)]

Screening 0.58 0.57 0.01 0.09 0.09 0.01 0.67 0.65 0.02

Confirmatory 0.58 0.57 0.01 0.11 0.09 0.02 0.70 0.66 0.03

Summary 0.67 0.64 0.03 0.35 0.25 0.10 1.01 0.88 0.13

Other 0.58 0.56 0.02 0.11 0.09 0.03 0.69 0.64 0.05

Unspecified 0.56 0.56 0.00 0.07 0.07 0.00 0.63 0.62 0.00

All 0.58 0.57 0.01 0.11 0.09 0.02 0.69 0.66 0.03

s[μ(XTY)]
Screening 0.04 0.03 0.02 0.04 0.05 0.02 0.07 0.07 0.04

Confirmatory 0.05 0.04 0.03 0.08 0.05 0.05 0.12 0.08 0.07

Summary 0.13 0.10 0.05 0.26 0.19 0.17 0.39 0.29 0.22

Other 0.06 0.05 0.03 0.06 0.04 0.04 0.10 0.09 0.06

Unspecified 0.03 0.02 0.02 0.02 0.01 0.01 0.04 0.03 0.03

All 0.05 0.04 0.03 0.07 0.05 0.04 0.11 0.08 0.06

μ[s(XTY)]
Screening 0.10 0.09 0.00 0.07 0.06 0.00 0.15 0.13 0.01

Confirmatory 0.11 0.11 0.01 0.10 0.07 0.01 0.19 0.16 0.01

Summary 0.12 0.11 0.02 0.19 0.17 0.04 0.30 0.26 0.06

Other 0.11 0.10 0.01 0.11 0.08 0.01 0.20 0.15 0.01

Unspecified 0.14 0.14 0.01 0.08 0.07 0.00 0.19 0.18 0.01

All 0.11 0.10 0.01 0.09 0.07 0.01 0.17 0.15 0.01

s[s(XTY)]
Screening 0.01 0.01 0.01 0.04 0.03 0.01 0.05 0.04 0.02

Confirmatory 0.02 0.03 0.01 0.06 0.04 0.02 0.07 0.06 0.02

Summary 0.05 0.03 0.03 0.13 0.09 0.06 0.18 0.11 0.09

Other 0.03 0.03 0.01 0.07 0.05 0.02 0.08 0.07 0.02

Unspecified 0.02 0.02 0.01 0.03 0.02 0.00 0.03 0.02 0.01

All 0.02 0.03 0.01 0.06 0.04 0.02 0.07 0.05 0.02

The overall average (μ) and standard deviation (s) of the AID-specific average and standard deviation for noninactive-noninactive (NN) pairs and noninactive-
inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay database.
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AIDs that have a statistically significant negative value of
average NN-NI difference are deemed “lower-bound”
cases [Figure 11(a) and 11(c)].
The lower-bound cases are when the average 3-D

similarity scores for “active/inactive” compound pairs
are greater than for “active/active” compound pairs, a
counter result to the whole notion of chemical similar-
ity. While the opposite of what one might expect, it can
readily occur from a set of chemical structures that are
predominately 3-D similar, being on both sides of that
subjective and (at times) arbitrary line of being “active”
or “inactive”, and where most compounds in the com-
pound series are considered “inactive”, as can be the
case with well defined “activity cliffs” [34,37-40].

Among the 109 unique, lower-bound XTST - opt
NN−NI

out-

liers, 102 (94%) are STST - opt
NN−NI

outliers whereas only 7

(6%) are unique to CTST - opt
NN−NI

outliers [Figure 11 (a)]. A

similar trend is found in the case of lower-bound

XTCT - opt
NN−NI

outliers [Figure 11 (c)]. Perhaps this should

not be a surprise as shape alone (ignoring features)
might not be expected to be a good discriminator of
“actives” and “inactives”. On the other hand, as shown
in Figure 11 (b), there are relatively few unique upper-

bound outlier cases solely attributable to STST - opt
NN−NI

and

CTST - opt
NN−NI

, being only 39 (24%) and 6 (4%), respectively,

of the total. Rather, there is significant overlap between

all three 3-D similarity score types, STST - opt
NN−NI

, CTST - opt
NN−NI

,

and ComboTST - opt
NN−NI

, with 120 of the 165 (73%) unique

upper-bound outlier cases common to ComboTST - opt
NN−NI

.

Again, a similar trend is found for upper-bound

Table 4 Summary statistics per-AID for color-Tanimoto (CT) optimized 3-D similarity

XT=STCT-opt XT=CTCT-opt XT=ComboTCT-opt

Y=NN Y=NI Y=NN-NI Y=NN Y=NI Y=NN-NI Y=NN Y=NI Y=NN-NI

μ[μ(XTY)]

Screening 0.44 0.43 0.01 0.20 0.19 0.01 0.64 0.62 0.02

Confirmatory 0.46 0.44 0.02 0.21 0.20 0.02 0.67 0.64 0.04

Summary 0.57 0.54 0.03 0.43 0.37 0.07 1.00 0.90 0.10

Other 0.46 0.43 0.03 0.23 0.20 0.03 0.68 0.62 0.06

Unspecified 0.44 0.44 0.00 0.17 0.16 0.00 0.61 0.60 0.00

All 0.45 0.44 0.02 0.21 0.19 0.01 0.66 0.63 0.03

s[μ(XTY)]
Screening 0.05 0.03 0.03 0.04 0.04 0.02 0.08 0.07 0.05

Confirmatory 0.07 0.05 0.04 0.08 0.05 0.05 0.14 0.09 0.08

Summary 0.18 0.14 0.07 0.26 0.19 0.10 0.43 0.33 0.15

Other 0.07 0.07 0.04 0.07 0.06 0.04 0.13 0.12 0.08

Unspecified 0.03 0.02 0.03 0.02 0.02 0.02 0.05 0.03 0.04

All 0.06 0.05 0.04 0.07 0.05 0.04 0.13 0.09 0.07

μ[s(XTY)]
Screening 0.12 0.12 0.00 0.08 0.06 0.00 0.17 0.15 0.01

Confirmatory 0.13 0.13 0.01 0.10 0.08 0.01 0.21 0.18 0.01

Summary 0.16 0.15 0.03 0.17 0.16 0.04 0.32 0.29 0.07

Other 0.13 0.12 0.01 0.11 0.08 0.01 0.22 0.17 0.01

Unspecified 0.15 0.14 0.01 0.10 0.09 0.00 0.21 0.20 0.01

All 0.13 0.13 0.01 0.09 0.08 0.01 0.20 0.17 0.01

s[s(XTY)]
Screening 0.02 0.01 0.01 0.03 0.02 0.01 0.05 0.04 0.02

Confirmatory 0.03 0.02 0.01 0.05 0.04 0.02 0.07 0.06 0.03

Summary 0.08 0.05 0.05 0.11 0.08 0.05 0.19 0.12 0.10

Other 0.03 0.03 0.01 0.06 0.04 0.01 0.08 0.07 0.02

Unspecified 0.02 0.01 0.01 0.03 0.02 0.00 0.04 0.02 0.01

All 0.03 0.02 0.01 0.05 0.04 0.01 0.07 0.05 0.03

The overall average (μ) and standard deviation (s) of the AID-specific average and standard deviation for noninactive-noninactive (NN) pairs and noninactive-
inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay database.
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XTCT - opt
NN−NI

outliers [Figure 11 (d)]. This suggests, for the

upper-bound AID outlier cases, use of ComboT similar-
ity score is most efficient at finding most of the outlier
cases when using a single conformer per compound.

Figure 12 compares the ComboTST - opt
NN−NI

and

ComboTCT - opt
NN−NI

AID outlier cases. There are 120 and 125

upper-bound AID outliers for ComboTST - opt
NN−NI

and

ComboTCT - opt
NN−NI

, respectively, and 116 are common to

both. In contrast, there are 26 AIDs common in the

ComboTST - opt
NN−NI

and ComboTCT - opt
NN−NI

lower-bound outliers,

while about half that value are unique to each. This
shows that the upper-bound AID outliers are predomi-
nately conformer superposition optimization type
independent.
Table 5 gives the top 25% of the common ComboTNN-

NI upper-bound AID outliers, yielding the largest magni-
tude difference in average NN-NI separation, and Table
6 gives all common ComboTNN-NI lower-bound AID
outliers. Table 7 lists the count of assay outliers broken
down by optimization type and similarity metric type.
Exploring the top five assays in Table 5, the first three
represent trivial examples of a compound series easily

Figure 11 Assay μ[μ(XTNN-NI)] outlier commonality by 3-D similarity type. The Venn diagrams show the number of AIDs whose difference of
the average similarity scores for noninactive-noninactive (NN) pairs and noninactive-inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay
database are out of the range of μ

[
μ (XTNN−NI)

] ± σ
[
μ (XTNN−NI)

]
, where “lower-bound” corresponds to μ - s and “upper-bound”

corresponds to μ + s.
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identifiable using 2-D similarity or 3-D similarity or by
eye. AID 672, with the fourth largest NN-NI positive
difference found, is somewhat more interesting.
AID 672 is a secondary confirmatory assay with four

active compounds, shown in Figure 13 (a), that comprise
the NN pairs. Of these four structures, three have a
similar substructure but only two of the structures
(CIDs 647501 and 653297) might be considered “simi-
lar” with a 0.76 2-D similarity using the PubChem

subgraph fingerprint [Figure 13 (b)]; however, using
ComboTST-opt 3-D similarity, all four compounds have
pair-wise similarity beyond random (i.e., ComboTST-opt

> { μ + s } = 0.74 from Table 2) except for one com-
pound pair (CIDs 66541 and 787437). An example of
one of these pair-wise superpositions [Figure 13 (c)]
shows one way these different chemical structures can
be superimposed relative to their shape and feature
complements. While a relatively small example, and
easy to examine in detail, there readily exists much lar-
ger examples.
AID 2230, also a secondary confirmatory assay and

fifth in the list found in Table 5, possesses a much lar-
ger NN set with 92 compounds. When examining these
by 2-D cluster analysis using the PubChem Structure
Clustering tool, as shown in Figure 14, there are clearly
two compound series, one with 51 compounds and the
other with 31 compounds, representing the majority of
the “active” chemical structures. Switching to 3-D Com-
boT similarity, all but four of the 92 compounds, as
shown in Figure 15, are inter-related at a ComboTCT-opt

value above 1.04. As shown in Table 2, a value of 1.04 is
more than three standard deviations away from the ran-
dom average of 0.59 for ComboTCT-opt. As one goes to a
ComboTCT-opt value of 1.2, several different clusters
appear with the largest containing 46 compounds and
second largest containing 20 compounds. This demon-
strates how 3-D similarity is able to relate chemical ser-
ies distinct in 2-D similarity, as representing similar
shape and feature space even with a single conformer
per compound.

Conclusion
Six 3-D similarity measures (STST-opt, CTST-opt, Com-
boTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt) in con-
junction with 734,486 biologically tested compounds
from PubChem were utilized to help answer the ques-
tion: what is a biologically meaningful 3-D similarity
score? The distribution of the six similarity measures
for biologically tested compound pairs, resulting from
computation of all-against-all similarity scores (269.7
billion unique conformer pairs), yielded an average and
standard deviation for STST-opt, CTST-opt, ComboTST-

opt, STCT-opt, CTCT-opt, and ComboTCT-opt of 0.54 ±
0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06,
and 0.59 ± 0.14, respectively. These values represent
valuable benchmarks for the 3-D similarity values pro-
vided by PubChem and those computed by some com-
mercial software packages. One can now know when a
statistically meaningful superposition between a con-
former pair occurs, potentially helping to improve
their ability to analyze bioactivity information.
This random distribution of biologically tested com-

pounds was constructed using a single theoretical

Figure 12 Assay μ[μ(ComboTNN-NI)] outlier commonality by
superposition optimization type. The Venn diagrams show the
number of AIDs whose difference of the average ComboT similarity
scores for noninactive-noninactive (NN) pairs and noninactive-
inactive (NI) pairs of 1,389 AIDs in the PubChem BioAssay database
that are out of the range of
μ

[
μ (ComboTNN−NI)

] ± σ
[
μ (ComboTNN−NI)

]
, where

“lower-bound” corresponds to μ - s and “upper-bound”
corresponds to μ + s. Upper-bound outliers tend to be shared by
both superposition optimization types, while lower-bound outliers
are less shared.
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conformer per compound (the “default” conformer pro-
vided by PubChem). If one were to use multiple diverse
conformers per compound and pick the best 3-D simi-
larity score, the average random distribution values may
well be higher (perhaps significantly so); however, if one
considers the continuum of all similarity values pro-
duced in the use of multiple diverse conformers per
compound to yield a similar random distribution values,
the averages (and standard deviations) above may still
be applicable or, perhaps, treated as a conservative
lower bound result. Further study is clearly warranted
using multiple diverse conformers per compound. This
work is a critical first step covering a very wide corpus

of chemical structures and biological assays and creating
a statistical framework to build upon.
The second part of this study explored the question of

whether it was possible to realize a statistically meaningful
3-D similarity value separation between reputed biological
assay “inactives” and “actives”. Using the terminology of
noninactive-noninactive (NN) pairs and the noninactive-
inactive (NI) pairs to represent comparison of the “active/
active” and “active/inactive” spaces, respectively, each of
the 1,389 biological assays were examined by their 3-D
similarity score differences between the NN and NI pairs
and analyzed across all assays and assay category types.
Regardless of the optimization type employed (i.e., either

Table 5 Top 25% of common upper-bound assay μ(ComboTNN-NI) outliers

μ(ComboTNN-NI)

ST-opt CT-opt Ave.a
Description

1475 (S) 0.68 0.46 0.57 Quantitative High-Throughput Screen for Inhibitors of Tau Fibril Formation: Summary

2163 (C) 0.47 0.50 0.49 Cuvette-Based Assay for Inhibitors of 12-hLO (12-human lipoxygenase)

838 (C) 0.41 0.56 0.48 Mycobacterium tuberculosis Pantothenate Synthetase Secondary Assay

672 (C) 0.45 0.50 0.48 Redox Cycling Hydrogen Peroxide Generation Assay; MKP-1 and MKP-3 Probe Assessment.

2230 (C) 0.41 0.49 0.45 Confirmation assay for inhibitors of Trypanosoma brucei hexokinase 1-Analogue-first series

653 (C) 0.44 0.46 0.45 West Nile Virus NS2bNS3 Proteinase Inhibitor Dose Response Confirmation.

766 (C) 0.42 0.45 0.43 Formylpeptide Receptor (FPRL1) Ligand Structure Activity Relationship (SAR) Analysis : Dose Response Assay

486 (C) 0.43 0.44 0.43 Clearance of Mutant Huntingtin Protein - Confirmatory screen

2267 (C) 0.40 0.46 0.43 Secondary assay for Inhibitors of Human Pyruvate Kinase M2 isoform

1068 (C) 0.39 0.47 0.43 BAP1 Enzyme inhibitors AMC/RHO Comparison

523 (C) 0.40 0.44 0.42 Cathepsin B Inhibitor Series SAR Study

1536 (C) 0.34 0.49 0.42 Confirmation of compounds inhibiting phosphomannose isomerase (PMI) via a fluorescence intensity assay
using a high concentration of mannose 6-phosphate.

346 (C) 0.37 0.45 0.41 HIV Nucleocapsid

1083 (C) 0.40 0.41 0.40 Concentration Response fluorescence polarization-based assay to test purchased Analogs of Selected Hits from
the Polo box domain (PBD) of Plk1 Primary HTS.

732 (P) 0.34 0.34 0.34 In Vivo Angiogenesis Assay for HTS

718 (C) 0.31 0.32 0.31 Dose Response assay for agonists of 5-Hydroxytryptamine (Serotonin) Receptor Subtype 1A (5HT1A)

1157 (O) 0.26 0.36 0.31 PSACAntagonistScreen(Absorb.700[IndoChina.Blood(.18h)])

1315 (P) 0.28 0.34 0.31 Fluorescence polarization for PKD inhibitors - interference assay (140K library campaign)

1781 (C) 0.27 0.34 0.31 Confirmation Concentration-Response Assay for Activators of Human Liver Pyruvate Kinase

579 (C) 0.26 0.26 0.26 In vitro MKP-1 Phosphatase Dose Response SAR Support Assay

1039 (C) 0.20 0.30 0.25 Normal 2 Cell Viability Secondary Assay for qHTS Assay for Epigenetic Modulators

1540 (C) 0.27 0.23 0.25 Secondary assay for Activators of Human Pyruvate Kinase M2 isoform

835 (C) 0.20 0.29 0.24 Dose-response biochemical assay for antagonists of the interaction between the Eph receptor B4 (EphB4) and
its ligand ephrin-B2 via TNYL-RAW peptide

621 (C) 0.24 0.23 0.24 TR-FRET secondary assay for HTS discovery of chemical inhibitors of anti-apoptotic protein Bfl-1

1751 (C) 0.23 0.23 0.23 Confirmation Concentration-Response Assay for Activators of Human Muscle isoform 2 Pyruvate Kinase

254 (?) 0.19 0.25 0.22 NCI In Vivo Anticancer Drug Screen. Data for tumor model L1210 Leukemia (intravenous) in B6D2F1 (BDF1)
mice

552 (P) 0.24 0.19 0.22 Antimicrobial HTS Assay for E. coli BW25113 (wild type)

734 (P) 0.20 0.23 0.22 Assay to identify inhibitors among the possible fluorescent artifacts from the primary HTS inhibition assay of
Matrix Metalloproteinase 13 (MMP13) activity

A list of AIDs whose difference in the average ComboT similarity scores between noninactive-noninactive (NN) pairs and noninactive-inactive (NI) pairs is greater
than μ[μ(ComboTNN-NI)] + s[μ(ComboTNN-NI)] for both superposition optimization types.
a (P), (primary) screening; (C), confirmatory; (S), summary; (O), others; (?), unspecified.
b The average of ST-optimized and CT-optimized ComboTNN-NI.
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of ST- or CT-optimization), the overall average difference
between the μ(XTNN) and μ(XTNI) values, while consis-
tently positive (as hoped), were not statistically unambigu-
ous after considering their large standard deviations.

Similarly, an increase in the μ
[
μ

(
XTST−opt

NN−NI

)]
values upon

going from primary screenings to confirmatory assays to
summary assays was also not statistically meaningful, due

to an even more rapid increase in the σ
[
μ

(
XTST−opt

NN−NI

)]
values.

The negligible difference in 3-D similarity between
the NN and NI pairs may be due to employing a sin-
gle conformer per compound in this study. Conceiva-
bly the 3-D similarity between two noninactive
molecules should be evaluated using the “bioactive”
conformer for each molecule, being the conformer
giving rise to the observed biological activity; however,
the single conformers per compound used in the pre-
sent study are not guaranteed to be sufficiently similar
to the bioactive conformers, and the average similarity

Table 6 Common lower-bound assay μ(ComboTNN-NI) outliers

μ(ComboTNN-NI)

ST-opt CT-opt Ave.b
Description

1349 (P) -0.27 -0.22 -0.24 Test of compound activity against tunicamycin-induced cell death using Flow cytometry in CSM14.1
undifferentiated cells.

1343 (P) -0.18 -0.20 -0.19 Test of compound activity against tunicamycin-induced cell death using an ATP content assay in CSM14.1
undifferentiated cells.

1218 (P) -0.11 -0.16 -0.13 Functional assay for estrogen-mediated translocation of PIP3: Secondary Assay for Estrogen receptor beta.

1219 (P) -0.11 -0.16 -0.13 Functional assay to assess estrogen-mediated translocation of PIP3: Secondary Assay for GPR30 estrogen
receptor.

1711 (C) -0.12 -0.13 -0.13 Concentration-Response Counterscreen for Tau: Redox Active Inhibitors of Caspase-1

1247 (C) -0.14 -0.10 -0.12 Dose Response Assay for SAR studies of Inhibitors of ER stress-Induced Cell Death: A Benzodiazepine Series

839 (C) -0.09 -0.12 -0.10 Screening for Modulators of Post-Golgi Transport - Secondary Growth Assay.

495 (O) -0.07 -0.14 -0.10 Literature data for small-molecule inhibitors of Influenza A Subtype N2.

931 (C) -0.10 -0.11 -0.10 Confirmation and Secondary Assay for Modulators of Hemoglobin Beta Chain Splicing at IVS2 654 locus:
Cytotoxicity

791 (C) -0.10 -0.08 -0.09 Dose-response biochemical assay of Rho kinase 2 (Rock2) inhibitors

769 (C) -0.09 -0.07 -0.08 Dose response biochemical assay for autofluorescent inhibitors of Matrix Metalloproteinase 13 (MMP13) activity

302 (?) -0.06 -0.08 -0.07 NCI In Vivo Anticancer Drug Screen. Data for tumor model Madison 109 Lung Carcinoma (intramuscular) in
BALB/CM mice

1225 (C) -0.05 -0.07 -0.06 Dose Response cell-based high-throughput screening assay to identify antagonists of galanin receptor 2 (GALR2)

1226 (P) -0.05 -0.07 -0.06 Functional assay for estrogen-mediated translocation of PIP3: Secondary Assay for Estrogen receptor alpha

2110 (C) -0.05 -0.07 -0.06 Confirmation of Inhibitors and Activators of Purified Human alpha-Glucosidase Using an Alternate Red
Fluorescent Susbtrate

1331 (C) -0.04 -0.08 -0.06 Dose response biochemical High Throughput Screening assay for agonists of the steroid receptor coactivator 3
(SRC-3) recruitment by the peroxisome proliferator-activated receptor gamma (PPARgamma)

324 (?) -0.06 -0.05 -0.06 NCI In Vivo Anticancer Drug Screen. Data for tumor model P388 Leukemia resistant to AMSA; NSC 249992
(intraperitoneal) in CD2F1 (CDF1) mice

1342 (C) -0.05 -0.06 -0.06 Fluorescence polarization assay for PKD inhibitiors-interference assay-57K HTS campaign

308 (?) -0.05 -0.05 -0.05 NCI In Vivo Anticancer Drug Screen. Data for tumor model L1210 Leukemia resistant to 6-MP and 6-
Thioguanine; NSC 755, NSC 752 (intraperitoneal) in B6D2F1 (BDF1) mice

1659 (C) -0.04 -0.06 -0.05 SAR assay for compounds activating TNAP in the presence of 100 mM DEA performed in a luminescence assay

658 (C) -0.04 -0.06 -0.05 Cellular Toxicity (caspase-3) BJ

632 (C) -0.04 -0.06 -0.05 Confirmation Concentration-Response Assay and Counterscreen for Disrupters of an Hsp90 Co-Chaperone
Interaction

238 (?) -0.05 -0.04 -0.04 NCI In Vivo Anticancer Drug Screen. Data for tumor model Leiomyosarcoma (No. 2) (intraperitoneal) in CAF1
mice

856 (C) -0.04 -0.05 -0.04 Counterscreen for S1P2 Antagonists: Dose Response Cell-Based Screen to Identify Antagonists of CRE-BLA

232 (?) -0.04 -0.05 -0.04 NCI In Vivo Anticancer Drug Screen. Data for tumor model Lymphosarcoma Gardner 6C3HED (intraperitoneal) in
C3AKF1 (CHKRF1) mice

369 (O) -0.04 -0.04 -0.04 Literature data for small-molecule inhibitors of Avian Sarcoma Virus Src.

A list of AIDs whose difference in the average ComboT similarity scores between noninactive-noninactive (NN) pairs and noninactive-inactive (NI) pairs is greater
in magnitude than μ[μ(ComboTNN-NI)] - s[μ(ComboTNN-NI)] for both superposition optimization types.
a (P), (primary) screening; (C), confirmatory; (S), summary; (O), others; (?), unspecified.
b The average of ST-optimized and CT-optimized ComboTNN-NI.

Kim et al. Journal of Cheminformatics 2011, 3:26
http://www.jcheminf.com/content/3/1/26

Page 17 of 22



Table 7 Outlier breakdown by optimization type and similarity type.

Lower-bound (< μ[μ(XT)] - s[μ(XT)]) Upper-bound (> μ[μ(XT)] + s[μ(XT)])

ST CT ComboT ST CT ComboT

ST-optimization

screening 10 (2.3%) 7 (1.6%) 7 (1.6%) 32 (7.2%) 11 (2.5%) 23 (5.2%)

confirmatory 69 (9.3%) 8 (1.1%) 19 (2.6%) 85 (11.5%) 63 (8.5%) 75 (10.1%)

summary 1 (11.1%) 0 (0.0%) 0 (0.0%) 2 (22.2%) 3 (33.3%) 2 (22.2%)

other 4 (4.1%) 1 (1.0%) 3 (3.1%) 19 (19.6%) 17 (17.5%) 19 (19.6%)

unspecified 18 (18.6%) 0 (0.0%) 9 (9.3%) 4 (4.1%) 1 (1.0%) 1 (1.0%)

All 102 (7.3%) 16 (1.2%) 38 (2.7%) 142 (10.2%) 95 (6.8%) 120 (8.6%)

CT-optimization

screening 10 (2.3%) 8 (1.8%) 9 (2.0%) 31 (7.0%) 13 (2.9%) 23 (5.2%)

confirmatory 70 (9.4%) 12 (1.6%) 22 (3.0%) 81 (10.9%) 66 (8.9%) 76 (10.2%)

summary 2 (22.2%) 0 (0.0%) 1 (11.1%) 2 (22.2%) 3 (33.3%) 3 (33.3%)

other 3 (3.1%) 2 (2.1%) 2 (2.1%) 22 (22.7%) 18 (18.6%) 21 (21.6%)

unspecified 19 (19.6%) 0 (0.0%) 5 (5.2%) 3 (3.1%) 1 (1.0%) 2 (2.1%)

All 104 (7.5%) 22 (1.6%) 39 (2.8%) 139 (10.0%) 101 (7.3%) 125 (9.0%)

The count of assay outliers that have a significant similarity score difference between the NN and NI pairs. Numbers in parentheses are the percentages of
outliers relative to the assay-type counts shown in Figure 8(c).

Figure 13 Separation between actives and inactives. An example of clear separation between ComboTST - opt
NN−NI

3-D similarities of 0.45 (see
Table 5), the four active compounds from AID 672: (a) shows 2-D and 3-D similarity dendrograms generated using the PubChem Structure
Clustering tool; (b) shows the respective 2-D similarity values (lower triangle) and 3-D similarity values (upper triangle); and (c) shows a
representative alignment showing how CID 647501 is 3-D similar to CID 787437 (ST/CT 0.73/0.28), despite low 2-D similarity (0.56).
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scores per-AID for the NN pairs were not much dif-
ferent than those from the NI pairs. Considering the
negligible difference in the 3-D similarity scores
between the NN and NI pairs, it may not be appropri-
ate to analyze bioassay data with a single conformer
per compound in a general sense. With that said,
there were a subset of biological assays where a clear
separation between the NN and NI pairs were found.
In addition, use of combo Tanimoto (ComboT) alone,
independent of superposition optimization type,
appears to be the most efficient 3-D score type in
identifying these cases.

Materials and methods
1. Datasets
At the time of project initiation (late January of 2010),
there were 2,008 bioassays (unique identifier AID)
deposited in the PubChem BioAssay database, ranging
from AID 1 to AID 2310. Among the chemical struc-
tures tested in these assays, those with associated

PubChem Compound records (unique identifier CID)
with theoretical 3-D conformer models available [22]
were considered in the present study. Note that the 3-D
information is only available for CIDs that satisfy the
following restrictions [22,23]:

(1) is a single covalent component.
(2) contains only organic [H, C, N, O, F, P, S, Cl, Br,
and I] elements
(3) possess only typical bonding situation (e.g., no
hyper valent situations)
(4) not too big (e.g., 50 non-hydrogen atoms or less)
and not too flexible (e.g., 15 effective rotors or less)
(5) have five undefined stereocenters or less

There are 734,486 CIDs satisfying the above condi-
tions for the 2,008 AIDs. All data is accessible from the
PubChem website (http://pubchem.ncbi.nlm.nih.gov).
Bulk download of data is also available from the Pub-
Chem FTP site (ftp://ftp.ncbi.nlm.nih.gov/pubchem).

Figure 14 2-D similarity isolates related chemical series. Dendrogram from the PubChem Structure Clustering tool for 88 of the 92
noninactive pairs from AID 2230 showing two primary clusters (containing 51 and 31 compounds, respectively) at 0.8 Tanimoto using 2-D
similarity. Note that all but one compound is related above 0.7 Tanimoto.
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The AIDs considered are provided in Additional File 1
with per-AID statistics of 3-D similarity scores for the
NN and NI pairs.

2. Similarity Score Computation
In the first part of this study, the first diverse conformer
[24] for each of the 734,486 CIDs were downloaded. A
total of six different 3-D similarity scores were com-
puted, resulting from three different similarity metrics
computed for conformer pairs superpositions optimized
in two different ways. The three similarity metrics are:
shape Tanimoto [ST, Equation (1)], measuring the
shape similarity; color Tanimoto [CT, Equation (2)],
measuring the similarity of 3-D orientation of functional
groups used to defined pharmacophores (specified

simply as features); and combo Tanimoto (ComboT),
the simple sum of ST and CT [Equation (3)]. The two
conformer superposition methods used optimize: by
shape similarity (ST-optimized), where conformer shape
overlap is maximized; and feature similarity (CT-opti-
mized), where conformer feature overlap is maximized.
Feature definitions and all similarities were computed
using the C++ Shape toolkit [28] from OpenEye Scienti-
fic Software, Inc.
There were a total of 269,734,474,855 conformer pair

similarity sets from all possible unique combinations of
the 734,486 conformers. Histograms of the computed
similarity scores were generated after binning all simi-
larity scores in 0.01 increments [using the C function
“rint(float)"]. Note that we used only the first diverse

Figure 15 3-D similarity interrelates chemical series. Dendrogram from the PubChem Structure Clustering tool for 88 of the 92 noninactive
pairs from AID 2230 showing three primary clusters (containing 46, 20, and 13 compounds, respectively) at 1.2 combo Tanimoto (ComboT)
using 3-D similarity, CT-optimized. All structures are interrelated at a ComboT of 1.04, more than 3.2 standard deviations beyond the random pair
average of 0.59.
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conformer for each compound, being the PubChem
default conformer. Considering the total size of data
files (9.0 TB compressed, when storing only the two
conformer IDs, the two similarity scores, the 3 × 3
rotational matrix, and translation vector per conformer
pair computed), employing additional conformers per
compound in this study would quickly overwhelm the
available computational resources and disk space to
consider.
Many of the compounds in the present study were

biologically tested in multiple assays, and hence, a sub-
stantial fraction of conformer pairs appear in multiple
assays. Therefore, since consideration is given to one
assay at a time, extracting the similarity scores for the
conformer pairs tested in each AID from the all-by-all
similarity score matrices computed and stored in the
first part of study is described in Figure 16.

Additional material

Additional file 1: Similarity Scores Statistical parameters of similarity
scores for each AID.
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