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Abstract

Salmonella remains unknown.

control drug resistance and virulence of S. enterica.
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Background: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular
signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an
intra-species signaling molecule. In contrast to £. coli, Salmonella does not produce indole because it does not
harbor thaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated
that £. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella
enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in

Results: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis
of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella
phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced
expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those
related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of
invasive activity and motility of Salmonella by indole was also observed phenotypically.

Conclusion: Our results suggest that indole is an important signaling molecule for inter-species communication to

Background

Bacteria communicate using small molecules by a process
termed quorum sensing. Accumulation of quorum-sensing
signals in growth medium indicates cell density. The use of
chemical signals for bacterial communication is a widespread
phenomenon [1-5]. In Gram-negative bacteria, these signals
could be N-acyl derivatives of homoserine lactone, cyclic
dipeptides, and quinolones [6-12]. These signals regulate
various functions such as bioluminescence, differentiation,
virulence, DNA transfer, and biofilm maturation [13-22].
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The intestinal tract is colonized by approximately 10
commensal bacteria including those belonging to the
genus Escherichia [23-25]. Among Enterobacteriaceae,
indole is produced by E. coli and certain Proteeae such
as Proteus vulgaris, Providencia spp., and Morganella
spp. [26]. Indole production is commonly used for
Escherichia coli identification [26]. Indole is generated
from tryptophan by the enzyme tryptophanase, encoded
by tnaA [27]. Extracellular indole is found at high con-
centrations (over 600 puM) when E. coli is grown in
enriched medium [28]. Furthermore, indole has also
been found in human feces at comparable concentra-
tions (~250-1100 uM) [29,30]. Recent studies have also
revealed that indole is an extracellular signal in E. coli,
since it has been demonstrated to regulate uptake, syn-
thesis, and degradation of amino acids in the stationary
phase of planktonic cells [31], multicopy plasmid
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maintenance, cell division [32], biofilm formation [28],
acid resistance [33], and expression of multidrug expor-
ters in E. coli [34-36] as well as to regulate the pathogen-
icity island, including the locus of enterocyte effacement
of pathogenic E. coli [37,38]. Indole has also been
demonstrated as an important cell-signaling molecule for
a population-based antibiotic resistance mechanism [39].

Salmonella enterica is a bacterial pathogen that causes
various diseases in humans including gastroenteritis,
bacteremia, and typhoid fever [40]. In contrast to E. coli,
S. enterica does not harbor tnaA; therefore, this organ-
ism does not produce indole [41]. In our previous study,
we demonstrated that an E. coli-conditioned medium
and indole induced expression of the acrAB—tolC multi-
drug efflux system of Salmonella in a RamA regulator-
dependent manner [35]. This suggests that indole is used
as a cell-signaling molecule in both intra- and inter-
species communication. However, the global effect of in-
dole on Salmonella remains to be elucidated.

We hypothesized that indole controls expression of a
wide range of genes and plays a role in regulating the
physiological functions of S. enterica serovar Typhimur-
ium. Therefore, to reveal the complete picture of indole-
controlled genes, we conducted microarray analysis of
genes affected by indole. Predicted Salmonella pheno-
types affected by indole based on the microarray data
were also examined in this study.

Methods

Bacterial strains and growth conditions

S. enterica serovar Typhimurium strains used in this
study were the wild-type strain ATCC14028s [42] and its
derivatives. These included strain NES114 which harbors
a FLAG-tag fused at the chromosomal ramA gene
(ramA-FLAG:Km") and strain NES84 which carries a
ramA reporter plasmid (ATCC 14028s/pNNramA) [35].
Derivatives also included various deletion mutants: ramA
deletion mutant 14028sAramA:kan®, ramR deletion mu-
tant 14028sAramR:kan® and mutant 14028sAram:kan®
deleted of the whole ram locus. Bacterial strains were
grown at 37 °C in Luria—Bertani (LB) broth supplemen-
ted with indole (Sigma) where appropriate.

DNA microarray analysis

The ATCC 14028s strain was grown in the presence or
absence of 1 or 4 mM indole. The cells were rapidly col-
lected for total RNA extraction when the culture
reached an optical density (OD) of 0.6 at 600 nm. Total
RNA was extracted from the cells using the RNeasy
Midi kit (Qiagen) and Turbo DNA-free™ kit (Ambion).
After extraction of total RNA, fluorescent labeling of
cDNA was performed using the GeneChip DNA labeling
reagents (Affimetrix). The fluorescent-labeled cDNA was
hybridized in ¢cDNA microarray plates (NimbleExpress™

Page 2 of 13

S. typhimurium array; NimbleGen Systems, Inc.). The
degree of fluorescence in the plates was measured and
quantified using the GeneChip Scanner 3000 (Affymetrix)
and GeneChip Operating Software ver. 1.4 (Affymetrix),
respectively. Measured values were compared to control
values, and p values of distribution of logged data were
obtained. A ranked conversion of p values was calculated,
and values lying inside 2.5 % of the two extremes were
considered valid.

Semiquantitative RT-PCR

The ATCC 14028s strain was grown in the presence or
absence of 2 mM indole. The cells were rapidly collected
for total RNA extraction when the culture reached an
ODgoo of 0.6. Total RNA from bacterial cultures was
extracted as described above. Semiquantitative RT-PCR
was used to measure the transcriptional expression of rrs
and ramA. RNA was reverse-transcribed using random
hexamers and TaqMan reverse transcription reagents
(Applied Biosystems), and PCR was performed using
Takara LA Taq DNA polymerase (Takara Bio, Inc.). The
primers for rrs were rrs-F and rrs-R (Table 1) and those
for ramA were ramA-F and ramA-R (Table 1).

B-Galactosidase assay

The NES84 strain [35] was grown in the presence of
0-3 mM indole until an ODgy, of 0.6 was reached.
B-Galactosidase activity was determined as described by
Miller [43]. All assays were performed in triplicate.

Construction of the ramA-FLAG strain

Insertion of the FLAG-tag of the ramA gene 3' terminal
was performed as described by Datsenko and Wanner [44].
The kanamycin resistance gene aph, flanked by Flp recog-
nition sites, was amplified by PCR using the pri-
mers ramA-FLAG-forward (GCCAGGCGCTTATCGTA
AAGAAAAGCATGGCCGTACGCATGACTACAAGG
ACGACGATGACAAGTAGGTGTAGGCTGGAGCTGC
TTC) and ramA-FLAG-reverse (CGATTAAACATTTC
AATGCGTACGGCCATGCTTTTCTTTACATATGAAT
ATCCTCCTTAG). The sequence of the FLAG-tag
appears in bold in the sequence of the ramA-FLAG- for-
ward primer. The resulting PCR products were used to
transform the recipient ATCC 14028s strain harboring the
pKD46 plasmid, which expresses Red recombinase [44].
The chromosomal structure of the mutated loci was veri-
fied by PCR.

Western blotting

The NES114 strain (ramA-FLAG:Km®) was grown in
the presence of 2 mM indole until an ODgy, of 0.6 was
reached. Bacterial cells were washed with buffer [20 mM
Tris—HCI (pH 8.0), 200 mM NaCl, and 1 mM EDTA],
resuspended in 1 ml of the same buffer, and disrupted by
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Table 1 Primers used in this study

Primer name Oligonucleotide sequence (5' to 3’)

For semiquantitative RT-PCR

rrs-F CCAGCAGCCGCGGTAAT

rrs-R TTTACGCCCAGTAATTCCGATT
ramA-F ATTTGAATCAGCCGTTACGTATTG
ramA-R TGCAGGTGCCACTTGGAAT

For quantitative RT-PCR

gmk-f TTGGCAGGGAGGCGTTT

gmk-r GCGCGAAGTGCCGTAGTAAT
gyrB-f TCTCCTCACAGACCAAAGATAAGCT
gyrB-r CGCTCAGCAGTTCGTTCATC
rrs-f CCAGCAGCCGCGGTAAT

rrs-r TTTACGCCCAGTAATTCCGATT
ramA-f GCGTGAACGGAAGCTAAAAC
ramA-r GGCCATGCTTTTCTTTACGA
acrB-f TCGTGTTCCTGGTGATGTACCT
acrB-r AACCGCAATAGTCGGAATCAA
mdtEf AGTCGCTGGATACCACCATC
mdtE-r GATATTACGCACGCCGATTT
tolCf GCCCGTGCGCAATATGAT

tolC-r CCGCGTTATCCAGGTTGTTG
flhC-f ATATCCAGTTGGCGATGGAG
flhC-r TTGCTCCCAGGTCATAAACC
hilA-f CATGGCTGGTCAGTTGGAG
hilA-r CGTAATTCATCGCCTAAACG
invFf TGAAAGCCGACACAATGAAAAT
invF-r GCCTGCTCGCAAAAAAGC
invA-f GGCGCCAAGAGAAAAAGATG
invA-r CAAATATAACGCGCCATTGCT
sipA-f TTTGGCTGTACGTTAGATCCGTTA
SIpA-r CCGCCGCTTTGTCAACA

sonication using the Branson Sonifier 200 (Branson
Sonic Power Co., Danbury, CT, USA) on ice for 2.5 min.
Whole-cell lysate (10 pg of protein) was separated on
15 % SDS-PAGE using Tris-glycine SDS as the running
buffer. The gel was transferred to PVDF membranes,
and analyzed by western blotting using a monoclonal
anti-FLAG antibody (Sigma). The blot was developed
using anti-mouse IgG horseradish peroxidase-conjugated
antibody and analyzed using the ECL detection system
(GE Healthcare).

Transmission electron microscopy

One hundred microliters of an overnight culture of the
wild-type Salmonella strain was added to 5 ml of LB
broth, and the bacterial culture was grown in the pres-
ence or absence of 1 mM indole until an ODggyy of 0.6
was reached. Bacterial cells were collected by centrifuga-
tion, fixed in 2 % glutaraldehyde solution, and observed
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using a transmission electron microscope JEM-2100
(JEOL Ltd.).

Gene expression analysis by qRT-PCR

Bacteria were grown until mid-log phase (ODggo of 0.6)
and harvested by centrifugation. Pelleted cultures were
stabilized with RNAprotect Bacteria Reagent (Qiagen)
and stored at —80 °C until use. Total RNA was extracted
using the RNeasy Mini kit. (Qiagen) following the manu-
facturer’s instructions. Removal of residual genomic
DNA was performed using the Turbo DNA-free kit
(Ambion) and examined by negative PCR amplification
of a chromosomal sequence. RNA integrity was exam-
ined by electrophoresis on 1 % agarose gel. Total RNA
was reverse-transcribed using random hexamers and the
Superscript III First Strand Synthesis System (Applied
Biosystems). Primers used for qRT-PCR are listed in
Table 1. The cycling conditions were as follows: 95 °C
for 5 min followed by 40 cycles of 95 °C for 10 s and 60 °C
for 15 s. After each run, amplification specificity and the
absence of primer dimers were examined using a dissoci-
ation curve acquired by heating the PCR products from 60
to 95 °C. The relative quantities of transcripts were deter-
mined using the standard curve method and normalized
against the geometric mean of three reference genes (gmk,
gyrB, rrs). In qRT-PCR experiments performed to address
the effect of 1 mM indole, the expression level of each
gene of interest was calculated as the average of three in-
dependent RNA samples. A two-tailed Student’s ¢-test was
used to assess significance using a p value of <0.05 as a
cutoff.

Measurement of motility of Salmonella

An overnight culture of the ATCC 14028s Salmonella
strain was diluted in LB broth and grown in the presence
or absence of 1 mM indole until an ODgy, of 0.6 was
reached. Next, 1 pl of bacterial culture was spotted in
the center of a semi-solid agar plate containing 1 % tryp-
tone peptone and 0.3 % BactoAgar and incubated at 37 °C
for 3-5 h in a humidified incubator, after which strains
were assessed for motility.

Invasion assay

Invasions assays were essentially performed as previously
described [45]. Caco-2 cells were grown in Dulbecco’s
modified Eagle medium (DMEM) supplemented with
10 % inactivated fetal bovine serum, 1 % nonessential
amino acids, and 1 % antibiotic solution (Gibco, Invitro-
gen). Cells harvested by trypsinization were seeded at
2% 10° cells/well in a 24-well plate (Falcon) and incu-
bated for 4 days at 37 °C under 5 % CO, in the medium
described above, to obtain a confluent monolayer. Anti-
biotic was removed 24 h before performing the invasion
assays. Bacteria were grown to an ODgoy of 0.6 in LB
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broth in the presence or absence of 1 mM indole. After
washing with DMEM, bacteria were inoculated on Caco-2
cells at a multiplicity of infection of 30, and the plates were
further incubated for 30 min. The bacteria-containing
medium was removed from the wells, and the cells were
washed with PBS. Cells were incubated for 1.5 h with
DMEM supplemented with 100 pg/ml gentamicin. Cells
were washed with PBS and lysed by the addition of sterile
ultrapure water for 30 min. Serial dilutions were plated on
LB agar. The percentage of penetrating bacteria was calcu-
lated on the basis of the ratio of the counted cfu to the
bacterial inoculum. For each bacterial strain and for each
condition, three replicates were used.

Results

Indole affects gene expression in Salmonella

The regulation of Salmonella genes in the wild-type
strain ATCC 14028s by 1 or 4 mM indole, was analyzed
using DNA microarray. To exclude noise data based on
microarray analysis, we considered that genes for which
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expression changed in the presence of both 1 and 4 mM
of indole were significantly regulated by indole. As a re-
sult, it was revealed that 24 (Table 2) and 53 genes
(Table 3) were upregulated and downregulated by indole,
respectively.

Genes upregulated by indole

Expression of the 24 genes listed in Table 2 was upregu-
lated by both 1 and 4 mM indole. Eighteen genes are
considered to code for putative proteins, and four genes,
ramA, ydiP, yhjB, and bgl], are regulatory in nature. The
transcriptional activator RamA, which belongs to the
AraC/XylS family of regulatory proteins, promotes multi-
drug resistance by increasing expression of the AcrAB—
TolC multidrug efflux system in several pathogenic
Enterobacteriaceae [35,46-53]. RamA has also been
reported to negatively affect virulence [47]. Both YdiP
and YhjB are putative transcription regulators that be-
long to the AraC and LuxR/UhpA families, respectively
(Table 2). YhjB is considered a response regulator

Table 2 Salmonella genes whose relative expression was increased by indole

STM no. Gene  Function Effect of indole on gene
expression (fold change)
Concentration of indole (mM)
1 4
STMO0521 ybbV Putative cytoplasmic protein 86 7.0
STMO0581 ramA Transcriptional regulator (activator) of acrAB and tolC (AraC/XylS family) 7.0 39
STM0584 entD Enterochelin synthetase, component D (phoshpantetheinyltransferase) 6.1 75
STM0707 kdpF Putative outer membrane protein 86 18
STM0823 ybiJ Putative periplasmic protein 32 11
STM1156 yceA Putative enzyme related to sulfurtransferases 43 8.0
STM1214 ycfR Putative outer membrane protein 46 37
STM1251 Putative molecular chaperone (small heat shock protein) 11 92
STM1355 ydiP Putative transcription regulator, AraC family 11 75
STM1472 Putative periplasmic protein 7.5 15
STM1790 hyaE Putative thiol-disulfide isomerase and thioredoxins 7.0 9.2
STM1868A Putative protein 43 7.0
STM2103 weal Putative UDP-glucose lipid carrier transferase/glucose-1-phosphate transferase in 4.0 53
colanic acid gene cluster
STM2106 wcal Putative glycosyl transferase in colanic acid biosynthesis 4.6 34
STM2206 fruf Phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2 46 12
STM3028 stdB Putative outer membrane usher protein 6.5 6.5
STM3444 bfd Regulatory or redox component complexing with Bfr, in iron storage and mobility 80 20
STM3511 yhgl Putative thioredoxin-like proteins and domain 57 8.0
STM3606 yhjB Putative transcriptional regulator (LuxR/UhpA familiy) 7.0 20
STM3668 yiaK Putative malate dehydrogenase 7.0 9.2
STM3941 Putative inner membrane protein 86 18
STM4213 Putative phage tail sheath protein 6.5 5.7
STM4327 fxsA Suppresses F exclusion of bacteriophage T7 49 5.7
STM4548 bgl) Transcriptional regulator (activator) of bgl/ operon (LuxR/UhpA family) 26 5.7
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Table 3 Salmonella genes whose relative expression was decreased by indole
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STM no. Gene Function Effect of indole on gene
expression (fold change)
Concentration of indole (mM)
1 4
STM0701  speF Ornithine decarboxylase isozyme, inducible 035 0.038
STM0964  dmsA Anaerobic dimethyl sulfoxide reductase, subunit A 0.12 0.063
STM0965 dmsB  Anaerobic dimethyl sulfoxide reductase, subunit B 0.13 0.025
STM1092  orfX Putative cytoplasmic protein 0.082 0.031
STM1171  figN Flagellar biosynthesis: belived to be export chaperone for FIgK and FigL 0.27 0.082
STM1183  figk Flagellar biosynthesis, hook-filament junction protein 1 0.19 0.031
STM1184  flgL Flagellar biosynthesis; hook-filament junction protein 0.18 0.044
STM1626  trg Methyl-accepting chemotaxis protein Ill, ribose and galactose sensor receptor 0.15 0.054
STM1732  ompW  Outer membrane protein W; colicin S4 receptor; putative transporter 0.29 0.047
STM1764  narG Nitrate reductase 1, alpha subunit 0.095 0.041
STM1765  narK MEFS superfamily, nitrite extrusion protein 0.058 0.047
STM1917  cheB Methyl esterase, response regulator for chemotaxis (cheA sensor) 027 0.067
STM1918  cheR Glutamate methyltransferase, response regulator for chemotaxis 0.14 0.0078
STM1919  cheM Methyl accepting chemotaxis protein Il, aspartate sensor-receptor 0.18 0018
STM1921  cheA Sensory histitine protein kinase, transduces signal between chemo- signal receptors 0.18 0.029
and CheB and CheY
STM1922  motB Enables flagellar motor rotation, linking torque machinery to cell wall 0.15 0.021
STM1923  motA Proton conductor component of motor, torque generator 0.20 0.036
STM1960  fliD Flagellar biosynthesis; filament capping protein; enables filament assembly 0.31 0011
STM1961  fiiS Flagellar biosynthesis; repressor of class 3a and 3b operons (RflA activity) 031 0.019
STM1962  fliT Flagellar biosynthesis; possible export chaperone for FliD 0.25 0.038
STM2256  napB Periplasmic nitrate reductase, small subunit, cytochrome C550, in complex with NapA 0.23 0.082
STM2257  napH Ferredoxin-type protein: electron transfer 0.12 0.067
STM2258  napG Ferredoxin-type protein: electron transfer 0.077 0.027
STM2259  napA Periplasmic nitrate reductase, large subunit, in complex with NapB 0.072 0.033
STM2260  napD  Periplasmic nitrate reductase 0.063 0.0078
STM2261  napfF Ferredoxin-type protein: electron transfer 0.044 0.024
STM2872  prgJ Cell invasion protein; cytoplasmic 0.22 0.10
STM2873  prgl Cell invasion protein; cytoplasmic 0.18 0.041
STM2874  prgH Cell invasion protein 0.082 0.0078
STM2885  sipB Cell invasion protein 033 0.11
STM2897  invE Invasion protein 0.25 0.038
STM2899  invF Invasion protein 0.12 0.095
STM3127 Putative cytoplasmic protein 0.29 0.058
STM3128 Putative oxidoreductase 0.14 0.036
STM3129 Putative NAD-dependent aldehyde dehydrogenase 0.14 0.047
STM3149  hybA Function unknown, intitally thought to be hydrogenase-2 small subunit which now 0.25 0.025
identified as hybO
STM3216 Putative methyl-accepting chemotaxis protein 0.16 0.038
STM3217  aer Aerotaxis sensor receptor, senses cellular redox state or proton motive force 0.13 0.047
STM3242  tdcD Propionate kinase/acetate kinase Il, anaerobic 0.14 0.029
STM3243  tdcC HAAAP family, L-threonine/L-serine permease, anaerobically inducible 0.082 0.044
STM3244  tdcB Threonine dehydratase, catabolic 0.063 0.029
STM3245  tdcA Transcriptional activator of tdc operon (LysR family) 0.18 0.095
STM3577  tep Methyl-accepting transmembrane citrate/phenol chemoreceptor 0.13 0.041
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Table 3 Salmonella genes whose relative expression was decreased by indole (Continued)

STM3626  dppF ABC superfamily (atp_bind), dipeptide transport protein 0.31 0.036
STM3628  dppC  ABC superfamily (membrane), dipeptide transport protein 2 033 0.088
STM4258 Putative methyl-accepting chemotaxis protein 0.08 0.088
STM4300  fumB Fumarase B (fumarate hydratase class 1), anaerobic isozyme 0.19 0.088
STM4305 Putative anaerobic dimethyl sulfoxide reductase, subunit A 0.14 0.082
STM4306 Putative anaerobic dimethyl sulfoxide reductase, subunit B 0.11 0.058
STM4452  nrdD Anaerobic ribonucleoside-triphosphate reductase 0.047 0.095
STM4465 Putative ornithine carbamoyltransferase 0.19 0.10

STM4466 Putative carbamate kinase 0.19 0.10

STM4467 Putative arginine deiminase 0.082 0.019

comprising a CheY-like receiver domain and a helix-
turn-helix DNA-binding domain. YhjB in E. coli stimu-
lates dephosphorylation of two histidine kinases, EnvZ
and NtrB, although the sensor kinase for YhjB phosphor-
ylation has not yet been identified [54]. Bgl] forms a het-
erodimer with RcsB to relieve repression of the E. coli
bgl operon and allow arbutin and salicin transport and
utilization [55,56]. Expression of all these regulatory
genes increased by more than 10-fold in the presence of
indole. Of particular interest, expression of ramA
increased by 39-fold in response to 4 mM indole. Notice-
ably, higher indole concentration did not always lead to
a higher expression level. Indeed, bgl] expression was
more increased in response to 1 mM indole (26-fold)
than to 4 mM indole (5.7-fold).

Among other genes upregulated by indole, functions of
the gene products of entD, fruF, bfd, and fxsA have been
characterized. EntD has phosphopantetheinyl transferase
activity [57] and is involved in biosynthesis of the iron-
acquiring siderophore enterobactin [58]. FruF is a
bifunctional PTS system fructose-specific transporter
subunit IIA/HPr protein [41,59]. Bfd is a bacterioferritin-
associated ferredoxin considered to be involved in Bfr
iron storage and release functions or in regulation of Bfr
[41]. FxsA of E. coli was described as a suppressor of the
F exclusion of phage T7 [60]. Expression of all these
genes was more strongly induced by 4 mM indole than
by 1 mM indole.

Genes downregulated by indole
Microarray analysis revealed that fifty-three genes were
repressed by both 1 and 4 mM indole (Table 3). Expres-
sion of all these genes excluding STM4258 and nrdD
was reduced by 4 mM indole compared to that by 1 mM
indole. Although there are 10 putative genes, functions
of most gene products have been characterized (Table 3).
Microarray analysis revealed that indole represses ex-
pression of genes related to bacterial motility including
flagella biosynthesis (flgN/K/L and fliD/S/T), chemotaxis
(cheB/R/M/A, aer [61], tcp, and trg), and flagella motor

activity (motB/A). Indole also decreased expression of
genes related to cell invasion such as prg//I/H, sipB, and
invE/F, which are encoded by the Salmonella pathogen-
icity island 1 (SPI-1). Expression of genes related to an-
aerobic respiration was decreased by indole. The genes
repressed by indole included narG (nitrate reductase),
narK (nitrate-nitrite antiporter), and genes in the nap
operon encoding nitrate reductase (Nap) such as napB/
H/G/A/D/F [62]. The tdc operon including tdcA/B/C/D,
which are responsible for the anaerobic degradation of
threonine [63], was also downregulated by indole. In
addition to these genes, other genes related to anaerobic
respiration such as dmsA/B (anaerobic dimethyl sulfox-
ide reductase), fumB (fumarase B, anaerobic isozyme),
nrdD (anaerobic ribonucleoside-triphosphate reductase),
and STM4305/4306 (putative anaerobic dimethyl sulfox-
ide reductase, subunit A/B) were also repressed by
indole. Indole also repressed membrane protein genes
such as ompW (outer membrane protein involved in
osmoregulation that is also affected by environmental
conditions) and dppF/C (dipeptide transport protein).

Indole upregulates genes involved in efflux-mediated
multidrug resistance

As reported above, microarray analysis identified that
indole significantly increased expression of ramA, encod-
ing a transcriptional activator of the multidrug trans-
porter genes acrAB and tolC of Salmonella [35].
To confirm this result, we performed reverse transcript-
ase polymerase chain reaction (RT-PCR) and observed
that transcript levels of ramA increased when bacterial
cells of the strain ATCC 14028s were treated with 2 mM
indole (Figure 1A-1). To investigate whether indole
induces production of RamA, we constructed a strain
NES114 that harbors a FLAG-tag fused to chromosomally-
encoded ramA. Western blotting revealed increased pro-
duction of RamA in the presence of 2 mM indole (Figure
1A-2). Microarray analysis demonstrated that expression
of ramA was more strongly induced by 4 mM indole (39-
fold increase relative to untreated cells) than by 1 mM
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deletion mutant were grown in the presence (+) or absence (-) of 1 mM indole. (C-2) gRT-PCR measurement of indole effect on expression of acrB.

indole. (B and C-1, 2) The data correspond to mean values from three independent replicates. The bars indicate the standard deviation. (C-1, 2)

unit value. Asterisks indicate statistically significant difference (p < 0.05) according to a two-tailed Student's t-test.
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(A-1) RT-PCR measurement of indole effect on expression of ramA.

rrying the ramA-lac transcriptional fusion (NES84) treated with different

n mutants were grown in the presence (+) or absence (=) of 1 mM

in the wild-type strain grown without indole, which was assigned the

indole (7.0-fold increase), indicating that the effect of in-
dole on expression of ramA may be concentration
dependent. To investigate the effect of different indole
concentrations on the promoter activity of ramA, a
[B-galactosidase assay with the NES84 strain [35] was
performed, and it was found that indole activated the
ramA promoter in a concentration-dependent manner
(Figure 1B). The finding of enhanced promoter activity of
ramA is in good agreement with our previous observation
[35].

Confirming classical RT-PCR results, quantitative
RT-PCR (qRT-PCR) indicated that expression of ramA
in the strain ATCC 14028s increases by 4-fold in the
presence of 1 mM indole (Figure 1C-1). As previously
reported, RamR represses to the same extent the expres-
sion of ramA [46,64]. Therefore, to determine a possible
contribution of RamR to induction of expression of
ramA via indole, the effect of 1 mM indole on expression
of ramA in a AramR strain (14028sAramR:kan®) was
examined. At this concentration indole did not induce
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expression of ramA suggesting indole-mediated ramA
induction is indeed dependent on the presence of
RamR (Figure 1C-1). However, whereas indole was
shown to induce expression of acrB in the wild-type
strain, this induction was neither observed in the
AramR (14028sAramR:kan®) nor in the AramA strain
(14028sAramA:kan®) (Figure 1C-2). This suggested that
indole-mediated induction of acrB expression is not
solely dependent on RamA, but nevertheless also
requires the presence of the RamR transcriptional
repressor.

Indole represses motility of Salmonella

Expression of genes related to bacterial flagella biosyn-
thesis, flagella motor activity, and chemotaxis was
repressed by indole, and this repression was predicted to
have profound negative effects on flagellar synthesis and
bacterial motility. FIhC is a master regulator protein
involved in flagellar biogenesis in Salmonella [65]. Indole
also reduced expression of flhC, and this reduction was
independent of ramA and ramR (Figure 2A). To confirm
the microarray findings, we examined the effect of indole
on the presence of flagella in wild-type Salmonella cells
by transmission electron microscopy (Figure 2B). Flagella
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were detectable in bacterial cells regardless of indole
treatment; however, the number of flagella decreased
when cells were treated with indole (Figure 2B and C). It
was observed that motility of Salmonella ATCC 14028s
strain decreased in the semi-solid agar plate when bac-
terial cells were treated with indole (Figure 2D). These
results suggest that the reduction in the number of
flagella by indole may affect motility of Salmonella.

Indole represses expression of the invasion genes

Inside the host, S. enterica serovars can invade and sur-
vive in epithelial cells and macrophages. Therefore, inva-
sion of the host intestinal cells is critical for initiation of
salmonellosis. Several genetic elements responsible for
the invasive phenotype of S. enterica serovar Typhimur-
ium are located in SPI-1, a 40-kbp region of the chromo-
some at centrisome 63. As described above, we found
that genes located in SPI-1 such as prg//I/H, sipB, and
invE/F were repressed by indole. To further investigate
repression of SPI-1 genes by indole, we measured ex-
pression of hilA, sipA, invA, and invF of the ATCC
14028s strain in response to different indole concentra-
tion by qRT-PCR (Figure 3). hilA is located on SPI-1,
and it encodes the HilA regulator, which controls
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expression of SPI-1 genes, including the type III secretion
system (T3SS). invF also encodes an invasion regulatory
protein of SPI-1. sipA encodes an effector protein, the se-
cretion of which is mediated by T3SS. invA encodes a
structural component of T3SS. qRT-PCR revealed that
indole decreased expression of hilA, sipA, invA, and invF
in a concentration-dependent manner (Figure 3). Since it
was reported that overexpression of ramA results in
decreased expression of SPI-1 genes [47] and our study
indicated that indole induces ramA, we investigated the
effect of ramA deletion on expression of SPI-1 genes
regulated by indole. As shown in Figure 3, indole
repressed expression of hilA, sipA, invA, and invF; how-
ever, its repressive effect on those in the ramA-deleted
mutant (14028sAramA:kan®) was slightly lower than that
observed in the wild-type strain (ATCC 14028s) when
bacterial cells were treated with 0.125 or 0.25 mM indole.
In contrast, when bacterial cells were treated with con-
centrations of indole of 0.35 mM or more, the repressive
effect on SPI-1 genes was similar in the wild-type and in

the mutant strains. These data suggest that indole
partially represses SPI-1 genes in a RamA-dependent
manner when cells are treated with lower indole concen-
trations; however, the repressive effect of indole on SPI-1
may be RamA-independent at higher concentrations.

A critical step in Salmonella pathogenesis is invasion of
enterocytes and M cells of the small intestine via expres-
sion of a type III secretion system encoded by SPI-1 that
secretes effector proteins into host cells, leading to
engulfment of bacteria within large membrane ruffles. As
indicated previously, indole represses expression of genes
encoded by SPI-1, suggesting that indole reduces invasion
of mammalian cells by Salmonella. To examine this
possibility, we investigated the effect of indole in an inva-
sion assay using Caco-2 cells. When bacterial cells were
treated with 1 mM indole, the invasion rate of Salmonella
was reduced compared to that in untreated bacterial cells
(Figure 4). We also examined the effect of deletions of
ramR and of the whole ram locus on invasive activity of
Salmonella treated with 1 mM indole. Indole repressed
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Figure 4 Indole reduces invasive activity of Salmonella cells. In
vitro invasion of Caco-2 cells by the wild-type ATCC 14028s strain
and its ramR:zkan® and ram:kan® deletion mutants grown in the
presence (+, solid bars) or absence (-, open bars) of 1 mM indole.
The percentage of intracellular bacteria was determined after
infecting Caco-2 human intestinal epithelial cells and gentamicin
treatment. Results are representative of a single experiment where
each strain was tested in triplicates.

invasive activity of the AramR (14028sAramR:kan®) and
of the Aram mutant (14028sAram:kan®), as observed
with the wild-type strain (Figure 4). These data suggest
that 1 mM indole phenotypically represses invasive
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activity of Salmonella in a ram locus-independent
manner.

Discussion

Increasing evidence indicates that indole controls various
phenotypes of E. coli including multidrug resistance and
virulence as an extracellular signal [28,31-34,37-39]. In
contrast to E. coli, the effect of indole on Salmonella had
not been clearly elucidated, probably because Salmonella
does not produce indole. Therefore, we sought to resolve
the effect of indole on gene expression in the S. enterica
serovar Typhimurium ATCC 14028s strain by micro-
array analysis. As hypothesized and confirmed in
previous studies [35,36], microarray analysis revealed
that indole increased expression of ramA, which is
involved in regulation of the AcrAB-TolC multidrug
efflux system.

Including ramA, 24 genes were upregulated by indole.
Among them, 18 were more strongly induced by 4 mM
indole than by 1 mM indole. Conversely, 53 genes were
downregulated by indole, 51 of which were more
strongly repressed by 4 mM indole than by 1 mM indole.
These data suggested that expression of most indole-
regulated genes is indole concentration dependent. In
fact, promoter activity of ramA increased as indole
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Figure 5 Proposed regulatory network controlled by indole. Indole induces the multidrug efflux system genes acrAB and tolC through the
increased expression of ramA. Indole represses flagellar and SPI-1 genes in a ram locus-independent manner. However, the indole-mediated
upregulation of ramA may be partially involved in decreased expression of SPI-1 genes.
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concentration increased. Similarly, expression of SPI-1
genes decreased as indole concentration increased.

Indole induced ramA, and this induction is probably
responsible for induction of acrB, which encodes the
multidrug efflux pump (Figure 5). Most of the genes
upregulated by indole encode putative proteins. Several
of the genes, such as STM1251, STM1472, STM1868A,
STM3941, and STM4213, have yet to be named. Among
these, the only gene identified in E. coli is STM4213,
which encodes a putative phage tail sheath protein. If the
function of these putative genes is clarified, then other
phenotypes induced by indole in addition to multidrug
resistance will also be understood.

In this study, we found that indole repressed various
genes related to bacterial motility and virulence.
Decreased motility and invasive activity of Salmonella
were also phenotypically observed. Recent studies
revealed the coordinate regulation of flagellar and SPI-1
genes by FliZ, encoded by a gene in the fliA operon
[66,67]. It was demonstrated that FliZ posttranslationally
controls HilD to positively regulate expression of hilA
[67]. Our microarray data revealed reduced expression of
fliZ when bacterial cells were treated with indole (fliZ ex-
pression was reduced to 0.47- and 0.038-fold of the level
in untreated cells by 1 and 4 mM indole, respectively),
and that expression of /ilA was also repressed by indole.
Indole may coordinately repress flagellar and SPI-1 genes
via the regulatory network of FliZ. Because previous
study indicated that both RamA and RamR are involved
in the control of SPI-1 genes [47], we examined their
effects on repression of SPI-1 genes and invasive activity
of Salmonella. The results suggested that indole
suppresses SPI-1 genes in a RamA/RamR-independent
manner (Figure 5). Similarly, repression of fIhC by indole
was also RamA/RamR independent. These data are sug-
gestive of the presence of another pathway for indole to
repress flagellar and SPI-1 genes, whereas acrAB/tolC is
induced by indole in a RamR/RamA-dependent manner.
Bacterial adhesion to the Caco-2 cells, which is the pri-
mary step of the cell invasion process, was not addressed
in our experiments. However, since flagella were
repressed by indole, it cannot be excluded that the defect-
ive invasion partially resulted from a lesser adhesion to
the cells, and not only to the repression of SPI-1 genes. It
should also be noted that several of the indole-repressed
genes are related to anaerobic respiration in addition to
motility and SPI-1 genes. Because it is suggested that in-
dole is a biological oxidant in bacteria [68], this oxidative
effect may lead to repression of these genes.

In conclusion, we identified that indole induces expres-
sion of genes related to efflux-mediated multidrug resist-
ance and represses expression of genes related to
invasive activity and motility of S. enterica serovar
Typhimurium. Reduction of invasive activity and motility
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of Salmonella by indole was phenotypically observed.
Because Salmonella itself does not produce indole, our
results suggest that indole could also be an important
signaling molecule for inter-species communication to
control drug resistance and virulence of Salmonella in
addition to its role in intra-species communication in E.
coli. Indeed, it was previously demonstrated that E.
coli-conditioned medium induced the AcrAB pump in
Salmonella through the RamA regulator [35]. The type
of environment in which Salmonella experiences the
effect of indole is not well understood. It is believed
that Salmonella may be exposed to high indole con-
centrations in the intestine, in which several species
of indole-producing bacteria exist. In fact, indole is
found in human feces at comparable concentrations
(~250-1100 uM) [29,30], and recent studies indicated
the importance of indole in favorable inter-kingdom sig-
naling interactions between the intestinal epithelial cells
and commensal bacteria [69]. In addition to indole itself,
indole derivatives such as skatole (3-methylindole) also
occur naturally in feces after being produced from trypto-
phan in the mammalian digestive tract. Therefore, indole
and skatole may additively affect gene expression in
Salmonella. In fact, when we examined the effect of ska-
tole by a B-galactosidase assay, it significantly stimulated
the promoter activity of ramA (unpublished data). Thus,
there is a possibility that these molecules enhance drug
resistance of Salmonella, while simultaneously repressing
their motility and pathogenicity in the intestinal tract.
Interestingly, the effect of indole on the pathogenicity of
E. coli is the opposite of that on Salmonella. In enterohe-
morrhagic E. coli, it was suggested that indole can acti-
vate expression of EspA and EspB as well as secretion
and stimulate the ability of EHEC to form attaching and
effacing lesions in human cells [38]. Thus, although in-
dole secreted by E. coli enhances the virulence of E. coli,
it reduces the virulence of Salmonella, probably to the
advantage of E. coli. This finding suggests that the gastro-
intestinal flora may affect regulation of virulence traits in
Salmonella via the signaling of indole.
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