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Abstract

Background: Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones,
including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a
cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of
angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats.

Methods: Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and
control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine,
respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days
10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47,
VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression
of VEGF, Flk-1, caspase 3, COX-2 and PGF2a receptor using real time RT-PCR. The data were analyzed by SNK test.

Results: Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell
proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and
VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05)
and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and
Flk-1 on day 19 (P < 0.05).

Conclusions: Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in
the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent

of the gestational period.
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Background
The corpus luteum is a transient, highly regulated endo-
crine gland which develops from the luteinization of the
follicular cells of the granulosa and theca after ovulation.
The synthesis of progesterone is the main function of
the corpus luteum, which is essential for the establish-
ment and maintenance of pregnancy [1,2]. Thus, luteal
dysfunction in women and pregnant animals is associ-
ated with the failure of the embryo implantation and
abortion [3].

Luteal activity is dependent on the interaction of various
growth factors, cytokines and hormones, including the
thyroid hormones [4]. The corpus luteum has cellular and
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molecular mechanisms that are well-coordinated so that
its development, maintenance and regression occur cor-
rectly [5]. For mechanistic coordination to be achieved,
the balance among such varying cellular processes as
proliferation, differentiation, cell migration, angiogen-
esis and apoptosis is critical [6,7]. An example of this
coordination occurs during luteinization, during which
the cells of the corpus luteum cease their proliferative
activity to perform steroidogenesis and to survive in the
new luteal environment [8].

If these cellular and molecular mechanisms do not
occur in a coordinated manner, early luteal regression
may interrupt gestation, with a subsequent miscarriage
or premature delivery [9,10]. Hypo- and hyperthyroidism
in rats alter the gestational period, causing prolonged
gestation and preterm births, respectively [4]. Hypo- and
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hyperthyroidism in humans are also a cause of miscar-
riage and stillbirth [11,12]. One hypothesis of this study
is that one of the mechanisms by which thyroid dysfunc-
tions affects pregnancy is by altering the proliferative
and apoptotic activities of the corpus luteum. The study
of the balance between these processes is important and
the cell division control protein 47 (CDC47) and cas-
pase 3 have been used as a good marker for cell proli-
feration and apoptosis, respectively [13,14]. CDC47 is
essential for initiation of DNA replication [15], while
caspase-3 is required for DNA fragmentation and some
of the typical morphological changes of cells undergoing
apoptosis [16].

However, angiogenesis is also of fundamental import-
ance for luteal activity during gestation. Pregnant women
with luteal hypofunction and low luteal progesterone
production have an inadequate blood supply to the
corpus luteum [3]. Such a deficiency in luteal angio-
genesis has been reported to substantially contribute to
subfertility [17], particularly regarding the associated low
expression of vascular endothelial growth factor (VEGEF)
and/or its receptor Flk-1 [18,19]. VEGF is the main factor
that regulates angiogenesis by stimulating endothelial
cell proliferation and vascular permeability [19]. VEGF
also has anti-apoptotic effects [20] and regulates pro-
gesterone production by corpus luteum [19]. To date, it
is unclear whether the changes in pregnancy induced by
hypo- or hyperthyroidism could be due to changes in
the expression of VEGF and/or its receptor Flk-1 in the
corpus luteum.

The corpus luteum is also under the influence of
cyclooxygenase-2 (COX-2), which acts on angiogenesis,
steroidogenesis, formation, maintenance and luteal regres-
sion through the production of prostaglandin E2 (PGE2)
and/or prostaglandin F2a (PGF2a) [21-24]. The PGF2«a
has luteolytic and vasoactive activities in the corpus
luteum [19]. We believe that the changes in the dur-
ation of the luteal phases of pregnant animals with
hypo- or hyperthyroidism [25-29] can also be a result of
changes in COX-2 expression and, consequently, in the
expression of prostaglandins.

The objective of this study was to evaluate the prolifera-
tion, apoptosis and expression of angiogenic factors and
COX-2 in the corpus luteum of pregnant rats with hypo-
and hyperthyroidism in different gestational periods.

Methods

Induction of thyroid dysfunctions and mating
Seventy-two adult female Wistar rats were housed in a
12-hr light/dark cycle and were fed commercial rat chow
and water ad libitum. All procedures were approved by
the Institutional Ethics Committee in Animal Experi-
mentation at the Universidade Federal de Minas Gerais
(protocol no. 239/2009).
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After a 7-day adaptation period, the rats were divided
into control, hypothyroid and hyperthyroid groups with
24 animals per group.

Hypothyroidism was induced by the administration of
1 mg/animal/day of propylthiouracil (PTU) (PTU; Sigma-
Aldrich, St. Louis, MO, USA) diluted in 5 mL of distilled
water, as described by Silva et al. [30], using an orogastric
probe. Hyperthyroidism was induced by the administration
of 50 pg/animal/day of L-thyroxine (T4) (T2376; Sigma-
Aldrich, St. Louis, MO, USA) diluted in 5 mL of distilled
water, in accordance with the method of Serakides et al.
[31], using an orogastric probe. The rats from the control
group received 5 mL of distilled water per day as a placebo.

Five days after treatment initiation, the females were
subjected to vaginal cytology to monitor the estrous cycle.
Six rats from each group were also euthanized with an
overdose of anesthetic for blood collection, measurement
of free thyroxine (T4) and confirmation of the induction
of thyroid dysfunction. The rats in proestrus were kept in
plastic cages with adult male rats for 12 h during the
night. After this period, copulation (day 0 of gestation)
was confirmed by the presence of spermatozoa in vaginal
cytology on the morning afterAnimals in the hypothyroid,
hyperthyroid and control groups continued to receive
PTU, T4 and water, respectively, throughout the experi-
mental period.

Hormone analysis

On days 0, 10, 14 and 19 days of gestation, six animals from
each group were euthanized by an overdose of anesthetic
(2.5% Tionembutal; Abbott, Sio Paulo, Brazil). At 0 and
19 days of gestation, blood was collected from the rats, and
the serum was stored at —20°C for the measurement of free
T4, which was performed by the chemiluminescence Elisa
technique (sensitivity: 0.4 ng/dl), using commercial kits in
accordance with the manufacturer’s instructions (IMMU-
LITE Free T4, Siemens Medical Solutions Diagnostics,
Malvern, PA, USA). This assay has been previously used
and validated for rat [14,32,33]. The intra- and inter-assay
coefficients of variation were 4% and 7%, respectively.

Necropsy and material collection

At necropsy, the ovaries were collected and dissected. The
right ovaries were fixed in 10% neutral and buffered for-
malin for 24 hours and were processed using a routine
paraffin inclusion technique. The corpora lutea of the left
ovary were dissected, snap frozen in liquid nitrogen and
stored at —80°C to evaluate the gene expression of VEGF,
Flk-1, caspase 3, COX-2 and PGF2a receptor using real
time RT-PCR. To perform immunohistochemistry and
TUNEL assays, histological sections (4 um) of the right
ovary were obtained and placed on silanized slides. All
analyses were performed on corpora lutea at 10, 14 and
19 days of gestation.
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Immunohistochemistry

The biotin-streptavidin peroxidase (Streptavidin Perox-
idase, Lab Vision Corp., Fremont, CA, USA) technique
was used for immunohistochemistry in according to
Silva et al. [33]. Antigenic recovery with retrieval solu-
tion was performed for 20 minutes. Histological sections
were incubated overnight with the primary antibodies
anti-VEGF (sc-152, Santa Cruz Biotechnology, CA, USA)
(1:100), anti-Flk1 (sc-6251, Santa Cruz Biotechnology, CA,
USA) (1:600), anti-COX2 (M3617, Dako, St Louis, MO,
USA) (1:50) and anti-CDC47 (47DC141, Neomarkers,
Fremont, CA, USA) (1:100). The sections were incu-
bated stepwise for 30 minutes with each of the following
solutions: blocking endogenous peroxidase, blocking
serum (Ultra Vision Block, Lab Vision Corp., Fremont,
CA, USA) and streptavidin peroxidase. Incubation with
the secondary antibody (goat biotin, Lab Vision Corp.,
Fremont, CA, USA) was performed for 45 minutes. The
chromogen diaminobenzidine (DAB substrate system,
Lab Vision Corp., Fremont, CA, USA) was used for
visualization. Sections were counterstained with Harris
hematoxylin. A negative control was included by re-
placing the primary antibodies with IgG.

The number of cells expressing CDC-47 was deter-
mined out of a population of 500 cells, and the luteal
cells were differentiated from the endothelial cells and
pericytes according to their morphological characteris-
tics. Luteal cells were identified by primarily spherical
shape, a nucleus containing a prominent nucleolus and
the presence of a prominent basement membrane.
Vascular cells were identified by association with the
vascular compartment, elongated cell and a large nucleus
to cytoplasm ratio [34,35]. The corpora lutea were photo-
graphed with an Olympus BX-40 microscope and the Spot
Color Insight digital camera (SPOTTM, Sterling Heights,
Michigan, USA). The number of stained cells was deter-
mined using Image Pro Plus® version 4.5 software (Media
Cybernetics Manufacturing, Rockville, MD, USA). To
ensure the objectivity of the procedure, two images of the
stained cells were obtained from each corpora lutea, and
counts were taken in three corpora lutea per animal. Data
from each corpora lutea were expressed as the percentage
of stained cells (%).

The immunostaining intensity and stained area of
COX-2, VEGF and Flk-1 in corpora lutea were evalu-
ated. To determine the immunostaining intensity and
stained area, images from two fields per CL were photo-
graphed with an Olympus BX-40 microscope and the
Spot Color Insight digital camera (SPOTTM, Sterling
Heights, Michigan, USA), and the immunostaining in-
tensity and stained area were determined using WCIF
Image]* software (Media Cybernetics Manufacturing,
Rockville, MD, USA). Color deconvolution and thresh-
olding of the images were performed. To ensure the
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objectivity of the procedure, the evaluation was performed
in three corpora lutea per animal. Data from each corpus
luteum were expressed as the integrated density and
stained area in pixels.

TUNEL assay

Apoptotic cells in the corpora lutea were evaluated
by the TUNEL assay using an apoptosis detection kit
(TdT-FragEL™ DNA Fragmentation Detection Kit,
Calbiochem. San Diego, CA, USA). Antigenic recovery
was performed with proteinase K for 20 minutes. The
slides were incubated at 37°C with TdT for 1 h and for
30 minutes with each of the following solutions:
blocking endogenous peroxidase and streptavidin. The
chromogen DAB was utilized and incubated for
15 min. Sections were counterstained with methyl
green. A negative control was obtained by replacing
TdT with TBS. As a positive control, we employed
ovaries with atretic follicles.

The number of apoptotic cells in the corpora lutea
was evaluated with an Olympus BX-40 microscope in a
40x objective. Four fields per CL were evaluated, and
counts were taken performed in all of the corpora lutea
present in the histological sections. Data from each
corpora lutea were expressed as the mean number of
apoptotic cells/corpus luteum. The data were logarith-
mically transformed.

Real time RT-PCR

Total mRNA from corpora lutea was extracted using
Trizol reagent (Invitrogen, Carlsbad, CA, USA) and
the phenol-chloroform extraction method, according
to the manufacturer’s instructions. A total of 1 pg of
RNA was used for cDNA synthesis using the Super-
Script III Platinum Two-Step qPCR kit with SYBR
Green (Invitrogen, Carlsbad, CA, USA). The qRT-PCR
reactions were conducted in a Smart Cycler II thermocy-
cler (Cepheid Inc., Sunnyvale, CA, USA). To quantify the
c¢DNA generated by reverse transcription, real-time PCR
with SYBR Green I was performed using SYBR Green
PCR Master Mix in an Applied Biosystems 7500 Real-
Time PCR System (Applied Biosystems, Life Techno-
logies, CA, USA). For negative controls, we used a
complete DNA amplification mix in which the target
cDNA template was replaced with water. Amplifica-
tions were performed using the default cycling condi-
tions: enzyme activation at 95°C for 10 min, 40 cycles
of denaturation at 95°C for 15 s, and annealing/exten-
sion at 60°C for 60 s. To assess the linearity and effi-
ciency of PCR amplification, standard curves for all
transcripts were generated using serial dilutions of
¢DNA. A melting curve was obtained for the amplifica-
tion products to ascertain their melting temperatures.
The samples were assayed in triplicate and after a gel
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was run with the reaction product to confirm the gene
amplification. The PCR products were separated by
electrophoresis on 1% agarose gels and stained with
ethidium bromide. Gene expression was calculated
using the 22" method, where the values from the
samples were averaged and calibrated in relation to the
B-actin CT values. The primers were as follows: forward
5'- GCCCAGACGGGGTGGAGAGT -3" and reverse
5'- AGGGTTGGCCAGGCTGGGAA -3’ for VEGF (refer-
ence sequence: NM_001110336.1; [36]; forward 5'- GT
CCGCCGACACTGCTGCAA -3’ and reverse 5'- CTCG
CGCTGGCACAGATGCT -3’ for Flk-1 (reference se-
quence: NM_013062.1; [36]; forward 5'- TGGAGGA
GGCTGACCGGCAA -3" and reverse 5'- CTCTGTAC
CTCGGCAGGCCTGAAT -3’ for Caspase-3 (reference
sequence: NM_012922.2; [37]; forward 5- CAAC
ACCTGAGCGGTTACCA -3’ and reverse 5'- AGAG
GCAATGCGGTTCTGAT -3’ for COX-2 (reference
sequence: NM_017232.3; [38]; forward 5- ACGGCG
TTTATCTCCACAAC -3" and reverse 5'- CCGATG-
CACCTCTCAATG -3’ for PGF2a receptor (reference
sequence: NM_013115.1; [39] and forward 5'- TC
CACCCGCGAGTACAACCTTCTT -3’ and reverse 5'-
CGACGAGCGCAGCGATATCGT -3’ for B-actin (ref-
erence sequence: NM_031144.3; [40].

Statistical analysis

Significant differences in the mean values between the
experimental groups were determined by a one-way ana-
lysis of variance (ANOVA). A Student Newman Keuls
Test was used to compare the groups, and differences
were considered significant if p < 0.05.

Results

Induction of thyroid dysfunction

The induction of hypo-and hyperthyroidism during the
entire period of the pregnancy was confirmed by serum
free T4 at days O and 19 of gestation. The rats treated
with PTU displayed free T4 levels lower than those of
the control group (P <0.05) (Figure 1). The thyroxine-
treated rats exhibited higher free T4 levels compared to
control animals (P < 0.05) (Figure 1).

Proliferative activity

Regardless of the experimental group, the CDC-47 im-
munohistochemical expression in the corpus luteum was
more intense at 14 days of gestation compared to other
gestational periods (Figure 2).

At 10 days of gestation, the CL of the hypothyroid an-
imals showed a reduction in the total percentage of
cells expressing CDC-47 compared to control rats in
both the luteal cells and in endothelial cells and peri-
cytes (P <0.05) (Figure 2). The reduction of CDC-47
expression in the endothelial cells and pericytes in the
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Figure 1 Free T4 levels (means + SD) in the plasma of pregnant
rats of the control, hypothyroid and hyperthyroid groups at 0
and 19 days of gestation. (*P < 0.05).

CL of the hypothyroid animals persisted at 14 days of
gestation; however, at 19 days there was no difference
compared to the control group (p > 0.05) (Figure 2).

The hyperthyroid group was different from hypothyroid
rats at 14 days of gestation, showing an increase of CDC-
47 expression in endothelial cells and pericytes compared
to the control group (P <0.05) (Figure 2). At 19 days of
gestation, the group with hyperthyroidism showed no dif-
ference in their CDC-47 expression in the CL compared
to the control group (p > 0.05) (Figure 2).

Apoptotic activity (TUNEL and Caspase-3)

The number of apoptotic cells in the CL of hypothyroid
animals was lower compared to control group at 19 days
of gestation (P <0.05), while the hyperthyroid animals
showed no differences compared to control rats (p > 0.05)
(Figure 3A). The gene expression of caspase-3 did not dif-
fer significantly between the experimental groups in the
three gestational periods (Figure 3B).

Immunohistochemical expression of COX-2

Regardless of the experimental group, the COX-2 immuno-
histochemical expression in the luteal cells was cytoplasmic,
with a more intense expression at 10 days of gestation
compared to other gestational periods (Figure 4A).

At 10 and 19 days of gestation, the hypothyroid animals
showed a reduction of the area of COX-2 expression in
the CL compared to the control group as well a reduction
in the intensity of COX-2 expression at 10 days of ges-
tation (P < 0.05). However, there was no difference at
14 days of gestation compared to the control group
(P>0.05) (Figure 4B and 4C). In contrast, hyperthy-
roidism at 19 days of gestation showed an increase of
the area and intensity of COX-2 immunohistochemical
expression in the CL compared to the control group
(P <0.05), while at 10 and 14 days of gestation no signifi-
cant differences were noted (p > 0.05) (Figure 4B and 4C).

Relative expression of gene transcripts to COX-2 and
PGF2a receptor

Similar to the results of immunohistochemical analysis,
the gene expression of COX-2 in hypothyroid animals
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(See figure on previous page.)

Figure 2 Proliferative activity in the corpus luteum of pregnant rats of the control, hypothyroid and hyperthyroid groups at 10, 14
and 19 days of gestation. A) Immunohistochemical images of CDC-47 expression. Marked reduction of the number of cells with CDC-47 expression
in the corpus luteum of the hypothyroid group compared to the control group at 10 and 14 days of gestation (Streptavidin-biotin-peroxidase, Harris
hematoxylin, scale bar = 12 um). B-D) Percentage of cells with CDC-47 (means + SD) expression in histological sections of the corpus luteum. (*P < 0.05;

**P < 0.01; **P <0.001).

was lower compared to the control group at 19 days of
gestation (P < 0.05), while at 10 and 14 days of gesta-
tion no significant differences were noted (p >0.05)
(Figure 5A). The hyperthyroid group showed no sig-
nificant difference compared to controls over the three
gestational periods (p>0.05) (Figure 5A). The gene
expression of PGF2a receptor was not significantly
different from that of the experimental groups in any
of the gestational periods (p > 0.05) (Figure 5B).

VEGF and Flk-1 expression

Regardless of the experimental group and pregnancy
period, VEGF expression in CL was evident mainly in
the luteal cells, as its expression was cytoplasmic in all
luteal cells (Figure 6A).

Hypothyroidism reduced the area and intensity of VEGF
immunohistochemical expression at 19 days of gestation
compared to controls (P <0.05) (Figure 6B and 6C),
but no significant difference in the gene expression of
VEGF in any period of pregnancy was found (p > 0.05)
(Figure 7A). The hyperthyroid animals, differing from
the hypothyroid group, showed no significant difference in
the area and intensity of VEGF expression compared to
control animals (p > 0.05) (Figure 6B and 6C). However,

at 19 days of gestation, the hyperthyroid group showed
an increase in the gene expression of VEGF compared
to the control group (P < 0.05) (Figure 7A).

The expression of the VEGF receptor Flk-1 occurred
both in the luteal cells and in the endothelial cells and
pericytes in the three experimental groups, with strong
expressions of this receptor noted in luteal cells at
10 days of gestation and in endothelial cells and peri-
cytes at 14 days of gestation (Figure 8A).

At 14 days of gestation, hypothyroidism reduced the
area and intensity of Flk-1 expression compared to
control animals (P <0.05), with no significant differ-
ence in any of the other periods of pregnancy (p > 0.05)
(Figure 8B and 8C). The hyperthyroid animals, differ-
ing from the hypothyroid group, showed an increase in
the area and intensity of Flk-1 expression compared
to the control group at 19 days of gestation (p >0.05)
(Figure 8B and 8C). Similar to the results of the immu-
nohistochemical expression, the hyperthyroid animals
also demonstrated an increase in the gene expression
of Flk-1 compared to control animals at 19 days of gesta-
tion (P < 0.05); however, they showed no significant differ-
ence in any of the other periods of pregnancy (p > 0.05)
(Figure 7B).
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Figure 3 Number of apoptotic cells/field and caspase 3 expression in the corpus luteum of pregnant rats of the control, hypothyroid
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Figure 4 COX-2 expression in the corpus luteum of pregnant rats of the control, hypothyroid and hyperthyroid groups at 10, 14 and
19 days of gestation. A) Immunohistochemical images of COX-2 expression (Streptavidin-biotin-peroxidase, Harris hematoxylin, scale bar =12 um).
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Figure 5 COX-2 and PGF2a receptor expression in the corpus luteum of pregnant rats of the control, hypothyroid and hyperthyroid
groups at 10, 14 and 19 days of gestation. A) Relative expression of gene transcripts for COX-2 (mean + SD). B) Relative expression of gene

Discussion

The effects of hypo-and hyperthyroidism on prolifera-
tion, apoptosis and expression of angiogenic factors
and COX-2 in the corpus luteum among the pregnant
rats in this study were distinct.

Hypothyroidism significantly reduced the proliferation
rate in the corpus luteum, both of luteal cells and of
endothelial cells and pericytes. This result demonstrates
that thyroid hypofunction affects not only the mitotic
activity of the luteal cells of pregnant rats but also of the
vascular cells. On the other hand, the corpus luteum of
hyperthyroid animals showed an increased proliferative
activity of the endothelial cells and pericytes at 14 days
of gestation, suggesting the role of thyroid hormones on
luteal angiogenesis. This is in agreement with Macchiarelli
et al. [41] who observed that thyroid hormones stimulate
the luteal angiogenesis. Our result is important be-
cause deficiency in luteal angiogenesis has been re-
ported to substantially contribute to subfertility [17],
and hypothyroidism in women cause miscarriage and
stillbirth [11,12].

During luteinization, the cells of the corpus luteum
must stop their proliferative activity to participate in
steroidogenesis [8]. The phenotype of a differentiated
luteal cell depends on the specific combination of genes
encoding key regulatory proteins, such as receptors,
transcription factors and signaling proteins. This repro-
gramming of follicular cells into luteal cells is irrevers-
ible and requires the cell to exit from the cell cycle [8].
For the luteal cells to exit from the cell cycle they must
express p27"P! that is a Cdk inhibitor. Cdk controls the

G1 phase of the cell cycle together with cyclins [8]. It is
likely that this reduction in the proliferative activity of the
luteal cells found in the corpus luteum of hypothyroid
animals is related to the higher plasma levels of proges-
terone presented by these animals [27], as a luteal cell’s
capacity for progesterone synthesis is directly related to
its degree of differentiation [8].

The reduction in the proliferation of endothelial cells
and pericytes observed in hypothyroid pregnant rats
may be a result of the decrease in COX-2 or Flk-1 ex-
pression. COX-2 is involved in PGE2 synthesis [21],
which in turn stimulates angiogenesis [23]. On the
other hand, signaling between VEGF and its receptor,
Flk-1, is the main route [42] through which VEGF stimu-
lates the proliferation of endothelial cells [19]. Kashida
et al. [43] demonstrated that VEGF induces angiogenesis
in the corpus luteum and is involved in the increase in
size of the corpus luteum during mid-pregnancy, being
that the VEGF expression is regulated by TNFa [44].
TNFa is also involved in the corpus luteum regression
and inhibits progesterone production in vitro by the
luteal cells [45,46]. However, further studies are needed
regarding the relation between TNFa and thyroid dys-
function on the corpus luteum. The hypothyroid pregnant
rats in this study also showed a significant reduction in
their expression of placental lactogen-1 (PL-1) (unpublished
data), which could represent an additional mechanism
to explain the reduction of the proliferative activity of
the endothelial cells of the corpus luteum because the
PL-1 is also important in maintaining luteal angiogen-
esis in rats [47].
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Figure 7 VEGF and Flk-1 expression in the corpus luteum of pregnant rats of the control, hypothyroid and hyperthyroid groups at 10,
14 and 19 days of gestation. A) Relative expression of gene transcripts for VEGF (mean + SD). B) Relative expression of gene transcripts for Flk-1

Regarding apoptosis, hypothyroidism reduced the num-
ber of apoptotic cells in the corpus luteum at 19 days of
gestation. This is most likely associated with the delay in
COX-2 expression presented by these animals compared
to the control group. The lower COX-2 expression found
in the corpus luteum of hypothyroid animals can cause
a decrease in the formation of PGF2a [21]. This result
may explain the prolonged luteal phase in hypothyroid
pregnant rats and, consequently, the delay in the fall of
circulating progesterone and delivery experienced with
these animals [28,48]. PGF2a is crucial for the increase
in the luteal expression of the 20a-hydroxysteroid de-
hydrogenase (20aHSD) at the end of pregnancy, and
that gives the signal for parturition in rodent [49].
20aHSD converts luteal progesterone into its inactive
metabolite (20a-dihydroprogestagen) [21]. Hapon et al.
[48] observed that the delay in progesterone decline
and parturition in rats with hypothyroidism is caused
by a decrease in luteolytic factors, mainly luteal PGF2a,
addition to an increase of luteotrophic factors, such as
PGE2 and prolactin.

Higher plasma levels of progesterone in hypothyroid rats
[27] may also favor the reduction of the number of apop-
totic cells observed in corpora lutea of these animals, since
progesterone suppresses the activity of caspase-3 [50,51],
apoptosis and degeneration [52] in the corpus luteum.
However, hypothyroid animals there were no difference
in the gene expression of caspase-3. Corpus luteum ob-
tained from caspase-3 null mice show attenuated rates
of apoptosis and delay in the process of involution [53],
but the corpus luteum of them involutes. This shows

that caspase-3 is not the sole factor leading to cell death
in this gland [8,53]. Recently, various forms of pro-
grammed cell death (apoptosis, necrosis and autophagy)
have been suggested as potentially being triggered dur-
ing the regression of the corpus luteum; programmed
cell death depends of the animal species, the physio-
logical or pathological conditions assessed and/or the
nature of the luteolytic stimulus [8,54]. In addition,
further studies are needed to assess in greater detail the
process of apoptosis in the corpus luteum of animals with
thyroid dysfunction, such as via Fas/FasL, to provide a
better understanding of the process of luteal regression
that occurs in the corpus luteum of these animals.
Hyperthyroid animals showed an increase in mRNA
expression for VEGF and Flk-1 at 19 days of gestation
and an increase in Flk-1 immunohistochemical expres-
sion, which was distinct from the results of hypothyroid
animals that experienced a reduction of VEGF immuno-
histochemical expression. Silva et al. [33] observed that,
during the diestrus of non-pregnant rats, there is an
increase in the intensity of Flk-1 and VEGF expression
in the luteal cells of the corpus luteum of previous cycles
and in regression compared to the newly formed corpus
luteum. Furthermore, the process of luteal regression
occurs in a hypoxic environment, as low oxygen tension
stimulates VEGF expression and/or the expression of its
receptor through the expression of hypoxia-inducible
factor-1 (HIF-1) [55]. Wada et al. [56] also observed a
reduction of the luteal blood flow at the end of the
pregnancy period in mice before any of the structural
changes of luteal regression. As hyperthyroid animals
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undergo an early luteal regression [29], one hypothesis
is that a hypoxic environment has already been devel-
oped in the corpus luteum of these animals at 19 days
of gestation, justifying the higher expression of VEGF
and Flk-1 in relation to control animals.

Regarding hypothyroid animals, a lowered VEGF immu-
nohistochemical expression at 19 days of gestation could
compromise luteal function, as VEGF influences the
production and release of progesterone by the corpus
luteum [42] and controls its vascular permeability [56].
More research is needed to assess how hypothyroidism
affects luteal function to the detriment of the alterations
observed in the VEGF expression because this thyroid
dysfunction results in abortion in the final third of preg-
nancy and stillbirth [11].

Conclusion

Experimental hypothyroidism reduces the prolifera-
tion, apoptosis and expression of angiogenic factors and
COX-2in the corpus luteum of pregnant rats. In contrast,
experimental hyperthyroidism increases the expression
of angiogenic factors and COX-2 and the proliferative
activity in the corpus luteum of pregnant rats.
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