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Abstract

(PAKT) were evaluated in vitro.

make the translation into the clinic.

Background: chA21 is a novel tumor-inhibitory antibody which recognized subdomain | of HER2 extracellular
domain with an epitope distinct from other HER2 antibodies. Previously, we demonstrated that chA21 inhibits
human ovarian carcinoma cell line SKOV-3 growth in vitro and in vivo study. In this study, we further investigated
the anti-angiogenic efficacy combination of chA21 with trastuzumab in SKOV-3 xenograft model.

Methods: Nude mice were s.c. challenged with SKOV-3 cells and received treatment of chA21 alone, trastuzumab
alone or both antibodies together twice a week for 21 days. Tumor volume and microvessel density (MVD) were
evaluated. The effect of chA21 plus trastuzumab treament on vascular endothelial growth factor (VEGF) secretion,
endothelial cells proliferation and migration, and the status of HER2 downstream pathway AKT/phosphorylated AKT

Results: /n vivo study combination of chA21 with trastuzumab resulted in reduce tumor growth and angiogenesis
than each monotherapy. In vitro study, the combination of chA21 with trastuzumab inhibits VEGF secretion,
endothelial cells proliferation and migration. Furthermore, the combination treatment inhibits pAKT expression.
Conclusion: Our findings suggested that the combination of chA21 with trastuzumab can cause augmented
inhibition of angiogenesis in SKOV-3 xenograft model. Inhibition of agniogenesis may through suppression of AKT
pathway. The therapeutic benefits of combination chA21 with trastuzumab warrant further study in an attempt to

Introduction

Epithelial ovarian carcinoma is the most lethal gynecolo-
gic malignancy and resulting in high mortality rates
among women patients [1]. Despite the advances in sur-
gery, chemotherapy and radiotherapy, the average time
of clinical remission is 2.5 years and approximately 20%
of patients never achieve remission [2]. Thus it under-
scores the need for new therapeutic strategies that can
be translated to the clinical treatment.
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HER2, also named ErbB2/p185"“%"“ is a key mem-
ber of the epidermal growth factor receptor (EGFR)
family. Overexpression of HER2 is associated with
tumor metastasis and poor prognosis [3]. HER2 overex-
pression has been reported to in 15% to 30% of ovarian
carcinoma patients [4,5]. HER2-targeted therapy with
monoclonal antibodies (mAbs) is a promising strategy
for the ovarian carcinoma, although trastuzumab (trade-
mark: herceptin, Genetech, Roche) has not got such
great success in ovarian carcinoma as in breast or gas-
tric cancer [6,7].

Previously we have developed a new HER2 mAb A21.
This new antibody is a single-chain chimeric derivatives
of chA21, which recognizes a conformational epitope
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distinct from trastuzumab and other HER2 therapeutic
antibodies, thus it may represents a novel target site for
HER?2 therapeutics [8-11].

It is well accepted that angiogenesis plays a key role in
tumor growth and metastasis. Research has shown that
HER2 signaling is invovled in angiogenesis [12,13].
HER2 antibody trastuzumab have been shown to inhibit
angiogenesis in HER2-overexpressing tumor cells [14].
The HER2 phosphorylates downstream substrates and
activates a variety of signaling cascades, including the
phosphatidylinositol-3 kinase (PI3K)/serine/threonine-
specific protein kinase (AKT), and it regulates various
cell functions especially in tumor growth, and angiogen-
esis [15].

In a previous study, we had found chA21 monother-
apy could inhibit human ovarian carcinoma cell line
SKOV-3 growth in vitro and in vivo [16]. In this study,
we further investigated if more effective inhibition of
angiogenesis is one of the underlying causes of the bet-
ter therapeutic efficacy of the chA21 with trastuzumab
combination in SKOV-3 xenograft model.

Materials and methods

Humanized monoclonal antibodies and cell lines

HER2 antibody chA21 was prepared as described in pre-
vious study [8]. Trastuzumab was purchased from Roche
company (Shanghai, China).

Human ovarian carcinoma cell line SKOV-3 and
human umbilical vein endothelial cells (HUVECs) were
obtained from the American Type Culture Collection.
SKOV-3 cells were cultured in RPMI 1640 (Gibco,
USA) supplemented with 10% fetal bovine serum
(Gibco, USA). HUVECs were maintained in F-12 nutri-
ent mixture (Invitrogen, USA) enriched with 10% new-
born calf serum (Invitrogen, USA).

Mice xenograft model

Female BALB/c nude mice at 6-8 weeks of age were
purchased from Nanjing Laboratory Animal Center of
China. The experimental animal study protocols were
approved by the Committee for Ethics in Animal
Experimentation in University of Science and Technol-
ogy of China. For tumor xenograft model, mice were
subcutaneously injected with 5x10° SKOV-3 cells into
the left flank. After inoculation, animals were weighed
and tumor sizes were measured twice a week with cali-
pers. Tumor volumes were calculated by the formula:
(smaller diameter)® x larger diameter x 0.5. When
tumor volume reached about 70 mm?®, the mice bearing
xenografts were randomly assigned into four groups (n
= 8): normal saline control, chA21 alone (30 mg/kg),
trastuzumab alone (20 mg/kg), and chA21 plus trastuzu-
mab (30 mg/kg + 20 mg/kg). Drug were delivered twice
a week via caudal vein. All animals were killed after
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treatment for 21 days. The tumors were removed,
weighed and fixed in 10% neutral buffered formalin for
pathological study. The tumor inhibition ratio (TIR) was
calculated as previous study: (1-experimental tumor
mean weight/control tumor mean weight) x 100% [17].

Immunohistochemistry examination

The sections of paraffin-embedded tissue from SKOV-3
nude mice xenografts were dewaxed and rehydrated.
Immunohistochemistry procedure was performed using
DAKO Envision Plus kit (DAKO) according to the man-
ufacturer’s instructions. After antigen retrieval with
autoclaving in citric acid, and inactivating endogenous
peroxidase with 3% H,0O,, the slides were incubated
with the rabbit anti-mouse antibody CD34 (1: 200,
Bioss, China) or the rabbit anti-human antibody VEGF
(working solution, ZhongShan, China) overnight at 4°C.
Second antibody conjugated with peroxidase labeled
polymer was applied for 30 min at room temperature.
The sections were developed in 3,3-diaminobenzidine
and counterstained with hematoxylin. As a negative
control, sections were stained normal human serum
instead of the primary antibody. The mean optical den-
sity (MOD) was quantitatively analyzed using Image-pro
Plus 5.02 (Media Cybernetics Inc, USA) for VEGF
expression. MVD was determined by counting the num-
ber of microvessels (marked by CD34 staining) per
high-power field (200x) in the sections as previously
described [18].

ELISA VEGF secretion

SKOV-3 cells (8x10° per well) were seeded in 96-well
plates and cultured overnight. The next day, medium
was replaced with fresh RPMI 1640 or medium contain-
ing chA21 (5 pg/ml), trastuzumab (5 pg/ml), or chA21
plus trastuzumab (5 + 5 pg/ml) for 12 h. After the
supernatant was collected, the concentration of VEGF
were measured using an ELISA kit for human VEGF
(R&D Systems, USA) according to the manufacturer’s
instructions. The amount of VEGF in the supernatant
was extrapolated from the VEGF standard curve and
expressed in pg/ml. The levels of VEGF that could be
detected in this assay ranged from 30-1200 pg/ml.

HUVECs proliferation

SKOV-3 cells (4x10® per well) were seeded in 96-well
plates. The next day cells were treated with chA21 (5
pg/ml), trastuzumab (5 pug/ml), or chA21 plus trastuzu-
mab (5 + 5 pg/ml) for 48 h. The supernatant was col-
lected and frozen at -20°C for the HUVECs proliferation
assay. HUVECs were seeded in 96-well plates at a den-
sity of 5x10° per 100 pl and allowed to adhere over-
night. Next, 100 pl of SKOV-3 supernatant was added
to each well and HUVECs were cultured for 72 h. The



Zhang et al. Journal of Ovarian Research 2010, 3:20
http://www.ovarianresearch.com/content/3/1/20

number of HUVECs was measured by the MTS assay
according to the manufactor’s introduction (Promega,
USA).

HUVECs Migration assay

The HUVECs migration was assessed by Transwell assay
(8 um, Millipore, USA) in a double chamber co-culture
system. Briefly, SKOV-3 cells (1.5x10*) were plated into
24-well plates (bottom chambers) and cultured with
medium or medium supplemented with chA21 (5 pg/
ml), trastuzumab (5 pg/ml), or chA21 (5 pug/ml) plus
trastuzumab (5 pg/ml) for 24 h. HUVECs (8x10% per
well) were seeded in Matrigel pre-coated Transwell
chamber (top chamber), then the Transwell chambers
were incubated into the 24-well plates. After co-cultured
for 48 h, the top surfaces of the Transwell chambers
were wiped with cotton swab. The migrated cells were
fixed and stained with hematoxylin. Migration cells
adhering to the undersurface of the filter were counted
using an optical microscope (x400). Data was shown as
the mean of the number of migrated HUVECs in five
representative fields.

Western blotting analysis

SKOV-3 cells were grown in 6-well dishes and treated
with chA21 (5 pg/ml), trastuzumab (5 pug/ml), or both
agents together (5 + 5 pg/ml) for 12 h. After the med-
ium was removed, cells were washed twice with cold
PBS and lysed in a 0.3 ml of radioimmunoprecipitation
assay (RIPA) lysis buffer (20 mM sodium phosphate, pH
7.4, 150 mM NaCl, 1% Triton X-100, 5 mM EDTA, 5
mM phenylmethylsulfonyl fluoride, 10 mg/ml aprotinin,
10 mg/ml leupeptin, 250 mg/ml sodium vanadate) on
ice. After removal of cell debris by centrifugation, pro-
tein concentration was determined by Lowry assay (Bio-
Rad, USA). Cell lysates were subjected to 8% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then electrotransferred into the nitrocellu-
lose membrane. After blocking with 5% defatted milk,
the membrane was incubated separately with antibody
against VEGF (1:500, Neomarkers), AKT (1:1000, Cell
signaling Technology) or phospho-AKT (pAKT) at
Ser473 (1:1000, Cell signaling Technology) for 2 h at
room temperature. Sequently, the membrane was
probed with horseradish peroxidase (HRP)-conjugated
secondary goat anti-mouse antibody (1:10,000, Sigma)
for 2 h at room temperature. Immunoreactive bands
were developed with chemiluminescence (ECL) reagents
(Pierce). The band were scanned for densitometric ana-
lysis using Image] 1.42 software (NIH, USA).

Statistical analysis
Data are shown as means + standard deviation (SD).
Statistical analyses of the data were performed using
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one-way ANOVA test by SPSS 13.0. Value of P < 0.05
was considered statistically significant.

Results

Enhanced tumor growth inhibition by combination of
chA21 with trastuzumab

Initially, we evaluated whether the chA21 plus trastuzu-
mab treatment leads to better tumor inhibition in
SKOV-3 xenografts. Female BALB/c nude mice were
subcutaneously inoculated with human ovarian cancer
cells SKOV-3 (5x10°) into the left flank of mice. Mice
were randomized and injected twice weekly via i.v with
either normal saline control, chA21 (30 mg/kg), trastu-
zumab (20 mg/kg), or chA21 plus trastuzumab (30 + 20
mg/kg) for 21 days. Either chA21 or trastuzumab alone
treatment resulted in an effective suppression of tumor
volume (Fig. 1A) and tumor weight (Fig. 1B) at day 21.
The tumor inhibition ratios by chA21 or trastuzumab
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Figure 1 The tumor volume and the weight of SKOV-3
xenograft in the different treatment groups. (A) Either chA21 or
trastuzumab treatment cause a marked growth inhibition in SKOV-3
xenograft compared with the control (P < 0.01), and the
combination of chA21 with trastuzumab treatment induced a more
efficient efficacy than the each antibody alone (P < 0.05). (B) When
the experiment ended, all tumors were removed and weighted.
Results are representative of the mean + SD of 8 animals in each
group. *, P < 0.01 compared with control. **, P < 0.01 compared

with chA21 or trastuzumab alone.
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were 37% and 58%, respectively (P < 0.01). Moreover,
the combination of chA21 and trastuzumab resulted in
an 81% inhibition in tumor weight compared with the
control (P < 0.001), which is greater than single treat-
ment (P < 0.01). In addition, complete tumor eradica-
tion was seen in one mice from the combination
treatment group.

Increased anti-angiogenesis efficacy by combination of
chA21 with trastuzumab

Angiogenesis plays an important role in cancer growth,
we then examined whether the chA21 plus trastuzumab
treatment leads to a more effective inhibition of
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angiogenesis than either treatment alone. MVD values
were assessed by staining these with CD34 in tumor tis-
sues that were removed from SKOV-3 xenografts. The
most highly vascularized area of each tumor was identi-
fied on five high-powered fields were counted in this
area of greatest vessel density. As shown in Fig. 2A and
2B, The number of MVD was 31% of the control in
chA21 plus trastuzumab group, while this number was
56% in chA21 alone group and 54% in trastuzumab
alone group. So chA21 combined with trastuzumab
treatment resulted in a marked inhibition of tumor
MVD compared with the control (P < 0.001) and either
of chA21 or trastuzumab alone treatment (P < 0.01).
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Figure 2 Tumor microvessel density (MVD) and VEGF expression. (A) The VEGF and CD34 (marker for MVD) expression in SKOV-3 xenografts
were detected by immunohistochemistry. (B) Tumor MVD and MOD of VEGF expression were calculated and the values were shown as percents
of the control treatment. *, P < 0.01 compared with control. **, P < 0.01 compared with chA21 or trastuzumab alone.
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Similarly, the tumor mean optical density (MOD) values
of VEGF in the chA21 plus trastuzumab treatment
group were 60% of the control, lower than those of 80%
and 77% in individual treatment groups of chA21 and
trastuzumab, respectively (P < 0.01).

Augmented down-regulation of VEGF expression induced
by combination of chA21 with trastuzumab
Previouly, we found HER2 antibody inhibits angiogen-
esis and downregulats VEGF expression. Hence, we
explored the effect of antibody synergy on VEGF secera-
tion by ELISA test. We examined the amount of VEGF
secreted into the medium from SKOV-3 cells that were
treated with chA21, trastuzumab, or chA21 plus trastu-
zumab for 12 h. Compared with 1255.6 + 153.6 pg/ml
in the control group, the level of secreted VEGF
decreased 918.7 + 109.8 pg/ml in chA21 group (P <
0.01), 839.1 + 137.8 pg/ml in trastuzumab group (P <
0.01), and 583.5 + 87.7 pg/ml in the chA21 plus trastu-
zumab group (P < 0.001) (Fig. 3A).

We determined VEGF protein expression by Western
blot upon HER2 antibody treatment for 12 h in SKOV-3
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Figure 3 Detection on secretion of VEGF from SKOV-3 cells. (A)
After co-culture of SKOV-3 cells with chA21 (5 ug/ml), trastuzumab
(5 pg/ml) or chA21(5 pg/ml) plus trastuzumab (5 pg/ml) for 12 h,
secreted content of VEGF in the medium was detected by ELISA. %,
P < 0.01 compared with control. **, P < 0.01 compared with chA21
or trastuzumab alone. (B) VEGF protein expression in the SKOV-3
cells was detected by western blot.
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cells. In cosistent with ELISA data, we found treatment
with chA21 or trastuzumab resulted in similar reduction
of VEGF expression compared with the control. How-
ever, the combination of chA21 and trastuzumab
induced a further inhibition of VEGF protein expression
(Fig. 3B).

Enhanced suppression of HUVECs proliferation and
migration by combination of chA21 with trastuzumab

To further investigate the influence on the function of
typical endothelial cells such as HUVECs, the effect of
supernatant from SKOV-3 cells treated with antibodies
on HUVECs proliferation was determined by the MTS
assay. Compared with control group, HUVECs prolifera-
tion was inhibited by 33% in SKOV-3 supernatants trea-
ted with chA21 plus trastuzumab treatment group, 14%
in chA21 group (P < 0.05) and 16% trastuzumab group
(P < 0.05) (Fig. 4A).

HUVECs were co-cultured with SKOV-3 supernatants
for 48 h. Migrated cells were stained and counted. As
shown in Fig. 4B and 4C, the migrating capability of
HUVECs was inhibited by SKOV-3 cell supernatant
treated with chA21 plus trastuzumab compared with
untreated cells (P < 0.001), chA21-treated cells (P <
0.01) or trastuzumab-treated cells (P < 0.01). The num-
ber of migrated cells (40x10 magnification) were 73%,
70% or 48% in chA21, trastuzumab, or combined treat-
ment group compared with the control (Fig. 4C). Our
data demonstrated that chA21 or trastuzumab treatment
suppressed HUVECs migration and combination of
chA21 and trastuzumab induced a further suppression.

Potent inhibition of pAKT activity by combination of
chA21 with trastuzumab

To detect the underlying molecular mechanism of
angiogenesis, we investigated the effect of chA21 plus
trastuzumab treatment on AKT activity, which is a cru-
cial pathway in angiogenesis [19]. After SKOV-3 cells
were treated with antibodies for 12 h, the cell lysates
were analyzed by Western blotting assay. As shown in
Fig. 5A, pAKT (Ser*”®) expression were reduced by
ChAZ21 or trastuzumab treatment, but more dramatic
reduction was observed in the ChA21 plus trastuzumab
treatment group. Total AKT protein were not altered
significantly upon various interventions. As shown in
Fig. 5B, The ratios of p-AKT/AKT were 0.61, 0.65 and
0.45 in chA21, trastuzumab and chA21 plus trastuzu-
mab group. These data indicate that the ChA21 plus
trastuzumab treatment cause greater inhibition of AKT
expression compared with either treatment alone.

Discussion
It’s well known that HER2-overexpressing tumors confer
enhanced metastasis-related properties and resistance to
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Figure 4 HUVECs proliferation and migration assay. (A) By the MTS assay, HUVECs number was measured by the MTS assay upon different
treatment for 72 h. (B) The HUVECs migration was measured by Transwell assay in the co-cultured system (x400). (C) Data was shown as the
mean of the number of migration HUVECs in five representative fields. *, P < 0.01 compared with control. **, P < 0.01 compared with chA21 or
trastuzumab alone.

chemotherapeutic reagents which frequently result in
poor clinical outcome. Trastuzumab as the first thera-
peutic anti-HER2 monoclonal antibody has been used in
clinical treatment of HER2-overexpressing metastatic
breast and gastric cancers [20,21]. It is also proposed to
be a treatment option for patients with HER2-positive
ovarian carcinoma [22]. However, poor responses and
disease recurrences for trastuzumab therapy underscore
for alternative treatments [23].

It is believed that angiogenesis is required for tumor
growth and spread. HER2 signaling has been reported to
be implicated in tumor angiogenesis [24,25]. Previously,
we have developed a novel anti-HER2 chimeric antibody
chA21 and this new antibody mainly binds to a distinct
epitope on HER2 ECD I and inhibits tumor cells growth
in vitro and in vivo [10,16]. In the present study we
further explored the potential anti-angiogenic effects of
chA21 on HER2-overexpressing ovarian carcinoma. Our
data showed that chA21 and trastuzumab can inhibit
tumor growth and angiogenesis in SKOV-3 xenograft
model and the combination of trastuzumab with chA21
results in an enhanced effect.

Indeed, endothelial cells migration and proliferation is
crucial for angiogenesis. Tumor cells induce angiogen-
esis by secreting various growth factors, such as VEGF,
which binds its cognate receptor on endothelial cells
and promotes these cells to proliferate and migrate
[26,27]. Using ELISA kit to measuring the secreted
VEGF from SKOV-3 cells, we found that chA21 could
suppress VEGF expression and this synergism when
combined chA21 with trastuzumab. Moreover, the
synergism was confirmed by inhibition of HUVECs pro-
liferation and migration when the endothelial cells were
co-cultured with the supernatant from SKOV-3 cells
treated with both trastuzumab and chA21 together.
Therefore, the anti-angiogenesis capacity of the two
antibodies alone and their synergy proved to be
intrinsic.

Among signaling pathways induced by HER2 receptor,
activation of the AKT kinase orchestrates a number of
signaling pathways potentially involved in angiogenesis
[19]. Our study revealed that chA21 could inhibit AKT
expression with the capability similar to trastuzumab in
SKOV-3 cell line. This result reflected the intrinsic
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Figure 5 Protein expression of AKT and phopsho-AKT (pAKT)
in xenograft tumors. (A) After SKOV-3 cells were treated with
antibodies for 12 h, the cell lysates were analyzed. pAKT (Ser*”?)
expression educed upon treament withchA21 or trastuzumab
treatment and more dramatic reduction was observed with chA21
plus trastuzumab treatment. The levels of total AKT protein were
not altered significantly upon various interventions. (B) The ratios of
p-AKT/AKT were calculated and the values were shown as ratios
compared with control, which was arbitrarily taken as 1.0. *, P <
0.01 compared with control. **, P < 0.01 compared with chA21 or
trastuzumab alone.

properties of most tumor-inhibitory anti-HER2 antibo-
dies to inhibit receptor-induced downstream signals at
various efficiencies [28,29]. More importantly, the com-
bination of chA21 with trastuzumab showed more sig-
nificant potency on inhibiting the AKT. It may partly
explain our findings that the combination of chA21 with
trastuzumab could synergistically enhance the in vitro
and in vivo anti-angiogenesis effects.

In conclusion, our study demonstrated the inhibition
activities on tumor growth and angiogenesis of a novel
anti-HER2 antibody chA21 alone and in combination
with trastuzumab in vitro and in vivo. We found that
the angiogenesis inhibition effect of chA21 could be
enhanced by combination with trastuzumab, which
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might be mediated by synergism of chA21 and trastuzu-
mab through inhibition of AKT expression. Therefore,
chA21 may represent a unique anti-HER2 antibody with
superior potentials as combination with other anti-
HER?2 reagents for further therapy.
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