
Van den Broeck et al. Journal of Experimental & Clinical Cancer Research 2012, 31:68
http://www.jeccr.com/content/31/1/68
RESEARCH Open Access
Molecular markers associated with outcome and
metastasis in human pancreatic cancer
Anke Van den Broeck1,2, Hugo Vankelecom2, Rudy Van Eijsden3, Olivier Govaere4 and Baki Topal1*
Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer in which differences in survival
rates might be related to a variety in gene expression profiles. Although the molecular biology of PDAC begins to
be revealed, genes or pathways that specifically drive tumour progression or metastasis are not well understood.

Methods: We performed microarray analyses on whole-tumour samples of 2 human PDAC subpopulations with
similar clinicopathological features, but extremely distinct survival rates after potentially curative surgery, i.e. good
outcome (OS and DFS > 50 months, n = 7) versus bad outcome (OS < 19 months and DFS < 7 months, n = 10).
Additionally, liver- and peritoneal metastases were analysed and compared to primary cancer tissue (n = 11).

Results: The integrin and ephrin receptor families were upregulated in all PDAC samples, irrespective of outcome,
supporting an important role of the interaction between pancreatic cancer cells and the surrounding desmoplastic
reaction in tumorigenesis and cancer progression. Moreover, some components such as ITGB1 and EPHA2 were
upregulated in PDAC samples with a poor outcome, Additionally, overexpression of the non-canonical
Wnt/β-catenin pathway and EMT genes in PDAC samples with bad versus good outcome suggests their contribution
to the invasiveness of pancreatic cancer, with β-catenin being also highly upregulated in metastatic tissue.

Conclusions: Components of the integrin and ephrin pathways and EMT related genes, might serve as molecular
markers in pancreatic cancer as their expression seems to be related with prognosis.
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Background
Pancreatic ductal adenocarcinoma (PDAC) remains a
major cause of cancer related death, despite advances in
surgical and medical care [1]. The majority of patients
present with locally advanced or metastatic disease and
die within 6–12 months. Even in the selected group of
prognostic favourable localized and resectable PDAC,
the 5-year overall survival (OS) is only 10-25% as the
majority of patients develop disease relapse within two
years after potentially curative treatment [2]. Addition-
ally, the effect of systemic chemotherapy, either in adju-
vant or in palliative setting, is low [3].
Although some parameters are described to be prog-

nostic factors after curative surgery, such as lymph node
and resection margin status, none has been consistently
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related to overall survival [4,5]. Moreover, even in
patients with similar clinicopathological parameters, a
wide range of survival rates is observed postoperatively
[2]. This heterogeneous biology of pancreatic cancer and
possibly related diverse response to treatment might be
explained by differences in gene expression profiles. At
present, molecular characteristics of PDAC carcinogen-
esis become gradually unravelled, but genes or pathways
that specifically drive tumour progression or metastasis
are not well understood [6,7]. Some studies have already
linked gene expression profiles with lymph node status
or advanced PDAC stage, but results are inconsistent [8-
10]. Recently, a gene signature that subdivides PDAC in
3 subtypes was developed based on gene expression
from microdissected PDAC material and cell lines. This
signature would have a prognostic value and would be
predictive for drug responses [11]. Microdissected ma-
terial and cell lines however do not comprise the com-
plexity of pancreatic cancer. PDAC is characterized by
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an abundant desmoplastic reaction that has long been
ignored, but is now known to play an important role in
PDAC tumorigenesis and progression [12,13].
Therefore, the aim of the present study was to define

molecular characteristics related to pancreatic cancer pro-
gression, based on whole genome expression profiling of 2
human PDAC subgroups with similar clinicopathological
features, but with extremely distinct survival rates after
curative surgery. Additionally, we tried to gain more
insight in the metastatic process of PDAC by comparing
gene expression profiles of liver- and peritoneal metastases
with that of primary tumour samples.

Methods
Primary PDAC and metastatic samples
Patients who underwent surgical treatment for PDAC
between 1998 and 2008 were studied. Immediately after
surgical removal of the resection specimen, a small part
of the tissue was snap-frozen in liquid nitrogen and
stored at −80°C; the other part was fixed in 6% formol
and embedded in paraffin for histological examination.
From patients with metastatic disease undergoing pallia-
tive surgery, core biopsies of the primary tumour and of
liver (LM)/peritoneal (PM) metastases were taken and
processed in a similar way. Haematoxylin-Eosin (H&E)
staining was performed on each sample for histopatho-
logical confirmation according to the World Health
Organization criteria. The study was approved by the
KU Leuven ethical committee prior to patient recruit-
ment, and received the study number ML3452.
Clinical and histopathological data from all patients

were registered in a prospective database. Disease recur-
rence was defined as local or distant recurrence, diag-
nosed on follow-up imaging, performed routinely or
because of elevated serum tumour markers.

Classification of PDAC with good or bad outcome
One hundred fifty-five patients suffering from PDAC
were operated with curative intent. Postoperative follow-
up was complete and closed in December 2011. Survival
curves were determined using the Kaplan-Meier life-
table technique. The median overall (OS) and disease-
free survival (DFS) was respectively 22.3 months (95%
confidence interval (CI) 18.7-29.0 m) and 12.0 months
(CI: 9.0-13.3 m). None of these patients received pre-
operative or neo-adjuvant treatment. Postoperative
chemotherapy (n = 69) or chemoradiation (n = 29) did
not influence OS or DFS in this patient group. Based on
cumulative OS and DFS probability plots (Figure 1A),
we defined two patient subgroups: one group with an
exceptional good outcome (defined as ‘Good’: OS and
DFS > 50 months, n = 17), and one group with an excep-
tional poor outcome (defined as ‘Bad’: OS < 19.5 months
and DFS < 7 months, n = 47) (Figure 1B).
Whole-genome expression analysis
Only representative snap-frozen PDAC material- defined
as a minimum of 30% cancer cells on H&E staining –
was used for RNA extraction. In order not to exclude
tumour microenvironment for gene expression analysis,
samples were used without microdissection. Total RNA
was extracted using Trizol (Invitrogen, Grand Island,
NY) and the RNeasy mini kit (Qiagen, Venlo, The Neth-
erlands) according to the manufacturer’s guidelines.
RNA concentration and purity were determined spectro-
photometrically using the Nanodrop ND-1000 (Nano-
drop Technologies, Wilmington, DE) and RNA integrity
was assessed using a Bioanalyser 2100 (Agilent Tech-
nologies, Santa Clara, CA). Only samples with a RIN of
at least 7.1 were used for further microarray analysis at
the VIB Nucleomics Core (www.nucleomics.be).
Per sample, an amount of 100 ng of total RNA spiked

with bacterial RNA transcript positive controls (Affyme-
trix) was amplified and labelled using the GeneChip 3'
IVT express kit (Affymetrix). All steps were carried out
according to the manufacturer’s protocol. A mixture of
purified and fragmented biotinylated aRNA and hybrid-
isation controls (Affymetrix) was hybridised on Affyme-
trix HG U133 Plus 2.0 arrays followed by staining and
washing in a GeneChipW fluidics station 450 (Affyme-
trix) according to the manufacturer’s procedures. To as-
sess the raw probe signal intensities, chips were scanned
using a GeneChipW scanner 3000 (Affymetrix).
The RMA procedure was used to normalize data within

arrays (background correction and log2-transformation)
and between arrays (quintile normalization) (affy_1.22.0
package of Bioconductor) [14,15]. The MAS 5.0 algorithm
(Microarray suite user guide, version 5; Affymetrix 2001)
was used to assess detection above background. All probe-
sets had a good signal and were used for further analysis.
Four experimental designs were analysed: the effect of
PDAC patients with a good outcome (‘Good’) versus sur-
rounding pancreatic tissue (defined as ‘control’), the effect
of PDAC patients with a poor outcome (‘Bad’) versus sur-
rounding pancreas, the effect of ‘Bad’ versus ‘Good’ and the
effect of all PDAC samples, irrespective of outcome, versus
metastatic disease in the liver or peritoneum . The limma
package from Bioconductor was used to assess the contrast
in each experiment [16]. Statistical significance of this con-
trast was tested with a moderated t-test (implemented in
limma). Differentially expressed genes were defined as
genes with an uncorrected p-value of p<0.001 in combin-
ation with >2 fold-change. Classical schemes to adjust for
multiple testing can result in low statistical power for
microarray studies . The stringent cut-off of p<0.001 was
used as an alternative, pragmatic approach to balance the
number of false positives and false negatives [17].
Metastatic samples (LM and PM) were contaminated

with respectively normal liver and peritoneal tissue,
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Figure 1 Classification of PDAC patients based on outcome data. (A) Cumulative curve for overall survival (OS, left) and disease-free survival
(DFS, right), based on survival data of all PDAC patients with representative snap-frozen material. (B) Kaplan-Meier overall survival curve of
patients respectively from the ‘Good’ (blue) and ‘Bad’ (green) outcome group, in comparison with the non-classified patients (red).
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reflecting in upregulation of liver- and peritoneal specific
genes. Therefore only genes that were not differentially
expressed between LM and PM samples, considered as
metastatic specific genes, were used for analysis between
primary tumour and metastatic tissue.
All gene expression data will be available from the

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/projects/geo/).
Functional pathway analysis on differentially expressed

probe sets was done with the Ingenuity Pathway Ana-
lysis (IPA) program (Ingenuity Systems, www.ingenuity.
com; Redwood City, CA). For each experiment, probe
sets with a corrected p-value <0.001 and a >2 fold
change were used as input. If multiple probes referred to
the same molecule, the average of the log-ratio values
was taken for further analysis. Generated networks were
ordered by a score meaning significance, estimated as
the ratio of the number of input probes that map to the
pathway divided by the total number of pathway probes.
Significance of biological functions and canonical path-
ways were tested by the Fisher’s exact test p-value after
application of Benjamini- Hochberg method of multiple
testing correction. Significant pathways were chosen as
p < 0.05, except for the significant canonical pathways in
the ‘Good’ versus control experiment where a more strin-
gent p-value (p < 0.01) was chosen to eliminate possible
false-positive results due to the large number of differen-
tially expressed probe sets.
For each experiment, additional KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analysis
was performed on up- or downregulated genes (corrected
p-value <0.001 and a fold change of respectively >2 and
<2) using GENECODIS, a web-based tool for enrichment
analysis (http://genecodis.dacya.ucm.es ) using the NCBI
Entrez Gene database [18]. Two statistical tests are imple-
mented: the hypergeometric distribution and the χ2 test of
independence. A stimulation-based correction approach is
used to adjust for multiple testing.

Results
Sample selection
Based on the definition of the 2 diverse survival outcome
groups and the required RIN values above 7.1, finally 7
‘Good’ and 10 ‘Bad’ patient samples with similar patho-
logical characteristics remained available for gene ex-
pression analysis (Table 1, Figure 2). The median age
was 61 and 67 years, respectively. All patients had nega-
tive resection margins on histopathological examination.
Additionally, 6 surrounding non-tumoural pancreatic

control samples, 7 LM and 4 PM fulfilled the quality cri-
teria and were used for microarray analysis.

Gene expression profiling of ‘Good’ PDAC versus control
Analysis of ‘Good’ versus control samples revealed 3265
differentially expressed probe sets, of which 2806 could
be mapped to genes in the Ingenuity Knowledge Base.
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Table 1 Clinicopathological parameters of patients, with respectively good and bad outcome

Category Gender Age Location pG pT pN pM pR PNI LVI VI Postop OS DFS

GOOD F 55 Head 2 2 0 0 0 1 0 1 0 156.4 156.4

GOOD M 32 Head 3 3 1 0 0 1 1 0 RCT 127.9 127.9

GOOD M 78 Head 1 3 0 0 0 0 1 0 0 71.5 71.5

GOOD M 53 Head 3 3 1 0 0 1 0 1 RCT 67.2 67.2

GOOD F 61 Head 3 3 0 0 0 1 0 1 0 56.4 56.4

GOOD F 62 Head 3 3 1 0 0 0 0 1 RCT 62.7 62.7

GOOD M 68 Tail 3 2 0 0 0 1 0 1 CT 51.5 51.5

BAD F 75 Head 3 3 0 0 0 1 0 0 0 9.4 5.2

BAD M 72 Head 2 3 1 0 0 1 1 1 CT 12.6 5.6

BAD M 52 Head 3 3 0 0 0 1 0 1 0 8.4 4.1

BAD F 78 Head 2 3 1 0 0 1 1 1 0 9.9 3.6

BAD M 59 Head 3 3 1 0 0 1 0 0 0 6.3 2.8

BAD F 51 Head 3 3 0 0 0 0 0 0 CT 19.4 6.5

BAD M 74 Tail 3 1 1 0 0 1 1 1 CT 12.3 0.5

BAD M 50 Head 2 2 1 0 0 1 1 1 CT 9.4 7.0

BAD(M) M 67 Head 1 CT 8.3 /

F: female; M: male; pG: pathological tumour grade; pT: pathological tumour size; pN: pathological lymph node status; pM: pathological metastasis; pR: pathological
resection margin; PNI: perineural invasion; VI: vascular invasion; LVI: lymphovascular invasion; RCT: radiochemotherapy; CT: chemotherapy; OS: overall survival; DFS:
disease-free survival.
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IPA analysis generated networks, including ‘Cell morph-
ology’, with TGFβ1 (fold 2.6, p < 0.001) central to this
network. ‘Cancer’, ‘Cellular growth and proliferation’,
‘DNA repair’, and ‘Cellular movement’ were differentially
expressed functions. Differentially expressed canonical
pathways (p < 0.01) are shown in Table 2. The Integrin
pathway (including Integrin β4 (ITGB4): fold 5.5, Integ-
rin β5 (ITGB5): fold 5.9, and Integrin α6 (ITGA6): fold
4.6; all p < 0.001) was most significant, followed by the
Ephrin pathway (including Ephrin receptor A2 (EPHA2):
fold 5.9, Ephrin receptor B2 (EPHB2): fold 3.3, Ephrin
A1 (EFNA1): fold 3.4, Ephrin A4 (EFNA4): fold 2.0 and
Ephrin B2 (EFNB2): fold 3.4; all p < 0.001). KEGG path-
way analysis of genes overexpressed in ‘Good’ samples
Figure 2 Pathological features from ‘Good’ and ‘Bad’ patients. Despite
patients from the ‘Good’ outcome group (left) was similar as those from th
Original magnification 100x.
showed upregulation of elements of the p53 signalling,
Wnt/β-catenin signalling, Notch, MAPK, and Hedgehog
signalling pathways (Table 2).

Gene expression profiling of ‘Bad’ PDAC versus control
Microarray analysis comparing ‘Bad’ versus control
samples defined 1905 differentially expressed genes.
IPA analysis on 1692 mapped genes generated net-
works, such as the network related to ‘Drug metabol-
ism’, including TGFβ1 (fold 2.4) and LOXL2 (fold 3.9),
(p < 0.001). Similar to the ‘Good’ versus control com-
parison, the functions ‘Cancer’, ‘Cellular growth and
proliferation’ and ‘Cellular movement’ were differen-
tially expressed, but with even higher fold changes.
distinct survival data, H&E staining on formalin fixed sections from
e ‘Bad’ outcome group (right). A representative sample was shown.



Table 2 Differentially expressed canonical pathways (IPA) and upregulated KEGG pathways (GENECODIS) in ‘Good’ and
‘Bad’ PDAC

Good versus control Bad versus control

Canonical
pathwaysa

P-value Upregulated genesc P-value Upregulated genesc

Integrin signalling 5.62E-7 RAC1, RAC2, ITGB4, ITGB5, ITGA6, ACTN1,
MAP2K2, GSK3B, PPP1R12A, ARF1, ACTG2

4.79E-6 RAC1, ITGA2, ITGA3,
ITGA6, ITGB1, ITGB4,
ITGB5, ITGB6, ACTN1,
ARF1

Ephrin receptor
signalling

0.00002 RAC1, RAC2, EPHA2, EPHB2, EFNA4, EFNB2,
MAP4K4, MAP2K2, STAT3, RHOA, ADAM10,
VEGFA

0.00001 RAC1, EFNA5, EFNB2,
EPHA2, EPHB4, STAT3,
ADAM10, FGF1, VEGFA,
PDGFC

Molecular mechanism
of cancer

0.00063 RAC1, RAC2, CCND1, MAP2K2, TGFβ1, GSK3B,
BRCA1, CDH1, BMP2, SMAD6, BAX, CTNNB1

P53 signalling 0.00089 TP53, PIK3C2A, RAC1, BAX, BIRC5, SERPINB5,
GSK3B, BRCA1

0.02757 PRKDC, RAC1, BAX, CCND1,
BIRC5, SERPINB5, CTNNB1,
CDK2

Wnt/β-catenin 0.00550 RAC2, CSNK1A1, CSNK1E, SOX9, TGFβ1,
SOX4, LRP5, CTNNB1, WNT10A

0.00323 CSNK1A1, TGFβ1, DKK1,
DKK3, WNT5A, WNT10A,
SOX4, SOX11, TCF7L2,
TCF3

Pancreatic
adenocarcinoma

0.00776 JAK1, RAC1, STAT3,
CCND1, BIRC5, VEGF,
TGFβ1, ERBB2, CDK2

PI3K/AKT Signaling 0.00933 RAC1, RAC2, JAK1, MAP2K2, PPP2R5

KEGG pathwaysb

P53 Signaling 2.20E-12 TP53, CDKN6, CCND1, CDK1, CDK2, SFN 3,03E-8 CDK1, CDK2, BAX,
SERPINB5, CCND1, SFN

Wnt signalling 2,67E-07 WNT10A, CTNNB1, CTBP1, LRP5, TCF7L2,
FZD8, GSK3B, PPP3R1, RAC1

0.00011 WNT5A, WNT10A, DKK1,
DVL1, CTNNB1, CSNK1A1,
CSNK1E, LRP5, RAC1,
TCF7L2

Pancreatic cancer 3.00E-6 TGFβ1, RAC1, JAK1, VEGFA, ERBB2, STAT3,TP53,
RAC2

0.00001 RAC1, TGFβ1, TGFα,
VEGFA, ERBB2, STAT3,
RAD51

NOTCH signalling 2.40E-6 JAG1, HES1, CTBP1, CTBP2, ADAM10 0.00012 DVL1, HES1, CTBP1, ADAM10

MAPK signalling 0.00015 FGFR2, TGFβ1, MAP2K5, MAP2K2, MAP2K3,
MAP2K7, RAC1, DUSP10, DUSP3

Hedgehog signalling 0.00836 CSNK1E, BMP2, GSK3B, CSNK1A1
aIPA was performed on respectively 2.806 (good) and 1.692 (bad) differentially expressed probe sets (with entry in the Ingenuity Knowledge Base; www.ingenuity.
com). The most significant networks, functions and canonical pathways are listed.
b KEGG analysis was performed on respectively 2.033 and 1.285 probesets upregulated in the good and bad PDAC samples using GENECODIS.
c A selection of upregulated genes contributing to the pathways, is given.

Van den Broeck et al. Journal of Experimental & Clinical Cancer Research 2012, 31:68 Page 5 of 10
http://www.jeccr.com/content/31/1/68
Analysis of canonical pathways also revealed the In-
tegrin pathway as most significant (including ITGA2:
fold 5.0, ITGA3: fold 3.1, ITGA6: fold 5.3, ITGB1:
fold 2.0, ITGB4: fold 5.8, ITGB5: fold 5.0 and
ITGB6: fold 5.4; all p < 0.001), on top of the Ephrin
receptor signalling (including EPHA2: fold 7.3,
xEPHB4: fold 2.0, EFNA5: fold 3.9 and EFNB2: fold
3.0; all p < 0.001), the Wnt/β-catenin pathway and
pancreatic adenocarcinoma signalling (Table 2). Genes
involved in the p53 signalling pathway, the Wnt/
β-catenin and the Notch signalling were highly upregu-
lated (Table 2) in ‘Bad’ PDAC samples (KEGG analysis,
GENECODIS).
Molecular characteristics of ‘Bad’ versus ‘Good’ PDAC
To study gene expression profiling related to poor out-
come, we first studied differentially expressed genes be-
tween ‘Bad’ and ‘Good’ PDAC samples (Figure 3A). A
total of 131 genes were differentially expressed, i.e. 69
upregulated and 62 downregulated genes in ‘Bad’
PDAC (Table 3). The networks ‘Cell morphology’ (in-
cluding SNAI2 (fold 2.9) and TGFβR1 (fold 3.3);
p < 0.001), ‘Cell signalling’ and ‘Cellular movement’ were
generated from differentially expressed genes (IPA). No
cancer-related canonical pathways or KEGG pathways
were differentially expressed between both PDAC
groups.

http://www.ingenuity.com
http://www.ingenuity.com


Figure 3 Molecular characteristics of ‘Bad’ vs. ‘Good’ PDAC. (A) First, genes differentially expressed between the ‘Good’ and the ‘Bad’ PDAC
samples were used for IPA analysis. (B) Secondly, we compared genes differentially expressed between the ‘Good’ versus control and the ‘Bad’
versus control analysis to exclude pancreas-related genes. The control samples in both experiments were the same.
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Next, we analysed differentially expressed genes be-
tween the ‘Good’ versus control and the ‘Bad’ versus con-
trol experimental designs to exclude pancreas-related
genes (Figure 3B). Only genes from the MAPK and
Table 3 Top 15 of differentially expressed genes, between ba

Gene Symbol Gene name

CPB1 Carboxypeptidase B1

CTRB2 Chymotrypsinogen B2

PLA2G1B Phospholipase A2, group IB, pancreas

PNLIPRP2 Pancreatic lipase-related protein 2

PNLIP Pancreatic lipase

CEL Carboxyl ester lipase (bile salt-stimulated lip

CPA1 Carboxypeptidase A1, pancreatic

CELA3A Chymotrypsin-like elastase family, member

CELA3B Chymotrypsin-like elastase family, member

CPA2 Carboxypeptidase A2 (pancreatic)

CLPS Colipase, pancreatic

CTRC Chymotrypsin C (caldecrin)

KRT6A Keratin 6A

PRSS2 Protease, serine, 2 (trypsin 2)

DEFA5 Defensin, alpha 5, Paneth cell-specific

SLC26A3 Solute carrier family 26, member 3

SI Sucrase-isomaltase (alpha-glucosidase)

TAC3 Tachykinin 3

PRSS7 Protease, serine, 7 (enterokinase)

DEFA6 Defensin, alpha 6, Paneth cell-specific

VIP Vasoactive intestinal polypeptide

RBP2 Retinol binding protein 2, cellula

UGT2B17 UDP glucuronosyltransferase 2 family, polyp

CDH19 Cadherin 19, type 2

SYNM Synemin, intermediate filament protein

FOXA1 Forkhead box A1

CLCA1 Chloride channel accessory 1

ELF5 E74-like factor 5

AKR1C1 Aldo-keto reductase family 1, member C1
Hedgehog signalling pathways were strongly expressed
in the ‘Good’ samples (GENECODIS). Genes involved in
Pancreatic cancer signalling pathway, p53 signalling,
Wnt/β-catenin and Notch signalling were expressed in
d versus good outcome PDAC samples

Fold bad/good P-value

31.03 3.16E-05

24.38 2.78E-05

20.35 0.00022

19.48 0.00019

19.06 0.00048

ase) 18.89 0.00011

18.57 6.68E-05

3A 17.10 2.47E-05

3B 16.56 2.01E-05

14.43 0.00016

11.55 0.00035

11.17 0.00023

10.23 0.00090

8.87 0.00092

−13.95 9.04E-08

−13.76 4.08E-08

−8.95 2.29E-07

−8.06 0.00029

−6.93 1.99E-08

−6.50 1.50E-06

−6.12 1.82E-05

−5.68 1.72E-07

eptide B17 −5.33 0.00090

−4.90 0.00089

−4.86 1.53E-05

−4.30 6.00E-07

−3.90 2.05E-05

−3.74 1.50E-06

−3.63 0.00043
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all PDAC samples, but the constitutive genes varied.
‘Bad’ samples overexpressed the Wnt signalling mole-
cules DKK1 (fold 7.9), Wnt5a (fold 3.6) and DVL1 (fold
2.8)(p < 0.001), whereas FZD8 (fold 2.7, p < 0.001) and
GSK3B (fold 2.0, p < 0.001) were only upregulated in
‘Good’ samples. TP53 was only overexpressed in the
‘Good’ group (fold 2.7, p < 0.001).
Identification of metastasis-associated genes
After excluding liver- and peritoneum specific genes,
358 genes were differentially expressed between the pri-
mary tumour and the metastatic samples. Of these
genes, 278 were upregulated in primary PDAC and 80
were upregulated in metastatic tissue. Multiple networks
and functions were generated from differentially
expressed genes (IPA), including ‘Cancer’, ‘Cell signalling’,
and ‘Cell cycle’. The ‘Human embryonic stem cell pluri-
potency’ and Wnt/β-catenin canonical pathways were
significant. KEGG pathway analysis (GENECODIS)
revealed expression of genes from the TGFβ and Wnt/β-
catenin pathways in primary PDAC and expression of
the TGFβ pathway-related genes in metastatic tissue
(Table 4). To discover pathways potentially contributing
to the metastatic process, we looked for genes upregu-
lated in the PDAC versus control experiments (‘Good’
versus control and ‘Bad’ versus control) and in the Me-
tastases versus PDAC comparison. In total 29 genes met
these criteria, including β-catenin, ANP32A, HPGD, SET
and SP1 (fold change between metastases versus PDAC
respectively 3.0, 3.4, 2.5, 3.6 and 2.0; all p < 0.001) (Add-
itional file 1: Table S1).
Discussion
Unravelling the molecular characteristics of pancreatic
cancer is crucial for a better understanding of the
tumour biology in order to develop novel therapeutic
strategies. Correlation of gene expression profiles with
patient survival might detect genes and pathways that
drive PDAC invasiveness as clinicopathological para-
meters alone seem not sufficient to explain the variabil-
ity in survival after curative resection. Therefore, in the
present study, we performed whole genome expression
analysis of 2 subgroups of patients with extremely diver-
ging overall and disease-free survival rates, despite hav-
ing similar clinicopathological features.
Table 4 Upregulated KEGG pathways (GENECODIS) in primary

PDAC versus Metastases

KEGG Pathwaya P-value Upregulated genesb

Wnt signalling 0.00969 FZD1, FZD10, WNT5

TGFβ pathway 0.00574 LTBP1, THBS4, MBPR
a KEGG analysis was performed on respectively 278 and 80 genes upregulated in th
b A selection of upregulated genes contributing to the pathways, is given.
In contrast to previous studies that used microdissec-
tion or fine needle aspiration techniques to enrich the
samples for neoplastic cells [11,19,20], we used whole-
tumour samples with the aim not to exclude the tumour
micro-environment even though discrimination between
tumoural and environmental RNA is technically impos-
sible in whole-tumour samples. On the other hand,
PDAC is characterized by an abundant desmoplastic
stromal reaction, which plays an important role in
tumorigenesis, tumour progression, and therapy resist-
ance [12,13]. Indeed, increasingly new therapeutic regi-
mens are studying agents that aim to target the
desmoplastic stromal reaction [21-23]. Therefore, in
order to keep the molecular information of the micro-
environment but to reduce background RNA contamin-
ation, we used high-quality snap-frozen samples with a
pathologically proven minimum of 30% cancer cells.
This approach led to a small but still representative sam-
ple size for microarray analysis.
In our study, the Integrin and Ephrin pathways were

upregulated in all PDAC samples, irrespective of out-
come. These pathways were not highlighted in studies
on microdissected PDAC [11]. Both pathways appear to
play an important role in the interaction between cancer
cells and the surrounding stroma. The Integrin family of
cell adhesion receptors has been implicated in tumour
progression as they contribute to the interplay between
tumour and micro-environment by binding directly to
components of the extracellular matrix (ECM) [24]. Due
to the abundance of ECM, the integrin-mediated cell ad-
hesion signalling may play an important role in PDAC
tumour growth, migration and even in therapy resistance
[25,26]. Various integrins, such as ITGA6, ITGB4 and
ITGB5, are upregulated in ‘Good’ and/or ‘Bad’ PDAC
samples. In cell culture studies, ITGB1 has been shown
to play a critical role in pancreatic cancer progression
and in metastasis in particular [27,28]. Upregulation of
ITGB1 in ‘Bad’ PDAC, might highlight its potential ther-
apeutical impact.
Ephrin receptors are similarly promising therapeutical

targets as they mediate cell-cell interactions both in tumour
cells and in the tumour micro-environment, and thereby
may affect tumour growth, invasiveness, angiogenesis, and
metastasis [29]. EPHA2, related to poor clinical outcome in
PDAC, has already been successfully investigated as target
in PDAC cell lines [30,31]. Indeed, in our study, EPHA2
PDAC and metastatic PDAC samples

Metastases versus PDAC

P-value Upregulated genesb

A, CCND2

1B 0.00100 SP1, PPP2R1B, ACVR1C

e PDAC and metastases samples using GENECODIS.
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was highly upregulated as PDAC with poor outcome, sup-
porting its potential clinical relevance.
Embryonic signalling pathways are known to play a

role in both the tumoural and the stromal compartment
and in different stages of PDAC [32]. Hedgehog signal-
ling (Shh) e.g. has been implicated in the initiation of
PDAC, and was overexpressed in PDAC samples with
good overall survival in our series [33,34]. The Wnt/β-
catenin pathway seems to be involved in a later stage of
PDAC tumorigenesis [9,34,35]. In our study, elements
from the canonical Wnt/β-catenin pathway were upre-
gulated in all PDAC samples. However, in patients with
poor survival, genes from both the canonical and non-
canonical pathway, including Wnt5A and DVL1, were
upregulated [35,36]. The expression of Wnt5A has
already been shown to be induced in PSC [35]. Upregu-
lation of DKK1, a Wnt/β-catenin pathway antagonist,
may promote tumour invasiveness though the exact
mechanism is yet unknown [37].
Overexpression of Notch signalling in PDAC corre-

lates with tumour proliferation and migration [38].
Notch has been shown to regulate pancreatic cancer
stem cells and would have a role in the acquisition of
epithelial-mesenchymal transition (EMT) by inducing
SNAI2 expression due to JAG1 overexpression [39,40].
Although JAG1 was upregulated in all our PDAC sam-
ples irrespective of survival, SNAI2 was upregulated in
the ‘Bad’ versus ‘Good’ PDAC samples. The upregulation
of many EMT-related genes, such as TGFβR1, FGFBP1,
TGFβ1, LOXL2, TWIST1 and Wnt5A, and the downre-
gulation of FOXA1 in the ‘Bad’ PDAC samples might
support the role of EMT in the aggressiveness of PDAC
[41]. Additionally, upregulation of MALAT1 in the ‘Bad’
samples may suggest this gene to be further explored as
it is upregulated in many other tumours too and asso-
ciated with cancer metastasis and recurrence [42,43].
Finally we identified a PDAC metastasis-related genetic

profile containing 358 differentially expressed genes be-
tween the primary tumour and metastatic tissue. Molecu-
lar knowledge on the metastatic process in PDAC is
currently lacking and the published data are inconsistent
[9,44-46]. Moreover, the majority of studies are based on
cell lines, xenograft models and rapid autopsy material. In
the current study, we used fresh human samples of both
liver and peritoneal metastases. In order to focus on
metastasis-specific genes, we excluded tissue-associated
genes, i.e. genes that were differentially expressed between
liver and peritoneal tissue samples. However, in this way,
we might also have excluded metastasis-specific genes. In
our study, 358 genes were differentially expressed, includ-
ing genes related to the Wnt/β-catenin pathway and the
TGFβ pathway. Comparing our differentially expressed
genes with metastatic genes described in other studies,
only 7 genes overlapped (COMP, PCDH7, PTP4A1,
CXCR4, NR4A3, ANGPT1 and TIMP3) [9,44-47]. A total
of 29 genes were upregulated in metastases as compared
to primary PDAC and control samples. One of these
genes, β-catenin, may deserve further study because of
several reasons. β-catenin has a role in tumorigenesis as
an essential transcriptional co-activator in the canonical
Wnt pathway, but it also plays a critical role in cadherin-
based cell-cell adhesion [48]. β-catenin seems also to be a
major determinant in EMT and in the reverse mesenchy-
mal to epithelial transition (MET), necessary for cells to
home in distant organs. Furthermore, β-catenin mediates
transcription of MMP that degrade the ECM [49]. Our
results support further investigation of its role in PDAC
progression. Another gene, SP1 is linked with STAT3 and
hence would regulate metastasis [50].
Limitations of the current study are the rather small

sample size and the lack of clinical validation of our
findings. These 2 concerns however, seem hard to over-
come since PDAC is a rare disease of which good quality
tissue is difficult to obtain. Additionally, PDAC has an
abundant desmoplastic reaction that is overwhelmingly
represented as compared to cancer cells, making many
human tissue samples not representative. Microdissec-
tion of cancer cells might be an alternative to study
PDAC, although this technique has its own inherent
limitations, such as its technical difficulty and conse-
quently its time-consuming activity, and the problem of
RNA degradation [51]. Moreover, we believe that the
only way to study human PDAC as a whole entity is to
include its microenvironment in the analyses, especially
since the latter has been shown to play a crucial role in
tumour invasiveness and progression. The data from our
current study might therefore provide valuable results
with respect to gene expression and pathways involved
in PDAC. Nonetheless, before these genes or pathways
might be used as potential therapeutic targets in clinical
setting, they need to be validated first either in a large
number of human PDAC samples or in preclinical ani-
mal experiments.

Conclusion
The Integrin and Ephrin pathways seem to play an im-
portant role in pancreatic carcinogenesis and progres-
sion, including ITGB1 and EPHA2 as most important
players. The Wnt/β-catenin pathway and EMT might
additionally contribute to PDAC progression and metas-
tasis, with β-catenin as a central mediator. Further valid-
ation of the role of these genes and pathways is needed.
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