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Abstract

Background: MRI plays a key role in the preclinical development of new drugs, diagnostics and their delivery
systems. However, very high installation and running costs of existing superconducting MRI machines limit the
spread of MRI. The new method of Benchtop-MRI (BT-MRI) has the potential to overcome this limitation due to
much lower installation and almost no running costs. However, due to the low field strength and decreased
magnet homogeneity it is questionable, whether BT-MRI can achieve sufficient image quality to provide useful
information for preclinical in vivo studies. It was the aim of the current study to explore the potential of BT-MRI on
tumor models in mice.

Methods: We used a prototype of an in vivo BT-MRI apparatus to visualise organs and tumors and to analyse
tumor progression in nude mouse xenograft models of human testicular germ cell tumor and colon carcinoma.

Results: Subcutaneous xenografts were easily identified as relative hypointense areas in transaxial slices of NMR
images. Monitoring of tumor progression evaluated by pixel extension analyses based on NMR images correlated
with increasing tumor volume calculated by calliper measurement. Gd-BOPTA contrast agent injection resulted in a
better differentiation between parts of the urinary tissues and organs due to fast elimination of the agent via
kidneys. In addition, interior structuring of tumors could be observed. A strong contrast enhancement within a
tumor was associated with a central necrotic/fibrotic area.

Conclusions: BT-MRI provides satisfactory image quality to visualize organs and tumors and to monitor tumor
progression and structure in mouse models.

Background
MRI plays a key role in the preclinical development of
new drugs, diagnostics and their delivery systems. How-
ever, very high installation and running cost of existing
superconducting MRI machines limit the spread of the
method. The new method of Benchtop-MRI (BT-MRI)
has the potential to overcome this limitation due to
much lower installation and almost no running costs.
The lower quality of the NMR images is expected due
to the low field strength and decreased magnet homoge-
neity. However, very recently we could show that BT-
MRI is able to characterize floating mono- or bilayer
tablets, osmotic controlled push-pull tablets [1-4] or
scaffolds for tissue engineering in vitro [5]. A broad,
important and increasing range of MRI applications are

linked with preclinical studies on small rodents such as
mice or rats [6-8]. Thereby, first developments and test-
ing of more compact MRI systems have been reported
[9,10]. In the present study we have tested a prototype
of a new in vivo BT-MRI apparatus.
Clearly, BT-MRI could overcome one of the current

main limitations of preclinical MRI, the high costs.
However, the question arises, whether BT-MRI can
achieve sufficient image quality to provide useful infor-
mation for preclinical in vivo studies. In a recent paper
we have demonstrated that BT-MRI can be used to
characterize in situ forming implants in mice [11]. A
major application field of preclinical MRI is linked to
cancer research. It was therefore the aim of the current
study to explore the potential of BT-MRI on tumor
models in mice. Nude mouse xenograft models of differ-
ent human tumors were used to test the suitability of
the new BT-MRI system for visualisation of organs and
tumors and for quantification of tumor progression.

* Correspondence: thomas.mueller@medizin.uni-halle.de
2Martin-Luther-University Halle-Wittenberg, Department of Internal Medicine
IV, Oncology/Hematology, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
Full list of author information is available at the end of the article

Caysa et al. Journal of Experimental & Clinical Cancer Research 2011, 30:69
http://www.jeccr.com/content/30/1/69

© 2011 Caysa et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:thomas.mueller@medizin.uni-halle.de
http://creativecommons.org/licenses/by/2.0


Methods
NMR system and its characteristics
A 21 MHz NMR benchtop prototype system “MARAN
DRX2” (Oxford Instruments) capable of imaging with
a horizontal bore of 23 mm diameter was used (Figure
1). The instrument is equipped with a temperature
control unit and capable of T1 and T2 relaxation mea-
surements, the determination of diffusion coefficients
and imaging.

NMR imaging parameter
The temperature was set to 37°C. Always 4 slices were
simultaneously measured with: slice distance: 3.5 mm,
slice width: 3 mm, spin echo time TE: 9.8 ms, repetition
time TR: 172 ms, averages: 32 or 16 (for time critical
kinetics), total time: 715 s or 357 s, respectively, FOV:
40*40 mm. The pulse sequence was T2SE.
The MRI acquisition parameters were optimized

under some hardware restrictions. TE is limited by the
bandwidth of 10 KHz to 9.8 ms. An increase of the
bandwidth allows shorter TE, however it leads also to
stronger image distortions. A TR value of 150 ms gives
an optimal contrast for marbled meat and also for mice.
For 4 slices TR is limited to 171.4 ms. Therefore 172 ms
was used for TR as a good compromise between best
contrast and simultaneous acquisition of 4 slices. The
resulting images are therefore T1-weighted and range
from hyperintense signals for fatty tissues to hypoin-
tense signals for water. The higher number of averages
was chosen to improve the signal-to-noise ratio. For
kinetics of contrast agent distribution a rapid image
acquisition may be essential. Therefore measurements
with lesser averages were also performed, even though
the image quality is reduced.

Cell culture, xenograft tumor model, measurements and
analyses
Human colon carcinoma cell lines DLD-1, HCT8 and
HT29 and human testicular germ cell tumor cell line
1411HP were maintained as monolayer cultures in
RPMI-1640 with 10% FCS and streptomycin/penicillin.
Cultures were grown at 37°C in a humidified atmo-
sphere of 5% CO2/95% air.
Eight week old male athymic-nude Foxn1 nu/nu mice

(Harlan Winkelmann, Germany) were injected s.c. with
3 × 106 tumor cells in both flanks. NMR Imaging of
mice was performed once a week. For comparison, the
size of the xenograft tumors was also measured by
means of a calliper. For imaging with a positive MRI
contrast agent mice received 150 μl of gadobenate dime-
glumine (Gd-BOPTA; 0.03 mmol/kg in 0.9% NaCl) via
tail vein injection. For investigation of contrast agent
associated effects with special focus on xenograft tumors
the dose of Gd-BOPTA was increased according to
dosage applied in men (0.1 mmol/kg). Animals were
anaesthetised via i.p. application of ketamine/xylazine
mixture prior to imaging. Body weight was assessed
twice weekly. For histological examination tumors were
explanted, fixed in 4% formalin and embedded in paraf-
fin. Hematoxylin/Eosin staining of slices was performed
according to standard protocols. All animal protocols
were approved by the laboratory animal care and use
committee of Sachsen-Anhalt, Germany.
Quantification of xenograft tumor growth was per-

formed by
1.) volume calculation based on calliper measurements

using the formula a2 × b × π/6 with a being the short
and b the long dimension and
2.) measurement of pixel extensions of tumor sections

based on NMR images (128 × 128 JPG) using the mea-
sure tool of GNU Image Manipulation Program (GIMP
2.6.8) and calculating the area using formula A = a/2 ×
b/2 × π.

Results
Imaging of organs and tumors; gadobenate dimeglumine
(Gd-BOPTA) induced MRI contrast
A nude mouse xenograft model of different human
tumors was used to determine the image sensitivity
and quality of the BT-MRI system. Gd-BOPTA as one
of the clinically used low molecular weight gadolinium
chelates was selected for contrast agent enhanced MRI.
A good differentiation between cortex of kidney and
renal pelvis could be observed depending on circula-
tion time of the contrast agent (Figure 2A). Further-
more, the fast renal elimination of Gd-BOPTA was
visualised. The urinary bladder was visible as a bright,
hypertense sphere unlike the NMR image without con-
trast agent (Figure 2B). Subcutaneous xenograft tumors

Figure 1 Prototype of the Benchtop-MRI system “MARAN
DRX2” (Oxford Instruments).
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were easily identified as relative hypointense area at
each body site (Figure 2C).
To study the contrast agent associated effects with

special focus on xenograft tumors we used a higher
dose of Gd-BOPTA according to dosage applied in men.
As shown in Figure 3A an interior structuring of tumors
could be observed. This was characterized by time
dependent alterations of contrast enhancement with
initial enhancement of the tumor rim followed by a cen-
tripetal progression of the signal. In one case of a strong

central contrast enhancement (Figure 3B) the tumor
was explanted, fixed and slices were analysed histologi-
cally after HE staining. A large central necrotic/fibrotic
area could be observed surrounded by peripherally
arranged vital tumor cells (Figure 3C).

Monitoring of xenograft tumor growth
Apart from tumor detection the quantification of
tumor burden is one important aspect of non-invasive
in vivo imaging techniques. To test whether the BT-

Figure 2 Transaxial NMR images of mice (face-down position) bearing two s.c. xenografts; left: 1411HP germ cell tumor, right: DLD-1
colon carcinoma. Images were taken without Gd-BOPTA and 10 min, 20 min and 30 min after i.v. application of Gd-BOPTA. (A): The illustration
of renal pelvis was clearly enhanced directly after contrast agent injection in light grey compared to a black central area without Gd-BOPTA. The
fast nephritic elimination caused a signal decrease (darker grey) already after 30 min. White arrows point at kidneys. (B): High contrast
enhancement in the urinary bladder (white arrow) was identifiable as hypertense area compared to a hypotense one without contrast agent.
(C): Subcutaneous xenograft tumors are visible as relative hypointense area (white arrows).
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MRI system is suitable for following s.c. xenograft
growth the tumor burden was examined in 2 groups of
3 mice each bearing 2 different tumors: one group
with 1411HP germ cell tumor and DLD-1 colon carci-
noma, one group with HT29 colon carcinoma and
DLD-1 colon carcinoma. Growth of tumors was fol-
lowed using (a) calliper measurement and volume cal-
culation and (b) BT-MRI and measurement of pixel
extensions of tumor sections based on NMR images.
For both methods comparable progression profiles
could be observed, which was independent of Gd-
BOPTA injection. A representative example of one
individual is presented in Figure 4A and 4B. In addi-
tion, all values calculated by pixel extension analyses
were plotted dependent on respective values calculated
by calliper measurement. This demonstrates the corre-
lation of both applications (Figure 4C).

Discussion
MRI as a non-invasive imaging technology plays a key
role in preclinical in vivo evaluation of tumor therapies.
The development of a BT-MRI system for small animal
imaging could lead to easy detection of tumor mass and
progression with little effort and low costs. Additionally,
MRI provides an insight into organs and tissues of
laboratory animals.
The experimental results clearly proof that BT-MRI

can be used to visualise organs and tumors in nude
mouse xenograft models. Subcutaneous xenografts
were easily identified as relative hypointense areas in
transaxial slices of NMR images. In addition BT-MRI
system is suitable for following xenograft tumor
growth. Monitoring of tumor progression evaluated by
pixel extension analyses based on NMR images corre-
lated with increasing tumor volume calculated by

Figure 3 Analysis of contrast agent induced interior structuring of tumours. (A): Transaxial NMR images of a mouse (face-down position)
bearing two s.c. xenografts; left: HT29 colon carcinoma, right HCT8 colon carcinoma. Images were taken to the indicated time points after i.v.
application of higher dosed Gd-BOPTA (0.1 mmol/kg). A time dependent alteration of contrast enhancement with initial enhancement of the
tumor rim followed by a centripetal progression of the signal is observed in the HT29 tumor. The HCT8 tumor was too small for detailed
analyses although a time dependent alteration of the signal could also be observed. (upper panel - grayscale, lower panel - pseudocolor) (B):
Transaxial NMR images of a mouse (face-down position) bearing two s.c. HT29 xenografts 15 min and 30 min after i.v. application of Gd-BOPTA.
One tumor showed strong contrast enhancement and an interior structuring could be observed (white arrow). (C): HE staining of the well
structured left HT29 xenograft shown in (A). Depicted is a section at the side of the tumor to represent the whole structure composed of a large
central necrotic/fibrotic area (white star) surrounded by peripherally arranged vital tumor cells (white arrow).
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calliper measurement. This is an important require-
ment for application of BT-MRI system in orthotopic/
metastatic tumor models to evaluate the whole tumor
burden. For this purpose it is necessary to take serial
slices of NMR images to get the largest dimension of

the tumor as basis for calculation. In addition the
whole tumor shape can be reconstituted.
One critical aspect using orthotopic/metastatic tumor

models could be the visualization of metastasis in tissues
and organs depending on the model. This may require

Figure 4 Monitoring of xenograft tumor growth. (A): Transaxial NMR images of a mouse (face-down position) bearing two s.c. xenografts (left:
1411HP germ cell tumor, right: DLD-1 colon carcinoma) analysed over 5 weeks (d13, d20, d27, d34 post cell injection). Depicted images were taken 10
min after i.v. application of Gd-BOPTA. White arrows point at tumors. (B): Following tumor growth of example shown in Figure 4A as analysed by
calliper measurements and volume calculation compared to analyses by pixel extension of tumor sections based on NMR images (with or without Gd-
BOPTA (CA)). Both tumor volume (V) and tumor section extent (A) comparably increased over the observation period. (C): Correlation of both
methods: calculation of tumor growth by calliper measurement (V) and pixel extension analyses based on NMR images (A) of all 12 tumors.
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application of contrast agent for differentiation between
tumor and normal tissue. In this study we used Gd-
BOPTA as one of the clinically used low molecular
weight gadolinium chelates. Gd chelates are commonly
used as MRI contrast agents for the detection of solid
tumors in patients where an initial tumor rim enhance-
ment is usually observed [12-18]. Thereby the character-
istic enhancement of the tumor rim can be used for the
differentiation between malignant and benign masses
[15]. Initially most tumors in our study showed no per-
ipheral contrast enhancement on NMR images. Apply-
ing a higher but well tolerated dose of Gd-BOPTA such
an effect could be observed, albeit not in each case. This
may be due to the artificial location of the tumor as
subcutaneous xenograft. Moreover, it was observed that
low molar mass Gd chelates show an initial rim
enhancement, followed by a washout effect, which
requires that the images are obtained within the first 2
min after injection [19]. This probably explains the lack
of initial rim enhancement in our models after applica-
tion of low dose Gd-BOPTA. In this regard the applica-
tion of macromolecular MRI contrast agents could be
useful [20]. They have a longer circulation time and are
more confined to the blood pool, therefore giving a
longer time window for imaging in mice models.
A main advantage of MRI is the capability to charac-

terize important tumor characteristics (e.g. internal
structure, oedema in the tumor environment, necrotic
areas). We observed a pronounced interior structuring
of an s.c. HT29 tumor after i.v. injection of the contrast
agent Gd-BOPTA. Histological analyses revealed that a
large central necrotic/fibrotic area was associated with
contrast enhancement. Such an effect can also be
observed in patient tumors. After the characteristic
initial tumor rim enhancement a centripetal progression
of the signal can occur depending on the tumor struc-
ture, e.g. determined by different vascular architecture
[12,15,21]. Early peripheral enhancement with centripe-
tal progression was seen in invasive carcinomas with a
high peripheral and a low central microvessel density,
which was associated with fibrosis and/or necrosis
[12,21]. This demonstrates that depending on the tumor
and used contrast agent the BT-MRI system is suitable
for observation of intratumoral structures and that char-
acteristic features of patient tumors can be reproduced
in the model system. It offers the opportunity to follow
intratumoral processes under therapy.
Further work will be done particularly with regard to

imaging of different orthotopic installed tumors and
their progression as well as the development of meta-
static disease. Other contrast agents will also be exam-
ined in order to find better enhancement of (small)
tumor sites and metastases. Moreover, other contrast

enhancer could lead to better results for imaging of
interior tumor structures.

Conclusions
The results of the current study show that BT-MRI is,
despite its limitations with respect to the magnetic field
strength and magnet homogeneity, clearly capable of
providing satisfactory image slice quality to visualize
organs and tumors and to monitor tumor progression in
mouse models.
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