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Chromatin accessibility: a window into the genome
Maria Tsompana1 and Michael J Buck1,2*
Abstract

Transcriptional activation throughout the eukaryotic lineage has been tightly linked with disruption of nucleosome
organization at promoters, enhancers, silencers, insulators and locus control regions due to transcription factor
binding. Regulatory DNA thus coincides with open or accessible genomic sites of remodeled chromatin. Current
chromatin accessibility assays are used to separate the genome by enzymatic or chemical means and isolate either
the accessible or protected locations. The isolated DNA is then quantified using a next-generation sequencing
platform. Wide application of these assays has recently focused on the identification of the instrumental epigenetic
changes responsible for differential gene expression, cell proliferation, functional diversification and disease
development. Here we discuss the limitations and advantages of current genome-wide chromatin accessibility
assays with especial attention on experimental precautions and sequence data analysis. We conclude with our
perspective on future improvements necessary for moving the field of chromatin profiling forward.
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Introduction: chromatin accessibility
Eukaryotic chromatin is tightly packaged into an array of
nucleosomes, each consisting of a histone octamer core
wrapped around by 147 bp of DNA and separated by
linker DNA [1-3]. The nucleosomal core consists of four
histone proteins [1] that can be post-translationally al-
tered by at least 80 known covalent modifications [4,5]
or replaced by histone variants [6-8]. Positioning of nu-
cleosomes throughout a genome has a significant regula-
tory function by modifying the in vivo availability of
binding sites to transcription factors (TFs) and the gen-
eral transcription machinery and thus affecting DNA-
dependent processes such as transcription, DNA repair,
replication and recombination [9]. Experiments designed
to decipher how nucleosome positioning regulates gene
expression have led to the understanding that transcrip-
tional activation coincides with nucleosome perturb-
ation, whereas transcriptional regulation requires the
repositioning of nucleosomes throughout the eukaryotic
lineage [10-18].
Nucleosome eviction or destabilization at promoters

and enhancers results from the binding of specific regu-
latory factors responsible for transcriptional activation in
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eukaryotes [19,20]. Open or accessible regions of the
genome are, thus, regarded as the primary positions for
regulatory elements [21] and have been historically char-
acterized by nuclease hypersensitivity in vivo [22]. Not-
ably, changes in chromatin structure have been implicated
with many aspects of human health, as a result of muta-
tions in chromatin remodelers that affect nucleosome po-
sitioning [23-25]. Therefore, current interest is placed on
collecting and comparing genome-wide chromatin acces-
sibility, to locate instrumental epigenetic changes that ac-
company cell differentiation, environmental signaling and
disease development. Large collaborative projects such as
ENCODE [26] have become part of this major effort.
Low-throughput experiments in Drosophila using DNase

I and MNase treatment, provided the first demonstration
that active chromatin coincides with nuclease hypersensi-
tivity, that is chromatin accessibility [27-30]. Currently, all
chromatin accessibility assays separate the genome by en-
zymatic or chemical means and isolate either the accessible
or protected locations. Isolated DNA is then quantified
using a next-generation sequencing (NGS) platform. In this
review, we focus on the latest methods for identifying
chromatin accessibility genome-wide, and discuss the con-
siderations for experimental design and data analysis. We
conclude with current limitations that need to be over-
come for this field to move forward.
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Review
Assays for genome-wide chromatin accessibility
General considerations
Chromatin accessibility approaches measure directly the
effect of chromatin structure modifications on gene tran-
scription, in contrast to histone chromatin immunopre-
cipitation with NGS (ChIP-seq) (for a thorough review on
ChIP-seq read [31-33]) where such effects must be in-
ferred by presence or absence of overlapping histone tail
modifications. Also, chromatin accessibility assays do not
require antibodies or epitope tags that can introduce po-
tential bias. An important limitation with all chromatin
accessibility experiments is the lack of a standard for the
number of replicates required to achieve accurate and re-
producible results. This is because replicate number de-
pends on the achieved signal-to-noise ratio, which can
vary depending on the assay used, the assay conditions,
and the cell or tissue type. In addition, replicate number is
a function of technical variance, which is also experiment-
specific and difficult to model in a generalized format.
Following we discuss chromatin accessibility assays that
directly (DNase-seq, FAIRE-seq and ATAC-seq) isolate
accessible locations of a genome separate from MNase-
seq, which indirectly evaluates chromatin accessibility, and
present their principal mode of action, examples of appli-
cation and main experimental considerations (Table 1).

MNase-seq: an indirect chromatin accessibility assay
MNase is commonly reported as a single-strand-specific
endo-exonuclease, although its exonuclease activity ap-
pears to be limited to only a few nucleotides on a single
strand before cleavage of the antiparallel strand occurs
[34-36]. Since the early 1970s MNase digestion has been
applied to study chromatin structure in a low-throughput
manner [37-40] and later in combination with tiled micro-
arrays [41-44]. Currently, MNase digestion is used with
NGS (MNase-seq or MAINE-seq [45]) for genome-wide
characterization of average nucleosome occupancy and
positioning in a qualitative and quantitative manner. In a
typical MNase-seq experiment, mononucleosomes are ex-
tracted by extensive MNase treatment of chromatin that
has been crosslinked with formaldehyde (Figure 1) [46].
The nucleosomal population is subsequently submitted
to single-end (identifies one end of template) or paired-
end (identifies both ends of template) NGS with a varying
level of coverage depending on the exact goal of the ex-
periment [31].
MNase-seq thus probes chromatin accessibility indirectly

by unveiling the areas of the genome occupied by nucleo-
somes and other regulatory factors. Commonly referred to
as a nucleosome occupancy assay, it shares same principal
mode of action (enzymatic cleavage) and can provide infor-
mation on TF occupancy as other chromatin accessibility
assays. MNase-seq has been implemented in a number of
organisms, ranging from yeast to humans, for the mapping
of chromatin structure [47-49]. In addition, MNase diges-
tion has been successfully combined with ChIP-seq for
enrichment of regulatory factors or histone-tail modi-
fications and variants. Henikoff et al. [50] have also
introduced a modified MNase-seq protocol for library
preparation of fragments down to 25 bp, allowing the
mapping of both nucleosomes and non-histone pro-
teins with high resolution.
Important considerations in the design of MNase-seq

experiments include extent of chromatin crosslinking
and level of digestion. Traditionally, chromatin accessi-
bility experiments have been conducted with formalde-
hyde as a crosslinking agent to capture in vivo protein-
nucleic acid and protein-protein interactions [51]. It has
been observed that in the absence of crosslinking, nu-
cleosome organization can change during regular chro-
matin preparation steps and thus use of formaldehyde is
recommended for accurate characterization of chroma-
tin structure [31]. Also, MNase has been shown to have
a high degree of AT-cleavage specificity in limiting en-
zyme concentrations [52-54] and comparisons between
different experiments will vary for technical reasons un-
less MNase digestion conditions are tightly controlled
[55-57]. MNase titration experiments specifically sup-
port differential digestion susceptibility of certain nu-
cleosome classes, with nucleosomes within promoter and
‘nucleosome-free’ regions being highly sensitive [50,58,59].
Thus, it has been suggested that combination of templates
from different levels of MNase digestion may alleviate
biased sampling of mononucleosome populations [58].
However, the cause of differences in MNase-seq out-

put across differential levels of enzymatic digestion is
difficult to assess due to the effect of inter-nucleosomal
linker length on the recovered signal [55]. MNase diges-
tion simulation experiments have provided evidence that
nucleosome configurations with or near long linkers are
sampled easier compared to nucleosomes with normal
linkers at low levels of MNase digestion and this sampling
bias dissipitates with increased levels of enzymatic cleav-
age (80 or 100% monos) [55]. Comparison of in vivo ex-
perimental data of two distinct nucleosome configurations
from different MNase-seq technical preparations supports
the same conclusions, and underscores the importance of
standardized collection of mononucleosomes for accurate
and reproducible comparisons [55]. Specifically, extensive
(approximately 95 to 100% mononucleosomes) digestion
of a standardized initial amount of crosslinked chromatin
is considered ideal for comparisons of different MNase-
seq experiments, since at that level of digestion all linkers
are cut and the recovered signal is not confounded by nu-
cleosome configuration [31,55].
Overall, MNase-seq is a superior method for probing

genome-wide nucleosome distributions and also provides



Table 1 Current genome-wide high-throughput chromatin accessibility assays

Cell type/Number Sequencing
type

Traditional approach Genomic target Experimental considerations Key
references

MNase-seq Any cell type 1 to 10 million cells Paired-end
or Single-end

MNase digests unprotected DNA Maps the total nucleosome
population in a qualitative
and quantitative manner

1. Requires many cells. [37,46,49]

2. Laborious enzyme titrations.

3. Probes total nucleosomal population,
not active regulatory regions only.

4. Degrades active regulatory regions,
making their detection possible only
indirectly.

5. Requires 150 to 200 million reads for
standard accessibility studies of the
human genome.

DNase-seq Any cell type 1 to 10 million cells Paired-end
or Single-end

DNase I cuts within unprotected DNA Maps open chromatin 1. Requires many cells. [61,75,76]

2. Time-consuming and complicated
sample preparations.

3. Laborious enzyme titrations.

4. Requires 20 to 50 million reads for
standard accessibility studies of the
human genome.

FAIRE-seq Any cell type 100,000 to 10 million cells Paired-end
or Single-end

Based on the phenol-chloroform separation
of nucleosome-bound and free sonicated
areas of a genome, in the interphase and
aqueous phase respectively

Maps open chromatin 1. Low signal-to-noise ratio, making
computational data interpretation
very difficult.

[86-90]

2. Results depend highly on fixation
efficiency.

3. Requires 20 to 50 million reads for
standard accessibility studies of the
human genome.

ATAC-seq 500 to 50,000 freshly isolated cells Paired-end Unfixed nuclei are tagged in vitro with
adapters for NGS by purified Tn5 transposase.
Adapters are integrated into regions of
accessible chromatin

Maps open chromatin,
TF and nucleosome
occupancy

1. Contamination of generated data
with mitochondrial DNA.

[103]

2. Immature data analysis tools.

3. Requires 60 to 100 million reads
for standard accessibility studies of
the human genome.

ATAC: assay for transposase-accessible chromatin; DNase I: deoxyribonuclease I; FAIRE: formaldehyde-assisted isolation of regulatory elements; MNase: micrococcal nuclease.
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Figure 1 Schematic diagram of current chromatin accessibility assays performed with typical experimental conditions. Representative
DNA fragments generated by each assay are shown, with end locations within chromatin defined by colored arrows. Bar diagrams
represent data signal obtained from each assay across the entire region. The footprint created by a transcription factor (TF) is shown
for ATAC-seq and DNase-seq experiments.
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an accurate way for assessing TF occupancy in a range of
cell types [60]. However, it requires a large number of cells
and careful enzymatic titrations for accurate and reprodu-
cible evaluation of differential substrates.

Direct chromatin accessibility assays
DNase-seq Historically, open chromatin has been iden-
tified by the hypersensitivity of genomic sites to nuclease
treatment with MNase and the non-specific double-
strand endonuclease DNase I [61]. In a typical experi-
ment, low concentrations of DNase I liberate accessible
chromatin by preferentially cutting within nucleosome-
free genomic regions characterized as DNase I hyper-
sensitive sites (DHSs) (Figure 1). Early low-throughput
experiments, provided the first demonstration that active
genes have an altered chromatin conformation that makes
them susceptible to digestion with DNase I [61]. Further
research in Drosophila and other eukaryotes, supported
the conserved observation that chromatin structure is dis-
rupted during gene activation and that DHSs are the pri-
mary sites of active chromatin rendering access of trans-
factors to regulatory elements [14,27,28,62-65]. It has later
been shown that DHSs result during gene activation [17],
due to loss or temporal destabilization of one or more
nucleosomes from cis-regulatory elements with the com-
binatorial action of ATP-dependent nucleosome- and
histone-remodelers [20,66,67].
Traditionally, identification of DHSs has been based

on Southern blotting with indirect end-labeling [28] and
involves laborious and time-consuming steps that limit
the applicability of the method to a narrow extent of the
genome. Further attempts to improve the efficiency and
resolution of the method have used low-throughput se-
quencing, real-time PCR strategies and later hybridization
to tiled microarrays [68-74]. The advent of NGS gave rise
to DNase-seq allowing the genome-wide identification of
DHSs with unparalleled specificity, throughput and sensi-
tivity in a single reaction. In recent times the drop of se-
quencing costs and the increased quality of the data have
made DNase-seq the ‘golden standard’, for probing chroma-
tin accessibility. During a typical DNase-seq experiment,
isolated nuclei are submitted to mild DNase I digestion
according to the Crawford or Stamatoyannopoulos proto-
col [75,76]. In the Crawford protocol, DNase I digested
DNA is embedded into low-melt gel agarose plugs to
prevent further shearing. Optimal digestions are se-
lected by agarose pulsed field gel electrophoresis, with
an optimal smear range from 1 MB to 20 to 100 KB, and
are blunt-end ligated to a biotinylated linker. After sec-
ondary enzymatic digestion with MmeI, ligation of a
second biotinylated linker and library amplification, the
digested population is assayed using NGS [75]. In the
Stamatoyannopoulos protocol, DNA from nuclei is digested
with limiting DNase I concentrations and assessed by
q-PCR and/or agarose gel electrophoresis. Optimal di-
gestions are purified with size selection of fragments
smaller than 500 bp using sucrose gradients, and are
submitted for high-throughput sequencing after library
construction [76]. The main difference between the two
protocols is that the first one depends on the single
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enzymatic cleavage of chromatin, whereas the latter re-
quires double cleavage events in close proximity to each
other. The Stamatoyannopoulos protocol has been prefer-
entially used by the ENCODE consortium.
DNase-seq has been extensively used by the ENCODE

consortium [26] and others to unveil cell-specific chro-
matin accessibility and its relation to differential gene ex-
pression in various cell lines [21,77-79]. It has also been
modified to study rotational positioning of individual nu-
cleosomes [80] based on the inherent preference of DNase
I to cut within the minor groove of DNA at approxi-
mately every ten bp around nucleosomes [79,81,82]. In
addition, binding of sequence-specific regulatory factors
within DHSs can affect the intensity of DNase I cleavage
and generate footprints (digital genomic footprinting
(DGF) or DNase I footprinting) that have been used to
study TF occupancy at nucleotide resolution in a qualita-
tive and quantitative manner [83]. DGF with deep sequen-
cing has been implemented to uncover cell-specific TF
binding motifs in humans, yielding expansive knowledge
on regulatory circuits and the role of TF binding in rela-
tion to chromatin structure, gene expression, and cellular
differentiation [19,78]. Due to its high resolution, DGF has
also allowed the probing of functional allele-specific signa-
tures within DHSs [78].
The main controversy over DNase-seq is the ability for

DNase I to introduce cleavage bias [31,79,81,82,84], thus
affecting its use as a reliable TF footprint detection assay.
Two recent publications clearly demonstrate that cleavage
signatures traditionally attributed to protein protection of
underlying nucleotides, are detected even in the absence
of TF binding as a result of DNase I inherent sequence
preferences that span over more than two orders of mag-
nitude [84,85]. This observation is strongly supported by
frequent lack of correspondence between TF binding
events detected with ChIP-seq versus DGF [85]. Also, TFs
with transient DNA binding times in living cells leave
minimal to no detectable footprints at their sites of recog-
nition, making the quality of footprinting highly factor-
dependent [84,85]. Collectively, these findings challenge
previous DGF research on TF footprinting and its applic-
ability as a reliable recognition assay of complex factor-
chromatin interactions in a dynamic timescale.
Less concerning limitations of DNase-seq are that it

requires many cells and involves many sample prepar-
ation and enzyme titration steps. Success of this assay
depends on the quality of nuclei preparations and small-
scale preliminary experiments are essential to ascertain
the exact amount of detergent needed for cell lysis [76].
Also, DNase I concentrations may need to be adjusted em-
pirically depending on initial type and number of cells, the
lot of DNase I used and the exact purpose of the experi-
ment [84]. Overall, DNase-seq represents a reliable and ro-
bust way to identify active regulatory elements across the
genome and in any cell type from a sequenced species,
without a priori knowledge of additional epigenetic infor-
mation. Its reliability as a TF footprint detection assay in a
temporal scale is questionable and needs to be investigated
further in detail.

FAIRE-seq One of the easiest methods for directly prob-
ing nucleosome-depleted areas of a genome is FAIRE
(Formaldehyde-Assisted Isolation of Regulatory Elements)
(Figure 1), although the high background in the output
data limits its usefulness [15,86-89]. FAIRE is based on
the phenol-chloroform separation of nucleosome-bound
and free areas of a genome in the interphase and aque-
ous phase respectively. The procedure involves the initial
crosslinking of chromatin with formaldehyde to capture
in vivo protein-DNA interactions, and subsequent shearing
of chromatin with sonication. Following phenol-chloroform
extraction, nucleosome-depleted areas of the genome are
released to the aqueous phase of the solution due to
much higher crosslinking efficiency of histones to DNA,
compared to other regulatory factors [87,90]. The chromatin-
accessible population of fragments can then be detected
by quantitative PCR, tiling DNA microarrays [15,86]
or more recently with paired-end or single-end NGS
(FAIRE-seq) [87,91].
Initially demonstrated to identify accessible regulatory

elements in Saccharomyces cerevisiae [90], FAIRE has
been extended to a wide range of eukaryotic cells and
tissues, consistently demonstrating a negative relation-
ship with nucleosome occupancy and an overlap with
various cell type-specific marks of active chromatin
[15,45,86,87,92,93]. This assay has been instrumental for
the identification of active regulatory elements in a num-
ber of human cell lines by ENCODE [26]. It has been used
widely to detect open chromatin in normal and diseased
cells [86,91,94,95], to associate specific chromatin states
with known sequence variants of disease susceptibility
[91] or allele-specific signatures [96], and to decipher the
effects of TF binding to chromatin structure [97,98].
Overall, FAIRE enriches directly for areas of active

chromatin, with the added benefit that the nucleosome-
depleted regions are not degraded, it can be applied to
any type of cells or tissue and that there is no require-
ment for initial preparation of cells and laborious enzyme
titrations [15,86,89,94]. FAIRE has been shown to identify
additional distal regulatory elements not recovered by
DNase-seq, although it remains unclear what these sites
represent [94]. In addition, FAIRE overcomes the sequence-
specific cleavage bias observed with MNase and DNase I,
and thus represents an ancillary approach for these
assays [52-54,60,99].
Success of any FAIRE-seq experiment heavily depends

on adequate fixation efficiency that can alter depending
on cell permeability, composition and a variety of other
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physiological factors. For most mammalian cells, 5 mi-
nutes of fixation time is usually ample [89]. Fungi and
plants may require a much higher fixation time [15,93]
or improved fixation solutions [100] and optimization is
necessary to avoid inconsistent results. Also, FAIRE has
lower resolution in identifying open-chromatin at pro-
moters of highly expressed genes compared to DNase-
seq [94]. FAIRE’s major limitation, that far outweighs all
benefits, is that it has a lower signal-to-noise ratio com-
pared to the other chromatin accessibility assays. This
high background makes computational data interpret-
ation very difficult, with only strong recovered signal be-
ing informative.

ATAC-seq ATAC-seq is the most current method for
probing open chromatin, based on the ability of hyper-
active Tn5 transposase [101,102] to fragment DNA and
integrate into active regulatory regions in vivo (Figure 1)
[103]. During ATAC-seq, 500–50,000 unfixed nuclei are
tagged in vitro with sequencing adapters by purified Tn5
transposase. Due to steric hindrance the majority of
adapters are integrated into regions of accessible chro-
matin that are subsequently submitted to PCR for library
construction followed by paired-end NGS. This method
has been recently used in a eukaryotic line to uncover
open chromatin, nucleosome positioning and TF foot-
prints genome-wide [103]. Despite its limited application
so far, ATAC-seq is attracting a growing interest due to
its simple and fast two-step protocol, its high sensitivity
with a low starting cell number (500 to 50,000 cells) and
the ability to study multiple aspects of chromatin archi-
tecture simultaneously at high resolution.
The sensitivity and specificity of ATAC-seq is similar

to DNase-seq data obtained from approximately three to
five orders of magnitude more cells, and it diminishes
only for really small numbers of cells [103]. The ATAC-
seq protocol does not involve any size-selection steps
and can thus identify accessible locations and nucleo-
some positioning simultaneously. However, its ability to
map nucleosomes genome-wide is limited to regions in
close proximity to accessible sites [103]. The most chal-
lenging aspect of ATAC-seq is the analysis of the se-
quence data, since generalized methods are unavailable or
limited. With the additional demonstrated ability for ana-
lyzing a patient’s epigenome on a clinical timescale [103],
we foresee ATAC-seq to become the preferred method for
the study of chromatin structure in the near future.

Chromatin accessibility high-throughput sequence data
analysis
Detection of chromatin accessibility genome-wide with
all the above methods requires initial library construc-
tion and use of NGS [31,104]. Resulting data represents
an average in vivo snapshot of chromatin accessibility, as
represented in the constructed sequencing libraries.
Normally, a specialized sequencing facility performs li-
brary construction and sequencing using the appropriate
kits for the operated sequencer. Otherwise, a research
laboratory can use in-house instrumentation and manu-
facturer or custom library protocols, with the latter be-
ing more cost efficient.
Although a number of sequencers are currently avail-

able for deep sequencing, most researchers use Illumina
next-generation platforms due to the high number of
molecules (tag count) that can be sequenced per sample.
Tag count represents the most instrumental parameter
of output sequencing quality. The number of tags that
need to be sequenced depends on the goal of the specific
experiment, with nucleosome mapping and TF footprint-
ing experiments requiring higher coverage compared to
standard chromatin accessibility detection. To obtain a
target coverage depth per sample, the researcher should
take into account the minimal number of mappable tags
delivered by the instrument in use and adjust accordingly
the number of multiplexed samples per lane of flow cell
(for details read [31]). A secondary parameter of sequen-
cing quality is tag length, which is mainly a function of the
applied sequencing chemistry and currently varies be-
tween approximately 36 to 300 bp. Generally speaking,
paired-end and longer-read sequencing provides the most
accurate results and is recommended whenever possible,
especially for areas of the genome with low-complexity or
many repetitive elements [31,104]. However, in most ex-
perimental cases chromatin accessibility can be accurately
determined with single-end, shorter-length reads without
the unnecessary additional expense.
The vast amount of generated sequencing data is sub-

sequently analyzed using a variety of analytical tools,
with progressively increased level of difficulty and ad-
vanced requirements for computational and genomics ex-
pertise. As a result, data analysis along with computing
power and storage capacity, are often regarded the current
bottleneck in chromatin accessibility experiments. Below
we discuss each stage of analysis with separate references
to specific chromatin accessibility assays, and more spe-
cialized reviews whenever necessary, in an attempt to pro-
vide a comprehensive analysis workflow for the novice
chromatin accessibility researcher (Figure 2 and Table 2).
We mainly discuss analysis of sequence data generated
with Illumina-based chemistry since this is the currently
most preferred approach.

Stage 1 analysis
Overall, most initial data analysis steps are the same for all
chromatin accessibility assays discussed above and are nor-
mally done by the NGS facility performing the sequencing
reactions. These steps include demultiplexing, alignment
to a reference genome, tag filtering and measurement of



Figure 2 Chromatin accessibility high-throughput data analysis workflow. Chromatin accessibility data analysis involves a number of stages
with progressively increased level of difficulty and advanced requirements for computational and genomics expertise. All major steps of analyses,
from sequence tags to data annotation/integration are shown in a comprehensive workflow format (read text for additional details).
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sequencing quality control (QC) (Figure 2). The goal
of this stage of analysis is to determine if the sequen-
cing was done with the required depth of coverage and to
prepare BAM alignment files for downstream assay-
specific analyses.
Initially raw sequencing reads are demultiplexed (Step 1)

based on index information into FASTQ files with
CASAVA (Illumina) and aligned (Step 2) to a user-defined
reference genome (that is human, mouse, and so on)
[105]. A number of aligning software is available, such
as Maq, RMAP, Cloudburst, SOAP, SHRiMP, BWA and
Bowtie [106]. The last two represent the most popular
aligning software packages currently. During the align-
ment process data is filtered (Step 3) to remove overrepre-
sented areas of the genome due to technical bias. Tag
filtering is often performed with SAMtools [107] or Picard
tools (http://broadinstitute.github.io/picard). For ATAC-
seq data specifically, mapped fragments below 38 bp are
removed since that is the minimum spacing of transpos-
ition events due to steric hindrance [102]. Also, ATAC-seq
reads mapping to the mitochondrial genome are discarded
as unrelated to the scope of the experiment. Sequencing
performance QC (Step 3) is performed during the align-
ment process, by estimating specific statistical metrics

http://broadinstitute.github.io/picard


Table 2 Chromatin accessibility high-throughput sequence data analysis

Detection of enriched regions Estimation of nucleosome organization and TF occupancy metrics

MNase-seq 1. GeneTrack [126] 1. Nucleosome positioning algorithms [48,58,111,144]

2. Template filtering algorithm [58] 2. Nucleosome occupancy algorithms [48,145]

3. DANPOS [109] 3. V-plots for TF occupancy [50]

4. iNPS [127]

DNase-seq 1. F-Seq [129] 1. Digital genomic footprinting algorithms [19,78,83,85,128,146-149].

2. Hotspot, DNase2Hotspots [21,130] 2. Nucleosome and TF occupancy algorithms [150]

3. ZINBA [131] 3. CENTIPEDE [151]

4. MACS [132]

FAIRE-seq 1. MACS2; https://github.com/taoliu/MACS/, [132] Not available

2. ZINBA [131]

ATAC-seq 1. ZINBA [131] 1. Digital genomic footprinting algorithms [19,78,83,85,128,146,149]

2. MACS2; https://github.com/taoliu/MACS/, [132] 2. CENTIPEDE [151]

3. Hotspot, DNase2Hotspots [21,130]
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(that is total number of reads, % of unpaired reads, % of
reads aligned 0 times, % reads aligned exactly once, % of
reads aligned more than once, and overall alignment rate)
for each sequenced sample.
Stage 2 analysis
This is the stage where most researchers begin their ana-
lysis and includes assay QC, data visualization, and de-
tection of genomic regions of enrichment (nucleosome
or peak calling; Figure 2).
Assay QC and data visualization The goal of this ana-
lysis is to determine if the experiment was successful
and is often performed by constructing composite plots
and by visualization (Steps 4, 6, 9, and 12). Multiple
tools are available for generating composite plots includ-
ing ArchTEX [108], DANPOS-profile [109], and CEAS
[110]. For example, TSSs have been shown to be chro-
matin accessible on average across all eukaryotic ge-
nomes [48,111,112]. A drop of composite plot signal
intensity is expected at this feature when analyzing
MNase-seq data, whereas DNase-seq, FAIRE-seq and
ATAC-seq data will exhibit an overall increase at the
same sites. ArchTEX can also be used to assess the
cross-correlation of MNase-seq data, with successful ex-
periments exhibiting enrichment at nucleosomal band-
ing sizes [113]. ATAC-seq QC can be further performed
by estimating the percentage of sequence reads that map
to the mitochondrial genome and by generating ‘insert
size metric plots’ using Picard tools. High quality ATAC-
seq data will coincide with a low percentage of mito-
chondrial reads, and a distribution of insert sizes that
depicts a five to six nucleosomal array along with ten bp
periodicity of insert sizes.
A number of publicly available stand-alone genome
browser tools [114], including Artemis [115], EagleView
[116], MapView [117], Tablet [118], Savant [119], and
Apollo [120], can be used to visualize raw tag density
profiles (and enriched genomic regions, see below) in re-
lation to available annotation tracks. The University of
California Santa Cruz (UCSC) [121] and the Integrative
Genomics Viewer (IGV) [122] represent some of the most
powerful options currently. UCSC provides a plethora of
information on whole-genome and exome sequencing,
epigenetic and expression data, single nucleotide polymor-
phisms (SNPs), repeat elements and functional informa-
tion from the ENCODE and other research projects. It
supports incorporation of personally generated data as
BED, BedGraph, GFF, WIG and BAM files, so that a re-
searcher can compare his/her own data directly with the
publicly available one. IGV represents another efficient,
high-performance and intuitive genomics visualization
and exploration tool, characterized by its ability to
handle large and diverse datasets on a desktop com-
puter. The user can input a variety of data types to com-
pare them with publicly available data from the ENCODE,
Cancer Genome Atlas [123], 1000 Genomes [124] and
other projects.

Detection of enriched regions
MNase-seq data In a typical MNase-seq experiment,
chromatin accessibility is probed indirectly by decipher-
ing areas of the genome that are occluded by nucleo-
somes (Figure 1). The location of each mapped tag is
identified by the genomic coordinate of the 5′ end in the
forward or reverse strand and represents the strand-
corresponding nucleosome border (unshifted tag) [125].
Tags can also be shifted 73 bp [111] or extended for 120
to 147 bp [48,113] towards the 3′ direction to represent

https://github.com/taoliu/MACS/
https://github.com/taoliu/MACS/
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the midpoint or full nucleosome length respectively. For
organisms with short linkers a 120 bp extension provides
better nucleosome resolution and reduces overlaps be-
tween neighboring nucleosomes [113]. With paired-end
sequencing, the nucleosome midpoint is assumed to coin-
cide with the midpoint of the forward and reverse reads.
To map consensus nucleosome positions representative of
the average cell population, overlapping reads have to be
clustered over genomic regions (Step 5).
Current popular nucleosome calling methods are

GeneTrack [126], template filtering [58], DANPOS [109],
and iNPS [127]. GeneTrack implements a Gaussian
smoothing and averaging approach to convert measure-
ments at each genomic coordinate into a continuous
probabilistic landscape. Nucleosomes are then detected
as the maximal data subset from all local maxima with a
user-defined exclusion zone that represents the steric
exclusion between neighboring nucleosomes (that is
147 bp) and is centered over each assigned peak. The
template filtering algorithm was developed to control
for the variable MNase cut patterns observed at differ-
ent concentrations of MNase digestion. This method
uses a set of templates, which match frequently found
distributions of sequence tags at MNase-generated nu-
cleosome ends, to extract information about nucleo-
some positions, sizes and occupancies directly from
aligned sequence data. However, the current version of
template filtering is only suitable for small genomes (ap-
proximately 12 MB) due to memory limitations. iNPS
differs from other nucleosome callers in that it uses the
wave-like structure of nucleosome datasets as part of its
smoothing approach. iNPS detects nucleosomes with
various shapes from the first derivative of the Gaussian
smoothed profile. DANPOS differs from all above ap-
proaches in that it allows the comparison of MNase-seq
datasets and identifies dynamic nucleosomes based on
fuzziness change, occupancy change and position shift.
In addition, DANPOS performs well in assigning nucle-
osomes from a single experiment, and should prove
an invaluable analysis tools for deciphering underlying
chromatin perturbations responsible for various dis-
ease and cellular phenotypes.

DNase-seq data Scientists have traditionally applied al-
gorithms developed for ChIP-seq, without an input
DNA control, to detect enriched DHSs although peculi-
arities of DNase-seq data render this approach unsuitable
without adjustment of default settings at minimal [128].
Currently, the most widely used peak-calling algorithms
for DNase-seq data analysis are the publicly available
F-Seq [129], Hotspot [130], ZINBA [131] and MACS
[132-135] (Step 7). F-Seq and Hotspot represent the
only tools specifically developed for handling the
unique characteristics of DNase-seq data. ZINBA can
be applied as a general peak-calling algorithm for many
types of NGS data and MACS, although initially developed
for the model-based analysis of ChIP-seq data, has been
successfully used as a peak-caller for DNase-seq data in
many instances [136]. All these tools are based on differ-
ent algorithms, parameters and background evaluation
metrics (for details read [135]).
Briefly, F-Seq [129] is a parametric density estimator of se-

quence tag data, developed to overcome the bin-boundary
effects of histogram metrics for peak enrichment [129].
F-seq implements a smooth Gaussian kernel density esti-
mation that takes into account the estimated center of
each sequence read. F-seq has been implemented in a
number of studies [17,19,79,94] for the identification of
chromatin accessibility and the evaluation of TF footprints
in relation to ChIP-seq data [17,19,79,94]. However, it re-
quires time-consuming designing for statistical testing
[137]. The Hotspot algorithm [21,130] has been widely
used by the ENCODE consortium to identify regions of
chromatin accessibility and represents, to our knowledge,
the only DNase-seq-specific algorithm that reports statis-
tical significance for identified DHSs [128]. The algorithm
isolates localized DHS peaks within areas of increased nu-
clease sensitivity (‘hotspots’). Results are evaluated with
false discovery rate analysis for statistical significance,
employing generation of a random dataset with the
same number of reads as the analyzed dataset. The new-
est version of Hotspot, DNase2hotspots, merges the
two-pass detection in the original algorithm into a single-
pass [130].
ZINBA, is a statistical pipeline characterized by its flexi-

bility to process recovered signals with differential charac-
teristics [131]. Following data preprocessing, the algorithm
classifies genomic regions as background, enriched or
zero-inflated using a mixture regression model, without a
priori knowledge of genomic enrichment. In turn, identi-
fied proximal enriched regions are combined within a de-
fined distance using the broad setting, and the shape-
detection algorithm is implemented to discover sharp sig-
nals within broader areas of enrichment. The advantage of
ZINBA is that it can accurately identify enriched regions in
the absence of an input control. In addition, the software
uses a priori or modeled covariate information (for ex-
ample G/C content) to represent signal components,
which improves detection accuracy especially when the
signal-to-noise ratio is low or in analysis of complex
datasets (for example DNA copy number amplifications).
MACS a model-based analysis algorithm with wide applic-
ability for the analysis of ChIP-seq data [138-140], has also
been effectively applied for DHS detection. The algorithm
empirically models the shift size of sequence reads, and
employs a Poisson distribution as a background model to
capture local biases attributed to inherent differential se-
quencing and mapping genomic properties.
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A recent comparison of the above four peak callers
demonstrated that F-Seq and ZINBA have the highest
and lowest sensitivity respectively [135]. F-Seq has also
been shown to perform better than window-clustering
approaches in a separate study [129], and its accuracy
can be significantly increased by reducing the peak sig-
nal threshold setting from the default value of four to a
value between 2 and 3 [135].

FAIRE-seq data For FAIRE-seq data the algorithm
MACS [132] has been further extended to MACS2
(https://github.com/taoliu/MACS/) and performs reli-
ably in identifying genomic regions of open chromatin
(Step 10). This application is invoked by using the com-
mand macs2 callpeak and can be combined with the op-
tions broad, broad cutoff, no model, no lambda (unless a
control file is given) and shift size. The algorithm uses de-
fault peak calling (q = 0.05) and broad (q = 0.10) cutoff
values, but these settings can be adjusted or converted to
P-values empirically. Once the peak-calling cutoff is set as
a P-value, the broad cutoff value is automatically perceived
as P also. The shift size parameter should be set as the
midpoint of the average sonication fragment length in the
analyzed dataset. In addition, upon availability a matched
control sample can be used as input to increase detection
confidence. In this case, command line parameters should
be adjusted accordingly. FAIRE enrichment can also be
detected using ZINBA [131]. As mentioned above, this
software improves detection accuracy when the signal-to-
noise ratio is low or in complex datasets. However, for
high signal-to-noise datasets it performs equally well with
MACS, although it is much more computationally
intensive.
Identified FAIRE-seq enriched regions residing in

proximity to each other, have been traditionally merged
together using BedTools [141] (for detailed instructions
read [142]) to form Clusters of Open Regulatory Elements
(COREs) (Step 11) [91,94,95]. Formation of COREs
allows the identification of chromatin accessibility and
gene regulation patterns that may have otherwise remained
undetectable in a smaller genomic scale. COREs can
be also generated from all other chromatin accessibil-
ity datasets.

ATAC-seq data ATAC-sec peak calling (Step 13) can be
performed also by using ZINBA [103]. Alternatively, our
group has found that MACS2 and Hotspot [130] per-
form equally well with ZINBA at identifying accessible
locations (unpublished data).

Stage 3 analysis
This stage of analysis involves estimation of various param-
eters of the epigenomic landscape, including nucleosome
spacing, positioning and occupancy [31], and TF binding
for footprinting experiments (Figure 2).

MNase-seq data Nucleosome or translational positioning
indicates the position of a population of nucleosomes in
relation to DNA, and considers a specific reference nu-
cleosome point like its start, dyad or end [143]. Transla-
tional positioning is reflected in the standard deviation
of the population positioning curve, and is used to dis-
tinguish between strongly and poorly positioned nucle-
osomes [143]. Translational positioning can be further
characterized as absolute, based on the probability of a
nucleosome starting at a specific base x, and condi-
tional, based on the probability of a nucleosome starting
within an extended region with center base pair x [56].
Nucleosome occupancy on the other hand, measures
density of nucleosome population and is reflected in the
area under the population positioning curve [143]. Nu-
cleosome occupancy is tightly linked to chromatin ac-
cessibility, and depends on the degree a genomic site is
occupied by nucleosomes in all genomic configurations
[56]. A number of methods have been applied to meas-
ure nucleosome positioning [48,58,111,144] and occu-
pancy [48,145] from MNase-seq data based on the
number of sequence reads that start at each base pair,
assessed for a consensus nucleosome position or in a
per base pair basis [56]. In addition high-resolution
MNase-seq data generated using a modified paired-end li-
brary construction protocol can be analyzed using V-plots
to detect TF binding. V-plots are two dimensional dot-
plots that display each fragment’s length in the Y-axis
versus the corresponding fragment midpoint position in
the X-axis [50].

DNase-seq data Stable binding of TFs in the vicinity of
DHSs protects DNA from nuclease cleavage and gener-
ates DNase I footprints that at high-sequencing depth
can unveil occupancy of TFs with long DNA residence
times (for example CTCF and Rap1) [84,85]. Thus, high-
coverage DNase-seq data can be analyzed with specialized
algorithms to detect long-standing TF binding (Step 8).
Previously specialized algorithms developed for DGF have
identified hundreds of TF binding sites at genome-wide
resolution, by comparing the depth of DNase I digestion
at TF binding sites to adjacent open chromatin and
taking into account only raw counts of 5′ ends of se-
quencing tags [19,78,83,128,146-149]. However, some of
these algorithms are inefficient for mammalian genomes
[130] or publicly unavailable. The latest publicly available
footprinting algorithm, DNase2TF, allows fast evaluation
of TF occupancy in large genomes with better or compar-
able detection accuracy to previous algorithms [85]. How-
ever, it still suffers from detection inaccuracies stemming
from transient TF DNA residence time and the inherent

https://github.com/taoliu/MACS/
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cutting preferences of DNase I like all currently available
footprinting algorithms [85].
The recently reported modified approach DNase I-

released fragment-length analysis of hypersensitivity (DNase-
FLASH) [150] allows simultaneous probing of TF occu-
pancy, interactions between TFs and nucleosomes and
nucleosome occupancy at individual loci, similar to ATAC-
seq. The method is based on the concurrent quantitative
analysis of different size fragments released from DNase I
digestion of genomic DNA, with microfragments (<125 bp)
depicting TF occupancy, and larger fragments (126 to
185 bp) representative of nucleosomal elements.

ATAC-seq data Analysis of ATAC-seq paired-end data
can reveal indispensable information on nucleosome
packing and positioning, patterns of nucleosome-TF spa-
cing, and TF occupancy simultaneously at genome-wide
resolution similar to DNase-FLASH [103]. Analysis is
based on the distribution of insert lengths and the posi-
tions of insertions after Tn5 transposition within open
chromatin of active regulatory elements (Step 15). For
TF foot printing (Step 14) our laboratory uses CENTI-
PEDE [151] (see below), although other footrprinting
algorithms are also available [19,78,83,85,128,146-149].
For footprinting analysis, cleavage sites have to be ad-
justed four to five bp upstream or downstream due to
the biophysical characteristics of Tn5 transposase,
which inserts two adaptors separated by nine bp [102].
It is not known if footprinting detection with ATAC-seq
data is factor-dependent or affected by Tn5 cleavage
preferences.

Stage 4 analysis
Data annotation and integration represents the final and
most informative stage of analysis and requires computa-
tional and genomics background on genomic organization
and structure (Step 16). After identification of enriched re-
gions and estimation of metrics of nucleosome organization
and TF occupancy, it is often desirable to evaluate this
data in light of relevant information from other experi-
ments. For example, a researcher can evaluate the overlap
or association of the sequence data with genomic fea-
tures (that is promoters, introns, intergenic regions,
TSSs, TTSs) and ontological entities (that is molecular
functions, biological processes, cellular components, dis-
ease ontologies, and so on). For that purpose, BedTools
(documentation is available at http://bedtools.readthedocs.
org) and its sister PyBEDTools represent a versatile suite
of utilities for a variety of comparative and exploratory
operations on genomic features such as identifying over-
lap between two datasets, extracting unique features,
and merging enriched regions using a predefined distance
value [141,142,152]. Also the UCSC genome browser offers
a suite of similar utilities specifically tailored for data file
conversions (http://genome.ucsc.edu/util.html). Identified
chromatin accessible locations can be compared against
functional annotations with GREAT, to identify signifi-
cantly enriched pathways or ontologies and direct future
hypotheses [153].
One can also inspect enriched regions of interest for dis-

covery of putative TF binding events using two approaches.
The first approach is straightforward and is based on
comparing sequence data against a database of known
TF motifs. The second type of analysis can be computa-
tionally intensive and involves the de novo discovery of
novel TF binding sites. A number of available software
(MEME [154,155], DREME [156], Patser (http://stormo.
wustl.edu/software.html), Matrix Scan [157], LASAGNA
[158], CompleteMOTIFs [159], and MatInspector (Genomatix)
[160]), and TF motif databases (MatBase Genomatix;
http://www.genomatix.de/online_help/help_matbase/matbase_
help.html), JASPAR [161], TRANSFAC [162] and UniPROBE
[163]) can arrogate TF motif identification and de novo
discovery within enriched regions.
For DNase-seq and ATAC-seq experiments TF footprints

can be analyzed with CENTIPEDE [151]. CENTIPEDE is
an integrative algorithm for rapid profiling of many TFs
simultaneously that combines known information on TF
motifs and positional weight matrices, with DNase-seq or
ATAC-seq cutting patterns in one unsupervised Bayesian
mixture model. Combination of all this information with
publicly available expression, DNA methylation and his-
tone modification data can be instrumental for answering
questions on epigenetic regulation and inheritance and
unveiling long-range patterns of gene regulation and dis-
ease development [17,19,137]. Finally, multistep sequential
data analysis can be generated and stored using Galaxy
[164] or Cistrome [165].
Conclusions
Each of the chromatin accessibility assays discussed here
has inherent limitations in identifying regions of enrich-
ment, based on the fragmentation method used and
the involvement of any size selection steps. MNase-seq,
DNase-seq and ATAC-seq are all based on the double en-
zymatic cleavage of DNA fragments and are sensitive to
the excision-ability of a fragment. As shown in MNase-seq
and ATAC-seq experiments, this sensitivity represents an
issue only when mapping larger fragments (>100 bp) be-
cause the data is heavily biased by the overall nucleosome
configuration at the region [55,103]. In MNase-seq experi-
ments, it was specifically shown that nucleosomes flanked
by hypersensitive sites or long linkers are excised easier
at low enzymatic concentrations and exhibit artificially
higher nucleosome occupancy compared to nucleo-
somes without these characteristics, thus leading to biased
results [55].

http://bedtools.readthedocs.org
http://bedtools.readthedocs.org
http://genome.ucsc.edu/util.html
http://stormo.wustl.edu/software.html
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Functional annotation of accessible regions is factor-
dependent and relies highly on the availability of accur-
ate TF binding motifs and their relevant information
content as well as the spatial and temporal interaction of
TFs with DNA [84,85]. Recent research supports that
DNase I cleavage patterns are affected by the time of
interaction of TF with their recognition sites, with depth
of cleavage being proportional to residence time [85].
Consequently, transient TFs leave minimal or no detect-
able cut signatures and their binding cannot be identi-
fied with any of the current footprinting algorithms. In
addition, cleavage signatures appear in genomic sites
with no apparent protein binding, providing further sup-
port that footprint profiles may arise as a result of inher-
ent DNase I cleavage bias instead of protein protection
from enzymatic activity. Thus, to accurately characterize
gene regulatory networks from accessibility data, we
need comprehensive TF motif databases generated using
in vivo/in vitro assays or computationally based de novo
motif discovery algorithms. More importantly there is an
imminent need to further investigate the applicability of
DNase-seq, and ATAC-seq for that matter, to accurately
detect factor-chromatin interactions in dynamic cellular
settings. It is possible that future footprinting algorithms
will be able to accurately identify only a subset of TF
binding events based solely on analysis of footprints with
high depth (above a statistically validated threshold), and
not on generic analysis of all cleavage profiles.
Currently, most researchers compare their chromatin

accessibility data to other published datasets. Although,
this approach is advantageous when public datasets are
available, it does not explain the cause of identified dif-
ferences. In the absence of a ‘golden standard’, experimen-
tal and computational approaches need to be compared
against independently generated data. For example, active
regulatory regions identified by chromatin segmentation
of histone modification ChIP-seq data, can serve as an in-
dependent control for experimental and computational
accuracy of current chromatin accessibility assays. Finally,
development of specialized statistically supported peak-
calling algorithms for DNase-seq and ATAC-seq data will
be instrumental in the identification of active regulatory
elements genome-wide. We foresee that future applica-
tions of chromatin accessibility will include the detection
of allele-specific effects to identify functionally important
SNPs, use of accessibility in eQTL studies to link regula-
tory regions with disease phenotypes, and assessment of
clinical samples for epigenetic biomarkers of disease.
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