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Abstract

Background: The concept that individual traits can be acquired and transmitted by the germline through
epigenetic mechanisms has gained recognition in the past years. However, epigenetic marks in sperm have not
been are not well identified.

Results: Using a novel proteomic approach that combines peptide-based bottom-up and intact protein top-down
tandem mass spectrometry, we report the identification of epigenetic marks on histones and protamines in adult
mouse sperm. We identified a total of 26 post-translational modifications (PTMs) on specific residues of the core
histones H2B, H3 and H4, and the linker histone H1, four of which had not been described previously in any tissue
or cell line. We also detected 11 novel PTMs on the protamines PRM1 and PRM2 and observed that they are
present in specific combinations on individual protamines.

Conclusions: Both histones and protamines carry multiple PTMs in the adult mouse sperm. On protamines, specific
PTM combinations might form a ‘protamine code’ similar to the ‘histone code’. These findings suggest a potential
role for PTMs on sperm histones and protamines in epigenetic signatures underlying transgenerational inheritance.

Keywords: Epigenetics, Mouse sperm, Histones, Protamines, Post-translational modifications, Mass spectrometry,
Electron transfer dissociation, Intact protein analysis, Top-down, Proteoforms
Background
The epigenetic status of the genome in eukaryotes
strongly influences chromatin structure and remodeling,
and determines the level of gene regulation. Typically,
the epigenetic profile of a cell is conferred by DNA
methylation and post-translational modifications (PTMs)
of histones H1, H2A, H2B, H3 and H4, which together
form a code that controls gene expression. These epi-
genetic marks are specific to each gene, and are dynam-
ically regulated during development and adulthood.
They are also influenced by various factors throughout
life, in particular by environmental conditions. In sperm
cells, these marks are extremely important because they
provide an identity to each cell and, as they can carry in-
formation from parent to offspring, may be involved in
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reproduction in any medium, provided the or
the maintenance and the inheritance of innate or ac-
quired epigenetic signatures [1].
Sperm cells are highly specialized cells, produced by

spermatogenesis, a process that involves extensive cellular,
epigenetic and chromatin changes. Spermatogenesis starts
with the replication and differentiation of spermatogonial
stem cells into primary spermatocytes, which through
genetic recombination during meiosis develop into hap-
loid secondary spermatocytes [2]. In the haploid phase of
spermatogenesis, round spermatids mature into spermato-
zoa. During this process, nucleosomes are disassembled
upon histone H4 hyperacetylation and incorporation of
non-canonical histone variants. Histones are widely re-
placed by highly basic proteins, first by transition proteins
and subsequently by the two protamines PRM1 and
PRM2 [3,4]. In contrast to PRM1, PRM2 associates with
the DNA in a precursor form that is processed proteo-
lytically to give rise to the mature PRM2 protamine with
approximately 40% of the N-terminus cleaved off [5]. In
human sperm, protamines have been shown to be
phosphorylated at PRM1S9, PRM1S11, and PRM2S59.
However, the function of this phosphorylation remains
l Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:a.m.brunner@uu.nl
mailto:mansuy@hifo.uzh.ch
http://creativecommons.org/licenses/by/2.0


Brunner et al. Epigenetics & Chromatin 2014, 7:2 Page 2 of 12
http://www.epigeneticsandchromatin.com/content/7/1/2
unknown. Further post-translational processing of PRM1
and PRM2 occurs during transit of the spermatozoa
through the epididymis. Protamines form disulfide bonds
and zinc bridges, both within individual proteins and
among different proteins [6,7].
The association between DNA and protamines leads

to substantial molecular remodeling and ultimately to
10-fold compaction of the male genome in toroidal
nucleoprotamine structures. The association with prot-
amines might facilitate the hydrodynamic shape of the
sperm head and protect the paternal genome from phys-
ical and chemical damage, while the protamines them-
selves could play a role in epigenetic processes [8]. In
mature spermatozoa, about 99% of histones are replaced
by the protamines PRM1 and PRM2 in mice, and about
85% in humans.
Intriguingly, the genome-wide distribution of protamine-

and nucleosome-associated DNA regions is not random,
but nucleosomes retained in sperm are significantly
enriched at loci important for embryogenesis, at specific
promoters including those of miRNAs, and at imprinted
genes. Furthermore, histone PTMs localize to specific de-
velopmental loci: H3K4me2/3 is enriched at certain devel-
opmental promoters; H3K4me3 localizes to HOX gene
clusters, noncoding RNAs, and paternally expressed
imprinted loci; and H3K27me3 is enriched at develop-
mental promoters, which are repressed in early embryos
[9,10]. Most recently, it was shown that throughout the
genome, the retained nucleosomes are enriched at CpG-
rich sequences that lack DNA methylation. The non-
canonical histone H3.3 variant was shown to be abundant
and trimethylated at K4 in these nucleosomes, while the
canonical histones H3.1 and H3.2 were trimethylated at
K27 [11]. Other non-canonical histone variants had been
reported previously to be present in the retained nucleo-
somes of mature sperm: TH2B was observed in human,
H2A-Bbd, H2AL1/L2, and H2BL1 in mammalian sperm
[8]. Further, overall acetylation of histones H3 and H4,
ubiquitination of H2A and H2B, and H3K9me3 had been
described [12].
After fertilization, histones seem to remain associated

with the paternal genome and to contribute to zygotic
chromatin despite the extensive reorganization of the
sperm chromatin [13]. In postfertilization, the sperm DNA
is decondensed from its highly compacted and transcrip-
tionally quiescent state, and expands to the inducible state
found in the paternal pronucleus [14]. The paternal his-
tones could therefore serve as a template for the incorpor-
ation of newly synthesized histones during replication in
the zygote. Accordingly, the programmatic chromatin
packaging in sperm could potentially deliver epigenetic
information to the oocyte and the zygote postfertilization.
While histone PTMs have been described in develop-

ing male germ cells previously [15,16], little is known
about the histone PTM status in mature sperm. Further,
it is also not known whether protamines are subjected
to PTMs in mouse sperm. Here, using a novel proteomic
approach combining peptide-based bottom-up and in-
tact protein top-down mass spectrometry (MS), we
qualitatively characterize mouse sperm cells. These ana-
lyses reveal novel PTMs on histones and protamines,
and are the first to show distinct combinations of pro-
tamine PTMs, reminiscent of the histone code.

Results
To identify chromatin PTMs in mouse sperm, we used a
peptide-based bottom-up MS/MS strategy. We devel-
oped a protocol for isolating sperm histone and protam-
ine peptides. It consists of nuclear isolation from whole
sperm cells, acid and high-salt extraction of basic nuclear
proteins, digestion with various enzymes to optimize MS
sequence coverage, and strong cation exchange chroma-
tography (SCX) to enrich for acetylated and phosphory-
lated peptides. Peptides and PTMs were then identified
using a high mass accuracy LTQ-Orbitrap XL mass spec-
trometer with a combination of electron transfer dissoci-
ation (ETD) and collision-induced dissociation (CID) for
peptide fragmentation. The CID and ETD fragmentation
spectra of all identified histone peptides with PTM are
shown in Additional file 1: Figure S2. With this workflow,
we identified all five histone types, and detected 176
different peptides from these histones, including 40 to 45
peptides from H2A, H2B and H4, 33 from H3 and 14
from H1, with a false discovery rate (FDR) of less than 5%
(Figure 1A and [see Additional file 2: Table S1]). On these
peptides, the extent of PTM varied greatly depending on
the histone type, and ranged from over 60% for H3 and
H4 peptides to 7% for H1 peptides and 0% for H2A pep-
tides (Figure 1A). Overall, a total of 26 PTMs was detected
on H1, H2B, H3 and H4, including lysine and arginine
methylation, N-terminal and lysine acetylation and threo-
nine phosphorylation (Figure 1B).
In addition to histone peptides, we also identified 34

peptides from protamine PRM1 and 38 from PRM2
(Figure 2A and [see Additional file 3: Table S2]). A total
of 53% of PRM1 peptides and 16% of PRM2 peptides
carried PTMs. In total, 11 novel PTMs could be identi-
fied (7 on PRM1 and 4 on PRM2), including 3 serine
phosphorylation sites, 1 threonine phosphorylation site,
1 N-terminal acetylation, 3 lysine acetylation sites, 2
serine acetylation sites and 1 lysine mono-methylation
site (Figure 2B). These novel sites were confirmed using
synthetic peptides carrying the same PTMs. For all 11
protamine PTMs, comparing the spectrum of the syn-
thetic peptides and the spectrum of the endogenous
peptides revealed a high similarity, pointing to the valid-
ity of the newly detected PTMs on protamines (Figure 3
and [see Additional file 4: Figure S1]).



*

*

Figure 1 Histone peptides and post-translational modifications (PTMs) detected in mouse sperm. A) Proportion of detected histone
peptides. The number of different peptides identified for each histone type, and sequence coverage (%) observed. The percentage of peptides
with and without PTM is indicated. B) 27 PTMs identified on histones H1, H2B, H3 and H4. PTMs are indicated by A for acetylation, Me1, Me2 and
Me3 for mono-, di- and trimethylation, and P for phosphorylation. Residues are numbered starting with the first residue after the cleaved methionine
according to histone field standard. * indicates that the acetylation site could not be assigned to a single residue, (that is, N-terminus or serine
acetylation).
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Figure 2 Protamine peptides and post-translational modifications (PTMs) detected in mouse sperm. A) Proportion of detected PRM1 and
PRM2 peptides. Number of different peptides identified for each protamine, and percentage of peptides with and without PTM are indicated.
B) A total of 11 PTMs newly identified on protamines PRM1 and PRM2. PTMs are indicated by A for acetylation, Me for methylation and P for
phosphorylation. Residues are numbered starting with the first residue after the cleaved methionine according to histone field standard. The
protamine sequence coverage is color coded and indicates the number of peptides that covered a given residue. The cleavage site of the PRM2
precursor at R44 is indicated in the sequence.
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In these analyses, the ensemble of PRM2 peptides
spanned nearly the entire sequence, resulting in good
PRM2 sequence coverage. The sequence coverage for
PRM1, however, was limited, due to long stretches of ar-
ginine in the core region of this protamine (residues 13
to 41) that were difficult to sequence (Figure 2). To
improve sequence coverage and identify PTMs in the
unsequenced regions, we developed a top-down ap-
proach based on the analysis of intact nuclear sperm
proteins by liquid chromatography coupled to an LTQ-
Orbitrap Velos ETD. Using this approach, we could
identify full-length PRM1 and PRM2 proteins. PRM1
was detected both as unmodified and phosphorylated
(Figure 4 and [see Additional file 5: Figure S3]) while
PRM2 was mainly present as a processed form with the
first 44 amino acids cleaved off. Various modified forms
of processed PRM2 were also detected including mono-
methylated, acetylated and phosphorylated forms, and
various combinations of these PTMs such as one acetyl-
ation combined with one methylation site, two acetyl-
ation sites together, and two acetylation and one
methylation sites (Figure 5B and C, and [see Additional
file 3: Figure S3]). The PTMs could be assigned to spe-
cific PRM2 residues on the basis of specific fragment
ions. Thus, PRM2 di-acetylation was on S55 and K57,
S55 and K64, or S55 and S90, while di-acetylation and
mono-methylation occurred on S55ac, S90ac and R88/
89me1, or K57ac, S90ac and R88/89me1 (Figure 5C).
These results reveal that multiple PTMs co-occur on in-
dividual protamines.

Discussion
Sperm cell specificity of novel histone post-translational
modifications?
This study reports the identification of all five histone
types in mature mouse sperm, and 26 PTMs on the four
histone types H1, H2B, H3 and H4. It is the first study
to investigate mouse sperm histones and their PTMs
without the use of antibodies, but with tandem mass
spectrometry-based proteomics. It allowed the identi-
fication of four novel PTMs (H2BT9p, H2BK117me3,
H2BK121me3, and H3R83me1), which had not been de-
scribed previously in any tissue or cell line. This suggests
that the novel PTMs might be sperm-cell specific. This
possibility is supported by the fact that H2BT9p could
be specifically assigned to the testis-specific variant,
TH2B, based on the presence of three H2B peptides
unique for this variant [see Additional file 2: Table S1].
TH2B has recently been shown to replace canonical
H2B during spermatogenesis, thereby directing histone
to protamine transition [17]. At fertilization, TH2B is
present in the male pronucleus and remains associated
with embryonic cell chromatin. TH2B and its PTMs
could therefore be involved in chromatin destabilization
during early embryonic development, facilitating genome
plasticity. An alternative explanation to why the novel



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Protamine post-translational modification (PTM) site validation by spectral comparison with synthetic peptides. Mass spectra
of identified endogenous protamine peptides with novel PTM sites and their synthetic counterparts. Major peaks are labeled in the spectra and
the fragment ions indicated in the peptide sequence. A) A novel site of serine acetylation on residue S42 of PRM1. B) A novel site of lysine
methylation on residue K49 of PRM2. C) A novel site of serine phosphorylation on residue S55 of PRM2. D) A novel site of serine acetylation on
residue S55 of PRM2.

Brunner et al. Epigenetics & Chromatin 2014, 7:2 Page 6 of 12
http://www.epigeneticsandchromatin.com/content/7/1/2
PTMs were not reported previously could be that three
of the four PTMs (H2BK117me3, H2BK121me3, and
H3R83me1) occur in the core regions of histones H2B
and H3, which are less well studied than their terminal
tails.

Functional roles of newly identified sperm histone
post-translational modifications
In the case of sperm histones, only overall acetylation of
histones H3 and H4, and ubiquitination of H2A and
H2B, and H3K4me2/3, H3K9me3 and H3K27me3 have
been reported previously [12]. Our data confirm the
methylation of H3K9 and H3K27, but newly show that
these residues can be mono-, di- or tri-methylated. Our
data also reveal additional methylation sites on H3
(H3K36me1/2, H3R83me1). Moreover, H3K27 and H3K36
methylation frequently co-occur on the same peptide,
consistent with previous reports [18]. Interestingly in our
data, H3K36 methylation is only observed when H3K27 is
also methylated, indicating potential crosstalk in H3
methylation (that is, that H3K27me contributes to the
control of H3K36me). Regarding the functional role
of these methylation sites, H3K9me2, H3K9me3 and
Figure 4 PRM1 forms identified with a top-down strategy for intact p
PRM1 (+10 to +14). B) MS1 trace of the 12+ charged unmodified PRM1 (no
phosphorylation (p). C) MS2 sequence coverage of unmodified PRM1. The
and z ions from the left (⌊).
H3K27me3 are known to be involved in transcriptional re-
pression. In contrast, H3K36me3 is a transcriptional acti-
vator [19]. In sperm in particular, H3K27me3 was shown
to mark developmental regulators [9], which are repressed
in early embryos [10]. The specific roles of the mono- and
di-methylated forms in sperm, and whether the PTMs are
enriched at distinct genetic loci, remain to be investigated.
It is interesting to note that while the core PTM
H3R83me1 was only detected on the H3 variant H3.3, all
N-terminal tail PTMs (H3K9me1/2/3, H3K27me1/2/3,
and H3K36me1/2) and combinations thereof were identi-
fied on both canonical H3 (H3.1/H3.2) and the H3.3 vari-
ant [see Additional file 2: Table S1].
In addition to H3, we identified methylation sites on

H4 (R19me2, K20me1/2/3, R23me1/2/3) and H2B
(K117me3, K121me3). H4K20me is known to be impli-
cated in chromatin compaction and transcriptional re-
pression [19]. Recently, H4R19me and H4R23me, and in
particular their combination, have been suggested to regu-
late the interaction of H4K20me with its binding proteins
[20]. Correspondingly, we detected H4K20me1R23me1,
HK29me1R23me2 and H4K20me2R23me1 peptides [see
Additional file 2: Table S1]. The functional role of the
rotein analysis. A) MS1 trace of the most abundant charge states of
post-translational modification (PTM)), and PRM1 modified by

sequence coverage is indicated and shows c ions from the right (⌉)



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 PRM2 forms identified with a top-down strategy for intact protein analysis. A) MS1 trace of the most abundant charge states of
PRM2 (+11 to +19). B) MS1 trace of the 14+ charged unmodified PRM2 (no post-translational modification (PTM)), and PRM2 modified by acetyl-
ation (A), acetylation and methylation (A +Me), phosphorylation (P), and double acetylation and methylation (2A +Me). C) MS2 sequence cover-
age of PRM2 forms. The sequence coverage is indicated and shows c ions from the right (⌉) and z ions from the left (⌊).
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identified H2B methylation sites remains to be elucidated,
as methylation in general can be associated with both
transcriptional repression and activation.
Our data also newly reveal multiple sites of modification

including N-terminal or S1, K5, K8, K12 and K16 acetyl-
ation on H4, N-terminal or S1 acetylation on H1, and T9
and T120 phosphorylation on H2B. Both acetylation and
phosphorylation are prominent activation mark on his-
tones. Acetylation is known to neutralize the positive
charge of the lysine residue, weakening the DNA-histone
interaction. It is also involved in DNA repair, replication
and condensation [21]. Similarly, phosphorylation creates
a repellent force to the DNA, opening the chromatin and
activating gene transcription [22]. The identification of
PTMs associated with transcriptional activation is unex-
pected, as sperm cells are thought to be transcriptionally
inert. However, these marks in paternal chromatin could
contribute to the rapid activation of specific genes after
fertilization. Alternatively, the presence of H4K8ac and
H4K12ac could indicate centromeric heterochromatin
[23]. N-terminal acetylation of H4 has been shown to
regulate arginine methylation and chromatin silencing
[24], while more generally, N-terminal protein acetylation
is known to regulate protein-protein interactions, protein
stability and protein localization [25].
The absence of PTMs on H2A corroborates a previous

study reporting a low level of H2A modification site oc-
cupancy in somatic cells [26]. This suggests the possi-
bility that H2A, if not regulated by PTM, may be
controlled by exchange of variants such as H2AX,
H2AL1, H2AL2 and H2BL1 previously reported [27,28].
Indeed, we detected multiple peptides unique for the
testis-specific expressed gene 1 protein (H2A-Bbd), an
atypical histone H2A variant associated with active tran-
scription and mRNA processing [see Additional file 2:
Table S1]. This variant was recently shown to be highly
expressed in adult testis, mainly in spermatocytes [29].
Overall, this MS-based study provides a novel map of

histone PTMs in adult mouse sperm, generating a global
picture of possible modified histone forms. Further stud-
ies on the presence of sperm-specific histone PTMs and
their combinatorial patterns in specific gene and promoter
regions are needed to better understand the contribution
of these histone forms to epigenetic inheritance. The
importance of this endeavor is supported by two recent
studies providing evidence that histone PTMs are in-
volved in the transgenerational transmission of acquired
traits [30,31].
Evidence for a ‘protamine code’?
Our findings are the first to report the identification of
multiple PTMs on protamines in mature mouse sperm
(Figure 2B). They reveal that PRM1 is phosphorylated
on S8 and PRM2 on S55, confirming human data (based
on sequence homology) [32-34]. The data also identify
unpredicted PTMs such as S42 and T44 phosphorylation
on PRM1, N-terminal, S42 and K49 acetylation on PRM1,
S55, K57, and K64 acetylation on PRM2, and K49 methy-
lation on PRM1. The function of these PTMs is not
known, but as histone PTMs, they may modulate
protamine-DNA interactions [5]. On histones, PTMs are
known to change protein structure and DNA binding by
altering the electrostatic properties of histones. Acetyl-
ation, for instance, counteracts the positive charge of the
epsilon-amino group of the lysine. Similarly, phosphoryl-
ation adds a negative charge to the histone. Both PTMs
reduce the overall charge of histones and decrease their
affinity for the negatively charged DNA, leading to chro-
matin opening and facilitation of recruitment of the tran-
scriptional machinery [22]. The fact that protamines are
modified by PTMs classically associated with transcrip-
tional activation is, however, intriguing because these pro-
teins are thought to ensure tight packaging of the DNA in
sperm cells, and contribute to transcriptional silencing.
This apparent contradiction can be reconciled by the pos-
sibility that PTMs on protamines may be involved in other
regulatory functions. For instance, since PTMs in sperm
are thought to provide paternal contribution to the epi-
genetic reprogramming of the zygote [13], protamine
PTMs could control the incorporation of maternal his-
tones after fertilization, with specific combinations of
PTMs favoring the recruitment of selected histones. Inter-
estingly in these combinations, while acetylation and
methylation can co-occur on a given protamine, acetyl-
ation and phosphorylation appear to be exclusive. We did
not detect proteins that were both acetylated and phos-
phorylated. Our data also suggest that the acetylation of
residues PRM1 S42 and PRM2 S55, which can be modi-
fied by both PTMs, likely prevents their phosphoryl-
ation, consistent with a previous report [35]. Finally, the
possibility that a protamine code plays a role in sperm
cells and in the zygote shortly after fertilization is ap-
pealing, but needs to be investigated. It would be inter-
esting for instance, to examine whether as is the case
for histones, protamines with PTMs are enriched at spe-
cific promoters or loci important for early embryonic
development [9].
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Analysis of protamine forms by high mass accuracy mass
spectrometry and electron transfer dissociation
fragmentation
An important parameter for the efficient detection and
identification of protamines and PTMs in this study was
the use of ETD fragmentation. ETD is a powerful
method for the analysis of peptides with multiple basic
residues such as protamines (rich in arginines), and in
contrast to CID is not restricted to low charged peptides
[36,37]. However, despite ETD, some arginine-rich re-
gions, such as the PRM1 core (residues 13 to 41) that
contains roughly 75% arginines, could not be sequenced
using the bottom-up approach. We thus developed a
top-down method for intact protein analysis to obtain
sequence coverage of these regions, as well as to investi-
gate the presence of specific modified protamine forms.
This method allowed us to demonstrate the presence of
both the full-length and processed PRM2 protein in ma-
ture mouse sperm. As expected, PRM2 was mainly
present in its mature processed form with the first 44
amino acids cleaved off. This form originates by associ-
ation of the PRM2 full-length precursor with the DNA
and successive proteolytic cleavage. The cleaved mature
PRM2 protein comprises the amino acid residues 45 to
107 and has been shown to be the predominant form in
the mature sperm head [5]. Furthermore, the four PTMs
identified with the peptide-based approach (that is, S55,
K57 and K64 acetylation, and S55 phosphorylation)
could also be confirmed.

Conclusions
The presented study introduces a novel proteomic work-
flow for an aspect of epigenetic marking that had
remained unexplored to date: the characterization of
chromatin PTMs in adult mouse sperm. The workflow
allowed the identification of novel histone PTMs in the
male germline, and, for the first time, of PTMs on prot-
amines, including serine, lysine and N-terminal protein
acetylation, serine and threonine phosphorylation, and
lysine methylation. Only three phosphorylation sites had
been described in human sperm before, but no PTM on
mouse protamines was known. Furthermore, combina-
tions of PTMs on individual protamines were identified,
providing an unexpected picture of the epigenetic land-
scape in sperm chromatin, These results suggest the ex-
istence of a ‘protamine code’ in addition to the ‘histone
code’ in sperm, the role of which in transgenerational
epigenetic inheritance remains to be investigated.

Methods
C57BL/6 mice
Mature sperm was collected from the caudal epididymis
of adult 3- to 12-month-old C57BL/6 males as previ-
ously described [38]. Mice were housed under a reversed
light cycle (dark phase, 7:00 to 19:00) in standard condi-
tions. All experiments were ethically approved by the
Swiss Cantonal Veterinary Office under license No. 55–
2012, Title ‘Study of the impact of early trauma on be-
havior across generations in the mouse’.

Isolation of nuclear proteins from mouse sperm
Histones and protamines were purified from adult sperm
as previously described for brain histones [26]. In brief,
sperm cells from the sperm of 5 to 15 mice per sample
were homogenized in lysis buffer (Sigma Nuclei Pure
isolation kit, Sigma-Aldrich, Buchs, Switzerland) with 1 ×
protease inhibitor cocktail and phosphatase inhibitor
cocktail I and II (Sigma-Aldrich). Nuclei were isolated by
sucrose gradient centrifugation. Two volumes of 1.8 M
sucrose were added to the homogenates and the mixture
was layered on top of one volume of 1.8 M sucrose. Nu-
clei were then pelleted by centrifugation at 30,000 g for
45 min, and snap frozen at −80˚C until analyzed. To sep-
arate histones from other chromatin components, acid
and high-salt extraction was performed as described pre-
viously [39]. For acid extraction, isolated nuclei were re-
suspended in 0.2 M sulphuric acid (H2SO4) and
incubated for >2 h at 4˚C with end-over-end rotation.
For high salt extraction, isolated nuclei were lysed by re-
suspension in 3 mM EDTA, 0.2 mM EGTA and incu-
bated at 4°C for 30 min with end-over-end rotation. After
centrifugation at 6,500 g for 5 min, the nucleoplasm-
containing supernatant was removed and snap frozen
at −80˚C until analyzed. The chromatin pellet containing
DNA, histones and protamines was re-suspended in
solubilization buffer containing 50 mM Tris-Cl pH 8.0,
2.5 M NaCl, 0.05% NP40, and incubated for 30 min at 4°C
with end-over-end rotation. After centrifugation at
16,000 g for 10 min, both acid- and salt-extracted histones
and protamines were precipitated with trichloroacetic acid
(TCA) followed by a 30-min incubation on ice. After cen-
trifugation at 16,000 g for 10 min, the pellet containing
histones and protamines was washed twice with ice-cold
acetone and centrifuged a second time.

Reduction of disulphide bridges and alkylation of cysteines
Histones and protamines were resuspended in an appro-
priate buffer for subsequent enzymatic digestion (see
below) or in 100 μl 25 mM NH4HCO3, pH 8 for intact
protein analysis. Disulphide bridges were reduced by incu-
bation with 10 mM dithiothreitol (DTT) for 45 minutes at
50°C, and cysteines alkylated by incubation with 50 mM
iodoacetamide (IAA) for 1 hr at room temperature in the
dark. The reaction was blocked with 50 mM DTT. Sam-
ples for intact protein analyses were desalted with ZipTip
C18 columns (Millipore, Billerica, MA, USA) and lyophi-
lized dry prior to MS analysis. Samples for peptide-based
analyses were enzymatically digested (see below).
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In-solution digestion of histone proteins
Proteins were digested into peptides with trypsin (Pro-
mega, Madison, WI, USA) in 50 mM ammonium bicar-
bonate, pH 8.0 at 37˚C for 2 h (1:200 enzyme:substrate),
with Glu-C (Roche Applied Science, Penzberg, Germany)
in 25 mM ammonium carbonate, pH 7.8, at 24˚C for 18 h
(1:20 enzyme:substrate), and with AspN (Roche Applied
Science) and chymotrypsin (Roche Applied Science) in
100 mM Tris–HCl, 10 mM CaCl2, pH 7.8, at 25˚C for
25 h (1:200 enzyme:substrate), as described previously
[26]. Enzymatic digests were stopped by adding 10% tri-
fluoroacetic acid (TFA) to a final pH <3. Peptides were
then desalted with ZipTip C18 columns (Millipore) and
lyophilized dry prior to analysis by ETD/CID-MS/MS.

Acetylated and phospho-peptide enrichment
To enrich for acetylated and phospho-peptides, digested
peptides were fractionated by SCX [40]. Peptides were
loaded onto a 12 μm, 300 Å pore size ZipTip SCX column
(Millipore) and eluted in four fractions with increasing
KCl concentration (50 mM, 150 mM and 300 mM KCl in
0.1% TFA, and 5%NH4OH).

Synthetic peptides
Lyophilized synthetic peptides were ordered from 21st
Century Biochemicals, Boston, MA, USA, resolubilized
in 50% acetonitrile (ACN), 0.1% formic acid (FA) and
analyzed by direct infusion.

Peptide-based bottom-up collision induced dissociation/
electron transfer dissociation mass spectrometry/mass
spectrometry analysis
Peptide samples were analyzed on an LTQ-Orbitrap XL-
ETD mass spectrometer (Thermo Scientific, Germany)
coupled to an Eksigent Nano-HPLC system (Eksigent,
AB Science, Redwood City, CA, USA). Solvent compos-
ition at the two channel was 0.2% formic acid, 1% ACN
for channel A and 0.2% formic acid, 80% ACN for chan-
nel B. Peptides were resolubilized in 3% ACN and 0.2%
formic acid and loaded on a 10 cm fused silica column
packed with 3 μm 200 Å pore size C18 resin. Peptides
were eluted with a flow rate of 200 nl/min by an ACN
gradient of 5-30% ACN over 35 min and 30 to 80%
ACN over the subsequent 13 min. Full-scan mass spec-
tra (m/z 300 to 2000) were acquired in the Orbitrap with
a resolution of 60,000 at 400 m/z, after accumulation to
a target value of 2e5. Six sequential CID and ETD MS/
MS scans were acquired in the ion trap on the three
most intense signals above a threshold of 500. The AGC
target value for ion trap MSn scans was set to 1e4. CID
was performed using a normalized collision energy of 35
and activation time of 30 ms. The ETD reaction time
was 120 ms and isolation width was 2 m/z. The ETD
anion target value was set at 1e6 and the activation time
at 100 ms. Supplementary activation was employed and
charge state dependent ETD time enabled. For all exper-
iments, the precursor masses already selected for MS/
MS were excluded for further selection for 30 s. The ex-
clusion window was set to 20 ppm and the size of the
exclusion list was set to 500. Samples were acquired
using internal lock mass calibration set on m/z 429.0877
and 445.1200 m/z. The synthetic peptides were analyzed
by direct infusion on an LTQ-Orbitrap XL-ETD. For
every peptide, fragmentation was performed by CID and
ETD, and spectra acquired in both the linear ion trap
and the FT-Orbitrap. Twenty scans were collected for
every acquisition. For CID/ETD fragmentation and for
the acquisition of ion trap MS/MS spectra the same pa-
rameters used for LC-MS analysis were applied. For FT
MS/MS spectra an AGC target value of 5E5 and an in-
jection time of 200 ms were set.

Peptide and post-translational modification identification
Mascot generic format (mgfs) files were generated
from MS and MS/MS raw data. Mgfs were searched
against a mouse protein database from the European
Bioinformatics Institute (EBI, 48,564 sequences) using
Mascot version 2.3 (Matrix Science, London, UK)
with a peptide mass tolerance of 6 ppm and a frag-
ment mass tolerance of 0.6 Da. The following PTMs
were included in the searches: carbamidomethylation (C,
fixed, 57.021464 Da), phosphorylation (S, T, and Y, variable,
79.966331 Da), acetylation (protein N-term, S, T, Y and K,
variable, 42.010565 Da), mono-, di- and tri-methylation (R
and K, variable, 14.015650 Da, 28.031300 Da and
42.046950 Da), and oxidation (M, variable, 15.994915 Da).
Only peptides with the Mascot parameter rank 1 were ac-
cepted. In the case of histone peptides, a peptide expect
cut-off of 0.05 and an FDR <5% was applied, and all PTMs
identified by only one spectrum were discarded. For spectra
of all peptides with PTM(s), confident PTM site placement
was based on the Mascot site analysis probability [41] and
manual validation. When alternative site localizations were
possible for a given PTM, the ambiguous sites were indi-
cated by parentheses. All identified peptides with PTMs are
listed in Additional file 2: Tables S1 and Additional file 3:
Table S2. Residues are numbered starting with the first
residue after the cleaved methionine according to histone
field standard.

Intact protein top-down electron transfer tandem mass
spectrometry analysis
Protein samples were analyzed on an LTQ-Orbitrap Velos
ETD mass spectrometer (Thermo Scientific, Germany)
coupled to an Eksigent Nano-HPLC system (Eksigent).
Lyophilized intact proteins were resolubilized in 0.1% TFA
and loaded on a 10 cm fused silica column packed with
3 μm 200 Å pore size C18 resin. Peptides were eluted via
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an ACN gradient of 1 to 55% ACN over 36 min in a buffer
containing 0.2% FA at flow rate of 250 nl/min. Both full
scan MS and MS/MS spectra were acquired in the Orbi-
trap analyzer, at a resolution of 60,000 for MS1 and 30,000
for MS2 scans. The AGC target values were set to 1E6 for
MS1 and 1E5 for MS2. The maximum injection time was
250 ms for MS1 and 200 ms for MS2 scans. Fragmenta-
tion of the three most intense ions above a threshold of
5,000 was performed by ETD with an activation time of
15 ms. In order to improve the efficiency of ETD fragmen-
tation, the precursor ions were isolated in a 10 Da m/z
window. For each fragmentation event, supplementary ac-
tivation was employed and 5 μscans were summed.

Protein and proteoform identification
Spectra were deconvoluted with Mascot Distiller v 2.3.2.
Protein and PTM identification was performed with
Mascot version 2.3 and ProSight PTM 2.0 [42]. Mascot
searches were performed against a protein database con-
taining histones, protamines and their processed forms,
and E. coli protein sequences. Peptide and fragment
mass tolerance were set to 2 Da to account for incorrect
isotope picking. The same PTMs as in the peptide-based
approach were included in the searches: carbamidometh-
ylation (C, fixed), phosphorylation (S, T, and Y, variable),
acetylation (protein N-term, S, T, Y and K, variable),
mono-, di- and tri-methylation (R and K, variable), and
oxidation (M, variable). In ProSight PTM 2.0, the intact
and fragment ion masses of selected scans were searched
using the single protein search. PTM sites were manually
placed and scored using sequence gazer.

Additional files

Additional file 1: Figure S2. MS2 spectra of all modified histone
peptides obtained from histone digests across all experiments. The
Mascot peptide view, fragment ion table and the annotated peptide
sequence with post-translational modification (PTM) are shown.

Additional file 2: Table S1. List of all histone peptides derived from
mouse sperm found in the peptide-based bottom-up experiments. In the
peptide sequence the site/s of N-terminal acetylation are designated by
‘ac-’, before the modified residue, acetylation by ‘ac’, phosphorylation by
‘p’, and mono-/di-/tri-methylation by ‘me1, me2 or me3’ respectively.
Percentages from the Mascot site analysis indicate the Mascot Delta score
as a post-translational modification (PTM) site probability when alternative
site localizations are possible for given PTM(s). For four peptides, the PTM
is in parenthesis because the PTM site could not be assigned to a single
residue.

Additional file 3: Table S2. List of all protamine peptides derived from
mouse sperm found in the peptide-based bottom-up experiments. In the
peptide sequence the site/s of N-terminal acetylation are designated by
‘ac-’, before the modified residue, acetylation by ‘ac’, mono-methylation
by ‘me1’, and phosphorylation by ‘p’.

Additional file 4: Figure S1. Protamine post-translational modification
(PTM) site validation by spectral comparison with synthetic peptides.
Mass spectra of identified endogenous protamine peptides with novel
PTM sites and their synthetic counterparts. Major peaks are labeled in the
spectra and the fragment ions indicated in the peptide sequence. A)
A novel site of acetylation at the N-terminus of PRM1. B) A novel site of
serine phosphorylation on residue S8 of PRM1. C) A novel site of serine
phosphorylation on residue S42 of PRM1. D) A novel site of threonine
phosphorylation on residue T44 of PRM1. E) A novel site of lysine
acetylation on residue K49 of PRM1. F) A novel site of lysine acetylation
on residue K57 of PRM2. G) A novel site of lysine acetylation on residue
K64 of PRM2.

Additional file 5: Figure S3. MS2 spectra of intact PRM1 and PRM2
forms.
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