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Abstract

Epithelial-to-mesenchymal transition (EMT) and its reverse process, mesenchymal-to-epithelial transition (MET), play
important roles in embryogenesis, stem cell biology, and cancer progression. EMT can be regulated by many
signaling pathways and regulatory transcriptional networks. Furthermore, post-transcriptional regulatory networks
regulate EMT; these networks include the long non-coding RNA (IncRNA) and microRNA (miRNA) families. Specifically,
the miR-200 family, miR-101, miR-506, and several INcRNAs have been found to regulate EMT. Recent studies have
illustrated that several INcRNAs are overexpressed in various cancers and that they can promote tumor metastasis by
inducing EMT. MiRNA controls EMT by regulating EMT transcription factors or other EMT regulators, suggesting that
IncRNAs and miRNA are novel therapeutic targets for the treatment of cancer. Further efforts have shown that
non-coding-mediated EMT regulation is closely associated with epigenetic regulation through promoter methylation
(e.g, miR-200 or miR-506) and protein regulation (e.g., SET8 via miR-502). The formation of gene fusions has also been
found to promote EMT in prostate cancer. In this review, we discuss the post-transcriptional regulatory network that is

Mesenchymal-to-epithelial transition (MET)

involved in EMT and MET and how targeting EMT and MET may provide effective therapeutics for human disease.
Keywords: Long non-coding RNA (IncRNA), microRNA (miRNA), Epithelial-to-mesenchymal transition (EMT),

Introduction

EMT is a process whereby epithelial cells lose both polar-
ity and cell-to-cell contacts. Cells undergoing EMT ac-
quire a mesenchymal phenotype, which is characterized
by an epithelial-to-mesenchymal switch in marker expres-
sion, such as the loss of epithelial markers (e.g., E-cadherin,
claudin, and occludin) and gain of mesenchymal markers
(e.g., vimentin and N-cadherin). The reverse process,
known as mesenchymal-to-epithelial transition (MET),
has also been reported [1]. EMT and MET are important
in organ development, stem cell biology, wound healing,
and cancer progression. Many signals, transcriptional fac-
tors, and post-transcriptional regulatory networks can
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induce EMT. Post-transcriptional regulatory networks in-
clude the miRNA and IncRNA families. Therefore, in this
review, we focus on miRNA and IncRNA, which may be
effective diagnostic and therapeutic targets in cancer. Spe-
cifically, we describe several IncRNAs that regulate EMT
in cancer, as well as miRNAs that regulate multiple signal-
ing pathways involved in EMT and transcription factors of
E-cadherin.

EMT and MET regulate important processes, including
disease

EMT and MET have central roles in embryogenesis and
cancer metastasis [2]. EMT is an integral part of tissue re-
modeling that occurs during embryogenesis [1]. MET also
contributes to embryonic development [3]. In adults,
EMT can be activated to promote wound healing after tis-
sue injury [4]. EMT induction allows cancer cells to dis-
seminate from the primary tumor, invade surrounding
tissues, and eventually generate metastases by colonizing
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remote sites via blood or lymphatic routes. Metastatic cells
can then revert back via MET to re-acquire epithelial
characteristics similar to those of cells in the primary
tumor [4].

EMT and MET are essential to the regulation of stem
cell pluripotency [4]. Tumors contain cancer stem cells
(CSCs), which are a small subpopulation of cells that are
capable of self-renewal, differentiation, and tumorigen-
icity. Evidence suggests that EMT induction enhances
self-renewal and the acquisition of CSC characteristics
[5]. Thus, therapeutics that target EMT may be useful
for reducing CSC populations in cancer.

Key regulators involved in EMT and MET
During EMT, epithelial cells lose cell-to-cell interactions,
undergo morphological challenges, and increase their
cellular motility. The most important mediator of cell-to-
cell adhesion is the cadherin family of proteins, which
promotes the formation of adherens junctions that act
as glue to hold the cells within tissues together. The most
characterized cadherins include E-, N-, and P-cadherin.
E-cadherin plays an important role in epithelial cell-to-
cell interactions because it is responsible for holding
neighboring epithelial cells together in a classic cobble-
stone structure. During EMT, E-cadherin is replaced by
abnormal expression of N- or P-cadherin. The downreg-
ulation of E-cadherin leads to the release of -catenin,
and the latter translocates to the nucleus and functions
as an activator for transcription factors, promoting cellular
adhesion, tissue morphogenesis, and cancer development.
Other proteins that mediate EMT include vimentin and
fibronectin. Vimentin is an intermediate filament protein
that is upregulated in cells undergoing EMT. During
EMT, vimentin expression causes epithelial cells to ac-
quire a mesenchymal shape and increased motility [6].
Fibronectin mediates cellular interactions with the
extracellular matrix and is important for migration, dif-
ferentiation, growth, and cell adhesion. Like vimentin,
fibronectin is also upregulated during EMT and can
therefore be used as a biomarker for EMT (Figure 1).
EMT is regulated by many signaling pathways, tran-
scriptional factors, and post-transcriptional factors. Many
signals, including transforming growth factor-p (TGEF-p),
fibroblast growth factor (FGF), human growth factor
(HGF), platelet-derived growth factor (PDGF), insulin-like
growth factor (IGF) (and its receptor [IGFR]), vascular en-
dothelial growth factor (VEGF), estrogen receptor (ERa),
Notch, Wnt, and epidermal growth factor (EGF) may be
involved in EMT. These pathways ultimately activate the
transcription of EMT-related transcription factor families,
including ZEB (ZEB1 and ZEB2), the zinc finger Snail
(SNAI1 and SNAI2), and the basic helix-loop-helix
(e.g., Twistl and Twist2) [7]. By regulating the ex-
pression of E-cadherin, these transcription factors
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Figure 1 Regulatory network in EMT and MET. EMT can be
regulated by many signaling pathways, transcription factors, and
post-transcriptional mechanisms.

dynamically modulate EMT, cell adhesion, and motility. In
addition to transcription factors, EMT is regulated by
post-transcriptional mechanisms, including IncRNA and
miRNA (Figure 1).

Regulation of EMT by IncRNAs

LncRNA, which is larger than 200 nt, consists of a hetero-
geneous group of RNA molecules that are involved in a
broad spectrum of cellular processes and in cancer pro-
gression [8]. Studies have demonstrated that IncRNAs are
aberrantly expressed in a variety of human cancers, such
as gastric cancer [9,10], bladder cancer [11,12], and breast
cancer [13]. Interestingly, a recent report revealed that
several IncRNAs may be involved in EMT regulation [14].

Several important IncRNAs are reported to induce EMT,
including highly upregulated in liver cancer (HULC),
metastasis-associated lung adenocarcinoma transcript
1 (MALAT-1), H19, and HOX transcript antisense inter-
genic RNA (HOTAIR).

HULC overexpression in gastric cancer was found to be
correlated with lymph node metastasis, distant metastasis,
and advanced tumor node metastasis stage [9]. Silencing
of HULC effectively reversed the EMT phenotype [9].
MALAT-1 expression was remarkably increased in pri-
mary tumors that subsequently metastasized compared
with those that did not metastasize. MALAT-1 promoted
EMT by activating Wnt signaling in vitro [11]. H19 en-
hanced bladder cancer metastasis by associating with
EZH2 and inhibiting E-cadherin expression [12].

The expression level of HOTAIR was significantly cor-
related with lymph node metastasis and TNM stage in
gastric cancer. The results of in vitro studies suggested
that HOTAIR promoted EMT by regulating Snail [10].
HOTAIR remodels the gene expression pattern of breast
epithelial cells into a pattern that more closely resembles
that of embryonic fibroblasts, leading to increased can-
cer invasiveness and metastasis [13]. HOTAIR resides in
the mammalian HOXC locus and recruits the polycomb
repressive complex 2 to specific target genes genome
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wide, leading to histone H3 lysine 27 trimethylation and
epigenetic silencing of metastasis-suppressor genes.

The findings described above indicate that IncRNA
has a role in tumor diagnosis and therapy. Recently, the
therapeutic potential of targeting MALAT-1 was demon-
strated, as free uptake of antisense oligonucleotides that
target MALAT-1 in tumors prevented lung metastasis in
nude mice [15]. Together, these results suggest that ther-
apy is needed that hinders cancer progression by target-
ing specific IncRNAs that are implicated in EMT and
therefore metastasis.

Regulation of EMT by miRNA

A second post-transcriptional mechanism that contrib-
utes to EMT involves miRNAs, which are 22-nucleotide
non-coding RNAs that suppress gene expression through
mRNA destabilization or translational inhibition. They are
deregulated in a wide variety of human cancers [16] and
have been shown to contribute to the control of cell
growth, differentiation, and apoptosis, which are import-
ant to cancer development and progression [17]. MiRNAs
can regulate multiple signaling pathways involved in
EMT. Specifically, they can directly target transcription
factors of E-cadherin and other EMT regulators.
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MiRNAs regulate signaling pathways involved in EMT

Many miRNAs influence the EMT process by targeting
the expression of specific ligands, receptors, and signaling
pathways (Figure 2). Increasing evidence indicates that
miRNAs regulate EMT by targeting key EMT regulators,
including FGF (and its receptor [FGFR]), HGF, IGF (and
IGFR), ERa, Notch, and Wnt. MiR-15 and miR-16 were
downregulated in cancer-associated fibroblasts (CAFs)
surrounding prostate tumors. This downregulation pro-
moted tumor growth and progression through reduced
post-transcriptional repression of FGF-2 and its receptor
FGFR1, which act on both stromal and tumor cells to en-
hance cancer cell survival, proliferation, and migration
[18]. Emerging evidence indicates that miR-198 is down-
regulated in hepatocellular carcinoma compared with in
normal liver parenchyma, and forced expression of miR-
198 inhibited HGF’s promotion of hepatocellular carcin-
oma cell migration and invasion in a c-MET-dependent
manner [19]. A recent report showed that miR-7 sup-
presses Snail, increases E-cadherin expression, and par-
tially reverses EMT by targeting IGFIR, generating a
novel miR-7/IGF1R/Snail axis in gastric cancer [20]. As
we know, ERa signaling opposes EMT by inhibiting TGF-
p and cytokine signaling through Smad and nuclear
factor-kB. Another report demonstrated that miR-206,
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miR-221, miR-222, miR-130a, miR-17, miR-92, and miR-
145 could suppress ERa and promote EMT [21]. MiR-34a
can regulate EMT by directly targeting Notchl and
Jaggedl [22]. Furthermore, a recent study illustrated that
miR-200 members can target Jaggedl, thereby mediating
the downregulation of ZEB1 [23]. The Wnt/p-catenin sig-
nal pathway promotes EMT in cancer, and miR-200a was
found to inhibit Wnt/p-catenin by targeting ZEB1 and
ZEB2. MiR-200 can directly target -catenin mRNA, inhi-
biting its translation and blocking Wnt/B-catenin signaling
in meningioma [24].

MiRNA can also regulate EMT by targeting signaling
pathways, including the TGF-$, PDGF, VEGF, and EGF
pathways. TGF-p is a well-known EMT initiator. Expos-
ing epithelial cells to TGF- promotes the loss of epithe-
lial morphological features, the increased expression of
EMT marker genes such as ZEB1 and ZEB2, and the de-
creased expression of miR-200 [25]. Furthermore, down-
regulating paracrine TGF-p can inhibit and reverse EMT
by downregulating ZEB1 and ZEB2 and upregulating
miR-200b and miR-200c [26]. Inhibition of the Smad
signaling pathway completely blocked the TGF-f1-
mediated decrease in miR-200, suggesting that TGF-1-
induced suppression of the miR-200 family is regulated
via Smad [27]. In addition, miR-99a and miR-99b may
function as modulators within a complex network of fac-
tors that regulate TGF-p-induced EMT [28].

Anping Su et al. demonstrated that downregulation of
TRPS1 by miR-221 is critical for the PDGF-mediated
EMT phenotype [29]. VEGF was reported to suppress
EMT by inhibiting the expression of miR-192 [30],
which increases E-cadherin levels via repressed transla-
tion of ZEB2 mRNA [31]. Similarly, it was reported that
EGF and EGFR can promote EMT by downregulating
the miR-200 family in anaplastic thyroid cancer cells
[32]. Furthermore, miR-155 overexpression suppressed
EGF-induced EMT, decreased migration and invasion,
inhibited cell proliferation, and increased chemosensitiv-
ity to DDP in human Caski cervical cancer cells [33].
Together, these data underscore the importance of miR-
NAs in EMT and malignant tumor progression.

MiRNAs that regulate E-cadherin transcription factors
ZEB1 and ZEB2

The expression of E-cadherin is mainly controlled by three
families of transcription factors: SNAI1 and SNAI2, ZEB1
and ZEB2, and Twistl and Twist2. Several miRNAs dir-
ectly target these families to modulate EMT in cancer
(Figure 2). Members of the miR-200 family (miR-200a,
miR-200b, miR-200c, miR-141, and miR-429) have
emerged as important regulators of EMT, in part by target-
ing ZEB1 and ZEB2. Moreover, some signaling pathways,
including p53, regulate EMT by regulating the miR-200-
ZEB1 and ZEB2 regulatory loop.
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The miR-200 family is usually downregulated in human
cancer cells and tumors as a result of aberrant epigenetic
gene silencing. The results of recent studies suggest that
members of the miR-200 family play a critical role in sup-
pressing EMT and cancer invasion and metastasis [34] by
targeting transcriptional repressors of ZEB1 and ZEB2
[35]. Meanwhile, ZEB1 can directly suppress miRNA-200
family members in cancer cells, including miR-141 and
miR-200c [36,37]. It was also reported that ZEB1 and
ZEB2 repressed the expression of miR-200a, miR-200b,
and miR-429 by binding to a conserved pair of ZEB-type
E-box elements located proximal to the transcription start
site in the promoter region [38]. Therefore, ZEB1 and
ZEB2 and miR-200 family members repress expression of
each other in a reciprocal feedback loop, which may lead
to amplification of EMT. Targeting this loop may be a
new therapeutic strategy for cancer.

Pathways that suppress EMT by upregulating miR-200 and
repressing ZEB1 and ZEB2

Several molecules have been found to upregulate the
miR-200 family and consequently suppress EMT. For ex-
ample, both P300 and PCAF act as cofactors for ZEBI,
forming a P300/PCAF/ZEB1 complex on the miR200c/
141 promoter. This results in lysine acetylation of ZEB1
and releases ZEB1’s suppression of miR-200c/141 tran-
scription [39]. Smad3 was also reported to upregulate
miR-200 family members at the transcriptional level in a
TGE-B-independent manner [40]. p53 has been reported
to transactivate miR-200 family members by directly
binding to the promoters that repress ZEB1 and ZEB2
expression, leading to inhibition of EMT [41,42]. Similarly,
NPV-LDE-225 suppressed EMT by upregulating E-cadherin
and inhibited N-cadherin, Snail, Slug, and ZEB1 by increas-
ing miR-200a, miR-200b, and miR-200c [43].

Pathways that promote EMT by suppressing miR-200 and
upregulating ZEB1 and ZEB2

In addition to their role in regulating EMT, miR-200
family members are negatively regulated by multiple sig-
naling pathways. For example, in one study, overexpres-
sion of Stat3 [44], PDGF-D [45], Notch-1 [46], and
DCLK1 [47] in cancer cells led to significant downregula-
tion of miR-200 family members; this resulted in up-
regulation of ZEB1, ZEB2, and SNAI2 expression and ac-
quisition of the EMT phenotype. IDH1 and IDH2 mutants
also caused an EMT-like phenotype; this phenotype was
dependent on upregulation of the transcription factor
ZEB1 and downregulation of miR-200 family members
[48]. Other miRNAs can induce EMT by downregulating
miR-200 through DICER, such as miR-103 or miR-107
[49]. Similarly, miR-130b silencing can restore DICER1 to
a threshold level that allows miR-200 family members to
repress EMT in endometrial cancer [50]. All of these
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findings indicate that these molecules promote EMT by
suppressing miR-200.

Fusion genes are formed when chromosomal instabil-
ity causes two genes that normally exist in isolation to
fuse together [51]. Interestingly, a well-known gene fu-
sion in prostate cancer that is produced by deletion of a
3-mega base region between ERG and TMPRSS2 [52]
(also reviewed in [Parker 2014 Journal of Pathology]) has
also been found to upregulate ZEB1 and ZEB2 expression
[53]. Specifically, expression of the TMPRSS2-ERG fusion
gene caused epithelial immortalized prostate epithelial cells
to undergo morphological changes consistent with those of
mesenchymal cells while downregulating expression of the
epithelial marker CDHI [53]. This finding highlights the
complex ways in which EMT can be facilitated at the
genetic level, simply by the fusion of two genes.

Epigenetic regulation of miR-200

MiR-200 family members can also be epigenetically reg-
ulated. It was reported that miR-200c expression was
epigenetically regulated in CRC [54]. Rui Neves et al.
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also showed that the miR-200c/141 cluster is repressed
by DNA methylation of a CpG island located in the pro-
moter region of these miRNAs in invasive breast cancer
cells [55].

The miR-200 family consists of five members in two
clusters: miR-200b ~ 200a ~ 429 and miR-200c ~ 141.
Studies have illustrated DNA methylation in two regions
(#1 and #2) of a 2.5-kb large CpG island that is 2 kb up-
stream in miR-200b ~ 429 and in smaller CpG-enriched
regions associated with miR-200c ~ 141. These regions
can be demethylated by 5-Aza-20-deoxycytidine and the
histone deacetylase inhibitor trichostatin A [56]. Aberrant
DNA methylation of the CpG island or the CpG-enriched
regions is closely linked to miR-200 inappropriate silen-
cing in cancer cells [57]. Other factors may also be in-
volved in miR-200 repression, such as ZEB1 and Twistl.
A recent study showed that induction of ZEB1 and ZEB2
increased the methylation of miR-200 promoters [58].
Twistl was also reported to directly associate with miR-
200 promoters as a transcriptional repressor of miR-200
[56] (Figure 3A).
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MiRNAs other than miR-200 inhibit EMT by targeting
ZEB1 and ZEB2

In addition to miR-200 family members, other miRNAs
have been identified that regulate EMT by directly tar-
geting ZEB1 and ZEB2. For example, miR-130b [59],
miR-150 [60], and miR-655 [61] inhibit EMT by directly
targeting ZEB1. Ectopic expression of miR-192 and miR-
215 increased E-cadherin levels by targeting ZEB2 [31].
MiR-205, which is induced by p63, was reported to in-
hibit EMT by targeting ZEB1 and ZEB2 [35] in breast
cancer [62] and prostate cancer [63]. MiR-153 is a novel
regulator of EMT that targets ZEB2 and SNAI1 [64].

MiRNAs that regulate SNAI1 and SNAI2

MiR-34 inhibits EMT by directly targeting SNAI1 [65].
Moreover, SNAI1 can repress transcription of miR-34
genes, resulting in a SNAI1/miR-34 feedback loop that is
analogous to the reciprocal ZEB/miR-200 feedback loop
[66]. MiR-34 targets a set of highly conserved sites in
the 3" untranslated region (UTR) of Wnt and EMT genes,
specifically WNT1, WNT3, LRP6, AXIN2, B-catenin, and
LEF1, resulting in suppression of TCF/LEF transcriptional
activity and the EMT process [67].

MiR-203 was found to be repressed by SNAI1 during
SNAIl-induced EMT in MCF?7 breast cancer cells. Mean-
while, miR-203 repressed endogenous SNAII, forming a
double-negative miR203/SNAI1 feedback loop [68]. miR-
203 targeted SNAI2 [69], and SNAI2 directly bound to
the miR-203 promoter to inhibit its transcription. There-
fore, miR-203 also formed a double-negative feedback
loop with SNAI2 in which each inhibited the other’s
expression, thereby controlling EMT [70]. In another
double-feedback loop, miR-200 and SNAI2 regulate
EMT. While SNAI2 is targeted by miR-200, SNAI2 dir-
ectly binds E-boxes in the miR-200a/b promoter regions
and represses miR-200a/b transcription. Therefore, SNAI2
and miR-200 act in a self-reinforcing regulatory loop that
leads to amplification of EMT [71].

The results of a recent report suggest that miR-506 is a
novel microRNA that inhibits EMT [72]. Integrated gen-
omic analyses revealed a miRNA-regulatory network that
is involved in EMT in serous ovarian cancer (Figure 4).
MiR-506 augmented E-cadherin expression, inhibited cell
migration and invasion, and prevented TGFpB-induced
EMT by targeting SNAI2. MiR-506 expression is down-
regulated in an integrated mesenchymal subtype of ser-
ous ovarian cancer through methylation of CpG sites on
the miR-506 promoter (Figure 3A). The nanoparticle
delivery of miR-506 in orthotopic ovarian cancer mouse
models led to E-cadherin induction and reduced tumor
growth [72].

Several other miRNAs also target SNAIL and SNAI2,
such as miR-182 [69], miR-30 [73], miR-1 [71], and miR-29b
[74] (Figure 2).
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MiRNAs that regulate Twist1 and Twist2

The transcription factor Twist is a highly conserved
basic helix-loop-helix transcription factor that promotes
EMT and tumor metastasis. Apart from let-7d [75], miR-
29b [74], and miR-214 [76], miR-580 was also reported
to act as a negative regulator of Twistl that induces
EMT in breast cancer [77]. MiR-675 similarly directly
downregulates Twistl expression, leading to EMT [78]
(Figure 2).

The results of a recent study showed that SET8 pro-
motes EMT and enhances the invasive potential of breast
cancer cells in vitro and in vivo by interacting with Twist.
SET8 interacts with Twist to regulate the E-cadherin or
N-cadherin promoter [79]. Fengju Song et al. identified a
single-nucleotide polymorphism within the miR-502 seed-
binding region in the 3'-UTR of the SET8 genethat modu-
lates SET8 expression [80]. Thus, miR-502 may suppress
EMT by inhibiting SET8 (Figure 3B).

MiRNAs directly regulate E-cadherin

Both miR-9 [81] and miR-23a [82] directly target E-
cadherin, leading to increased cell motility and invasive-
ness (Figure 2). As miR-9 can be regulated by c-Myc and
Prospero homeobox 1, overexpression of both [83,84] led
to EMT; it also resulted in a significant decrease in
E-cadherin and increase in vimentin through the upregu-
lation of miR-9. In addition, miR-9 promoted EMT and
metastasis by directly regulating KLF17 expression [85].

MiRNAs regulate vimentin and fibronectin

MiR-506 was reported to inhibit TGFB-induced EMT by
directly targeting vimentin in a human breast cancer cell
line [86]. MiR-30 was reported to suppress the migratory
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ability and invasiveness of breast cancer cell lines by dir-
ectly targeting vimentin [87]. Furthermore, MiR-17-3p
[88], as well as miR-124 and miR-203 [89], repressed
vimentin expression by targeting its 3'UTR. miR-138 sup-
pressed cell migration and invasion by directly targeting
vimentin in renal cell carcinoma [90] and squamous cell
carcinoma cells [91].

The results of another report suggested that miRNA-
200b suppresses TGF-f1-induced EMT by directly tar-
geting the 3'UTR of fibronectin [92]. Similarly, miR-17
resulted in decreased cell adhesion and migration by
directly targeting fibronectin [93].

Since miRNAs play important roles in EMT and can-
cer metastasis, there is growing interest in using them in
therapeutic applications [94]. Downregulation of the
miRNAs that promote cancer progression may provide
effective therapeutics for patients by using specific oligo-
mers, called antagomirs that compete with the target
mRNA to bind to miRNA. Krutzfeldt et al. found that
antagomirs are powerful tools to silence specific miRNA
in vivo and may represent a therapeutic strategy for
silencing miRNAs in disease [95]. Meanwhile, the restor-
ation of tumor-suppressive miRNA in tumors by exter-
nal delivery may serve as a promising therapeutic option
[96]. A report suggested that miR-200b and miR-200c
were significantly associated with survival in gastric
cancer patients; miR-200b suppressed ZEB1, augmented
E-cadherin, inhibited cell migration, and suppressed
tumor growth in a mouse model [97]. Furthermore, de-
livery of miR-200 members into the tumor endothelium
resulted in marked reductions in metastasis and angio-
genesis [98].

Conclusions and future directions

A plethora of miRNAs, including miR-200 family mem-
bers and miR-506, have been found to directly regulate
the expression of the target genes that are known to play
critical roles in EMT regulation (Figure 4). As shown in
Table 1, aside from regulating the signaling pathways
and transcriptional factors described above, miRNAs
regulate other genes to modulate EMT in various cancer
types.

Targeting EMT and MET may provide effective thera-
peutics for cancer. However, therapeutic intervention
may be complex because EMT occurs at an early stage
of metastasis and MET occurs at later stages. MiRNAs
that inhibit EMT, such as miR-141, were found in the
circulation of patients with metastatic colon cancer, and
high levels of plasma miR-141 were predictive of poor
survival [122]. As miR-141 may promote MET, it is con-
ceivable that miR-141 promotes tumor growth at distant
sites at a late stage of metastasis, a theory that warrants
further investigation. A recent report by Oscar et al.
provided supporting evidence that MET is essential for
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Table 1 MiRNAs that regulate EMT and their targets in
different cancer types

Cancer type  miRNA Target Reference
Breast miR-24 Net1A [99]
miR-29a TTP [100]
miR-106b-25 SMAD7 [101]
miR-221/222 TRPS1 [102]
miR-374a WIF1, PTEN, WNT5A [103]
miR-375 MTDH [104]
miR-448 SATB1 [105]
miR-506 Vimentin, SNAI2, CD151 [86]
miR-661 Nectin-1, StarD10 [106]
GC miR-7 IGF1R [20]
miR-27 APC [107]
miR-106b-25 SMAD7 [101]
miR-197 p120 catenin [108]
HCC miR-21 PTEN, hSulf-1 [109]
miR-194 BMI-1 [110]
miR-490-3p ERGIC3 [111]
miR-491 MMP-9 [112]
miR-612 AKT2 [113]
HNSCC miR-138 Vimentin, ZEB2, EZH2 [91]
LAD Let-7c Bel-xl [114]
Liver miR-216a/217  PTEN, SMAD7 [115]
Lung miR-365 HMGA2 [116]
Melanoma miR-137 CtBP1 7
NSCLC miR-134 FOXM1 [118]
miR-149 FOXM1 [119]
Ovarian miR-187 Dab2 [120]
Pancreatic miR-126 ADAM9 121

Abbreviations: Net1A Neuroepithelial cell transforming 1, TTP Tristetraprolin,
TRPS1 Trichorh inophalangeal 1, WIFT Wnt inhibitory factor-1, MTDH Metadherin,
SATB1 Special AT-rich sequence-binding protein-1, GC Gastric cancer, IGF1R
Insulin-like growth factor-1 receptor, APC Adenomatous polyposis coli, HCC
Hepatocellular carcinoma, hSulf-1 Human sulfatase-1, BMI-1, B lymphoma mouse
Moloney leukemia virus insertion region 1, ERGIC3 Endoplasmic reticulum-Golgi
intermediate compartment protein 3, HNSCC Head and neck squamous cell
carcinoma, LAD Lung adenocarcinoma, CtBP1 Carboxyl-terminal binding protein 1,
NSCLC Non-small cell lung cancer, FOXM1 Forkhead box M1, Dab2 Disabled
homolog-2, ADAM9 Disintegrin and metalloproteinase domain-containing
protein 9.

the colonization and metastasis of differentiated carcin-
omas because of EMT-associated growth arrest [123]. Jeff
et al. also demonstrated that activation of EMT promotes
local tumor invasion, intravasation, and extravasation of
the systemic circulation; MET is essential for establishing
macrometastases [124]. As EMT is associated with de-
creased cell proliferation and MET promotes metastatic
growth, it is still unknown whether EMT inhibition is a lo-
gical approach to preventing metastasis.
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Most studies have shown that, as post-transcriptional
regulators, IncRNA and miRNA play important roles in
EMT and are important markers and tools in cancer diag-
nosis, prognosis, and therapeutics. However, IncRNA and
miRNA have multiple targets that are involved in multiple
different physiological processes; therefore, the role of
therapeutics that target IncRNA or miRNA should be
validated in vivo to determine their overall physiological
effect.
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