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Abstract

luciferase were used for BLI.

imaging focused on pre-clinical drug development.

Xenograft

Background: We investigated the utility of bioluminescence imaging (BLI) using firefly luciferase in monoclonal
and polyclonal populations of leukemia cells in vitro and in vivo.

Methods: Monoclonal and polyclonal human lymphoid and myeloid leukemia cell lines transduced with firefly

Results: Kinetics and dynamics of bioluminescence signal were cell line dependent. Luciferase expression
decreased significantly over time in polyclonal leukemia cells in vitro. Transplantation of polyclonal luciferase-tagged
cells in mice resulted in inconsistent signal intensity. After selection of monoclonal cell populations, luciferase
activity was stable, equal kinetic and dynamic of bioluminescence intensity and strong correlation between cell
number and light emission in vitro were observed. We obtained an equal development of leukemia burden
detected by luciferase activity in NOD-scid-gamma mice after transplantation of monoclonal populations.

Conclusion: The use of monoclonal leukemia cells selected for stable and equal luciferase activity is recommended
for experiments in vitro and xenograft mouse models. The findings are highly significant for bioluminescence
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Background

Although animal models of leukemia often utilize survival
time as the primary therapeutic end point, biolumines-
cence imaging (BLI) is increasingly being used to provide
quantitative and more rapid assessment of drug efficacy in
pre-clinical oncology research [1-5]. BLI of firefly lucifer-
ase activity provides a cost-effective and extremely sensi-
tive method for imaging fundamental biological processes
in vitro and in vivo [6-8]. In vivo BLI is an excellent
method to gain a dynamic, longitudinal profile of engraft-
ment [9]. Luciferase oxidizes luciferin in the presence of
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adenosine tri-phosphate (ATP) and oxygen to form an
electronically excited oxy-luciferin species. Visible light is
emitted following the relaxation of excited oxy-luciferin to
its ground state [10,11]. Because this light can be transmit-
ted through mammalian tissues, it is possible to use bio-
luminescence for non-invasive and quantitative monitoring
of leukemia burden. However, the establishment of clinic-
ally relevant animal models that include sensitive detection
of early cancer growth and leukemia burden remains an
ongoing challenge in translational oncology research [12].
Therefore, the difficulty in molecular imaging is in the
development of effective imaging strategies with re-
porter systems that reveal cellular and molecular pro-
cesses consistently throughout an entire study period
[13-16]. Nevertheless, there are limitations associated
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with this approach. Using firefly luciferase as a reporter
system requires exogenous luciferin addition and is cur-
rently not practical for large animal models. The rapid
consumption of D-luciferin can potentially lead to an
unstable signal [17]. Further mammalian tissue is known
to be a turbid medium that both scatters and absorbs
photons. This is mostly due to changes in refractive index
at cell membranes and internal organelles, and can lead to
a scattered and attenuated bioluminescence signal, which
has influence on investigations especially in deeper tissue
[18]. Bioluminescence imaging using firefly luciferase
in vitro and in vivo is also often performed with potentially
unstable luciferase-expressing polyclonal cell populations.
In this study we investigated the limitations, advantages
and disadvantages of bioluminescence imaging using a
firefly luciferase system with monoclonal and polyclonal
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human leukemia cell populations in vitro and in a xeno-
graft mouse model.

Results

Instability and incomparability of luciferase activity in
polyclonal human leukemia cell lines in vitro

Polyclonal luciferase expressing populations of human
T-cell acute lymphoblastic leukemia (Jurkat), B-cell acute
lymphoblastic leukemia (697) and chronic myeloid
leukemia (K562) cell lines were generated and luciferase
activity was determined by measurement of biolumines-
cence intensity (photons/second). For the Jurkat cell line
and the different cell line derivatives (wildtype, shControl
and shMer), equal proliferation was evaluated using cell
growth curve and MTT analysis (data not shown). All cell
lines were passaged twice at a density of 5 x 10° cells/ml
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Figure 1 Magnitude and kinetics of luciferase activity are cell line dependent and luciferase activity decreases over time in polyclonal
cells. Polyclonal populations of the indicated cell lines were plated (10° cells/ml) and bioluminescence intensity was determined after addition of
D-luciferin (150 pg/ml) to the media (Bining: 8, FOV 13.2, f/stop 1, exposure time 20 sec). Mean values and standard errors were derived from
three independently transduced parental cell lines. a-b Maximum bioluminescence signals for the indicated cell lines. Bioluminescence images
were taken 14-17 min (mean 15.6 min) after administration of D-luciferin. c-d Dynamic change of the bioluminescent signal in leukemia cell lines
(Jurkat, 697 and K562) 8 days post-transduction and Jurkat derivatives 18 days post transduction. Signal intensities are shown as a function of
time after addition of D-luciferin. e Bioluminescence intensities over time post-transduction are indicated. Bioluminescence images were taken
14-17 min (mean 15.6 min) after administration of D-luciferin.
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prior to transduction to ensure equal rates of cell prolifera-  signal were determined for the K562, 697 and Jurkat
tion and transductions were performed concurrently using  cell line eight days post-transduction and for the deri-
a single aliquot and preparation of virus with the expect-  vatives of the Jurkat cell line (wildtype, shControl and
ation of equal levels of luciferase activity. The maximum shMer) eighteen days post-transduction. The magni-
bioluminescence intensity was cell line dependent tude and timing of the maximum bioluminescence sig-
(Figure la). The maximum detectable bioluminescence in- nal were cell line dependent. The maximum signal
tensity of the K562 cell line (8.92 x 10° + 0.97 photons/sec-  intensity was reached between 9 and 16 minutes after
ond) was 1.9 fold higher than the maximum signal of the the administration of D-luciferin and was also cell line
697 cell line (4.61 x 10° + 0.49 photons/second) and 58  dependent (Figure 1c, d).
fold higher than the signal of the Jurkat cells (1.54 x 10° + Finally, bioluminescence intensity decreased signifi-
0.14 photons/second). Targeted genetic modification of a  cantly in polyclonal luciferase-transduced leukemia cell
single cell line, such as the use of lentivirus-mediated lines over repeated passages (Figure 1le). The rate of luci-
shRNAs to knock-down Mer receptor tyrosine kinase ferase signal decay was also cell line dependent, but all 3
expression (Jurkat shMer) or as a non-silencing control  cell lines exhibited significantly decreased signal inten-
(Jurkat shControl) also had a significant effect on the max-  sity (>50%) within 3-4 weeks after transduction. The
imum bioluminescence signal. The signal detected in the reduction was most dramatic in K562 cells, where bio-
Jurkat shControl cell line was significantly higher than the luminescence intensity was decreased 80.4% at 25 days
signal measured in the Jurkat wildtype or Jurkat shMer cell ~ post transduction relative to the initial signal.
lines (Figure 1b).

Further, we observed a change in the kinetics of the Inconsistent luciferase activity in a xenograft mouse model
bioluminescence signal in the leukemia cell lines (Jurkat, after transplantation of polyclonal leukemia cell lines
697 and K562) after administration of D-luciferin. In all A xenograft mouse model was utilized to determine if
cell lines, the signal intensity increased to a maximum the selective pressure against luciferase activity was also
after injection of D-luciferin and then decreased slowly  present in vivo and to investigate the consistency of
over time (Figure 1c, d). The kinetics of the bioluminescence  luciferase activity in polyclonal luciferase-transduced
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Figure 2 Longitudinal quantification of bioluminescent signals in mice transplanted with polyclonal luciferase-transduced human
leukemia cell lines. Four NSG mice were transplanted with 5 x 10° polyclonal luciferase-transduced Jurkat wildtype cells by intravenous injection
into the tail vein. D-luciferin was injected intraperitoneally (150 mg/kg body weight) and bioluminescence images were taken twice weekly (Bining:
8, FOV 1956, f/stop 1, exposure time 120 sec). a Pseudocolor images of mice transplanted with polyclonal luciferase-expressing human Jurkat
wildtype cells showing unequal development of bioluminescence signal over the time. No luciferase signal was detected in control mice (data not
shown). b Signal intensity was quantified from each animal plotted and is shown as a function of the number of days after transplantation.




Christoph et al. Journal of Hematology & Oncology 2013, 6:10
http://www.jhoonline.org/content/6/1/10

leukemia cell lines in vivo. Sub-lethally irradiated NOD
scid gamma (NSG) mice were transplanted with poly-
clonal luciferase-expressing Jurkat cells via tail vain in-
jection and in vivo BLI was performed. Light emission
was first detected on the third day after transplantation
of the cells. During the test period of 17 days, light
emission was evident throughout the body (Figure 2a)
indicating diffuse distribution of the injected cells. Rela-
tively strong signals were observed in spine, head, and
femur. There was no light emission detected in the con-
trol groups, which were transplanted with non-transduced
Jurkat cells or mock-transplanted with PBS (data not
shown). The bioluminescence signals observed for mice
transplanted with a polyclonal population of luciferase-
transduced Jurkat cells varied greatly. After 17 days the
bioluminescence intensity ranged from 1.8 x 10° photons/
second in mouse 1 to 13 x 10° photons/second in mouse
2 and 4, equivalent to a greater than 7-fold difference in
bioluminescence intensity (Figure 2b).

Stability and dynamics of luciferase activity in

monoclonal human leukemia cell lines in vitro and in a
xenograft mouse model

To study the effects of an exclusively monoclonal popula-
tion on the stability and comparability of luciferase activity
as detected by bioluminescence intensity in vitro and
in vivo, we generated monoclonal luciferase-transduced
cell populations from single cells by sorting via flow cyto-
metry. After confirmation of suitable growth and viability,
the 697 and K562 clones with the strongest biolumines-
cence signal and luciferase activity were chosen for further
investigation. For the Jurkat cell line derivatives expressing
shRNA, one clone of each cell line derivative was chosen
so that the luciferase activity within the panel of cell lines
was similar (Figure 3). Because the Jurkat shMerlA clone
had a greater knockdown of the Mer receptor tyrosine
kinase expression, the Jurkat shMer1B clone was not used
for further analyses (data not shown).
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To assess the relationship between bioluminescence sig-
nal intensity and viable cell numbers of a monoclonal
luciferase-transduced cell population in vitro, we prepared
a dilution series of monoclonal luciferase-transduced Jur-
kat wildtype, Jurkat shControl and Jurkat shMerlA cells
(range 1.25 x 10° - 1 x 10° cells/ml) and measured the
bioluminescence intensity for a given volume of cell
suspension. The bioluminescence intensity increased
proportionally with increasing cell numbers (Figure 4a, b).
A strong correlation between number of cells and light
emission was obtained (R‘z,vﬂdtype cone 3 = 0.99, R Control
done 9 = 0.99, RZMeria done 1 = 0.90). Further, we saw simi-
lar kinetics of the bioluminescence signal in Jurkat cell
lines (Jurkat wildtype, Jurkat shControl and Jurkat
shMerlA cells) after administration of D-luciferin. The
bioluminescence intensity gradually increased to a max-
imum, then decayed over time. Maximum biolumines-
cence intensity, signal increase, and time of peak were
similar for the different cell line derivatives (Figure 4c). In
order to assess the stability of luciferase activity over an
extended period of time, the monoclonal Jurkat popula-
tions were cultured for 4 months (> 30 passages). For all
three selected Jurkat cell clones, we confirmed stability of
bioluminescence intensity over extended passages in
monoclonal populations (Figure 4d).

Monoclonal luciferase-expressing Jurkat wildtype cells
were injected via tail vein into sub-lethally irradiated
NSG mice and iz vivo bioluminescence imaging was per-
formed in an attempt to examine the consistency of luci-
ferase activity in monoclonal luciferase-transduced
leukemia cell lines in vivo. Importantly, we found an
equal and comparable development of bioluminescence
signal after transplantation of monoclonal luciferase
expressing cell lines (Figure 5a, b). Equal and compar-
able development of bioluminescence signal was also
noted after transplantation of monoclonal populations of
luciferase-transduced 697 cell lines in NSG mice
(Figure 5c). In addition, knowledge was gained regarding
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Figure 3 Generation of monoclonal luciferase-transduced human leukemia cell lines. Monoclonal luciferase-transduced Jurkat cell lines
(wildtype, shControl, shMer1A and shMer1B) were isolated and bioluminescence intensity was determined as an indicator of luciferase activity
(Bining: 8, FOV 13.2, f/stop 1, exposure time 5 sec). Four Jurkat wildtype clones, nine shControl clones, six shMer1A clones and four shMer1B
clones were developed and analyzed. Jurkat wildtype clone 3, shControl clone 9 and shMer1A clone 1 had equal levels of luciferase activity and
were selected and used for further studies.
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Figure 4 In vitro quantitation of bioluminescence signal in monoclonal human leukemia cell lines expressing luciferase. a Pseudocolor
representation of the bioluminescence intensity from monoclonal luciferase-transduced Jurkat cell lines (wildtype, shControl, shMer1A). Cell
concentrations ranging from 1.25 x 10° to 1 x 10° cells were plated in a 24-well plate and images were captured after addition of D-luciferin to
the media. Wells containing medium only with or without D-luciferin served as negative controls. b Correlation between cell number per well
and bioluminescence intensity (photons/second per well) for three cell line derivatives. Mean values (+/— SEM) were determined from three
separate experiments. The measured intensity of bioluminescence was directly proportional to the number of cells. ¢ Bioluminescence intensity as
a function of time after luciferase addition in monoclonal luciferase-transduced Jurkat cell lines (wildtype, shControl, shMer1A). Mean values and
standard errors (+/— SEM) were derived from three independent experiments. No significant differences in the dynamics of signal intensity over
time were observed for the selected clones. d Stability of luciferase activity of three monoclonal populations of the Jurkat cell line (wildtype,
shControl, shMer1A). Cells were passaged for four months and luciferase activity was monitored by measurement of bioluminescence intensity.
Mean values (+/— SEM) derived from three independent measurements. All clones exhibited stable luciferase activity throughout the test period.
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transplantation of luciferase-transduced 697 cells, we
measured the strongest bioluminescence signal in the liver

early anatomic localization of engraftment and organ spe-
cific homing of different leukemia entities (T-ALL, B-ALL

and CML) in NSG mice (Figure 5c). Throughout the
course of imaging, the strongest bioluminescence signals
appeared in the vertebral column, pelvis, and femurs after
transplantation of luciferase-transduced Jurkat cells. After

and the femurs. The strongest bioluminescence signal
after transplantation of luciferase-transduced K562 cells
was seen in the lymph nodes. The extent of leukemic infil-
tration of different organs was cell line dependent.



Christoph et al. Journal of Hematology & Oncology 2013, 6:10 Page 6 of 9
http://www.jhoonline.org/content/6/1/10

a
Mouse 1 2 3
»
[—
o]
=
o
~
w
]
¢
=~
G
5,
~
w
~
10 Color Bar
Days After Transplantation ——  |itax- jes08
b
Py 2.0x108 -
2 -+ mouse 1
ez - mouse 2
c c 1.5%108 1
= o -+ mouse 3
® O
o o
cw
3% 1.0x102
n C
g8
£2 sox07
E A -
=
2
o 0 - T T 1
0 5 10 15 20 25
Time After Transplantation (days)
C
20 20 20
z - o
o [—y ot
=) ] jan]
1.5 o) 1.5 S 15 E
= o °
7)) ~ ~
e} w2 w
1.0 Q 1.0 g 1.0 g
e) =~ -~
5 2 5
05 N 0.5 S 0.5 o
) ~ ~
4 ) @
= =
ColorBar ColorBar Color Bar
Min = 2e+05 Min = 2e+05 Min= 2e+05
Max = 2e+08 Max = 2e+08 Max = 2e+08
K562 Jurkat 697
day 35 after Tx day 20 after Tx day 21 after Tx
Figure 5 Longitudinal quantitation of bioluminescence signals in mice transplanted with monoclonal luciferase-transduced human
leukemia cell lines. a NSG mice were transplanted with 5 x 10° monoclonal luciferase-transduced wildtype Jurkat cells by injection into the tail
vein. D-luciferin was injected intraperitoneally and bioluminescence images were taken twice weekly (Bining: 8, FOV 19.6, f/stop 1, exposure time
120 sec). Pseudocolor images of mice transplanted with monoclonal luciferase-expressing human Jurkat wildtype cells showing equal
development of bioluminescence intensity over time. b Quantitation of bioluminescence signal from each animal plotted against the number of
days after transplantation. ¢ Pseudocolor images of two representative mice transplanted with monoclonal luciferase-expressing human leukemia
cells (Jurkat, 697 and K562) showing equal development of bioluminescence intensity and demonstrating establishment of leukemia in different
organs.
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Discussion

To the best of our knowledge, this study is the first
reported investigation comparing bioluminescence im-
aging using a firefly luciferase system in monoclonal and
polyclonal human leukemia cell populations in vitro and
in a xenograft mouse model. We have shown that the
bioluminescence signal intensity and the dynamics of
luciferase activity in vitro were cell line dependent
(Figure 1). Moreover, bioluminescence signal intensity
was unstable in polyclonal populations and decreased
significantly with repeated passage in culture. The de-
creasing signal observed may be due to survival and
growth advantages for the non-transduced cells within
the polyclonal cell population. We also observed dra-
matic variability in signal intensity in sub-lethally irra-
diated NSG mice transplanted with a polyclonal
luciferase-transduced cell population, suggesting that
in a polyclonal population, different clones contribute
to establishment of disease in different mice (Figure 2).
This source of heterogeneity significantly decreases the
power of this model system to determine differences in
disease progression related to experimental treatments.
In addition, the variability in bioluminescence signal
we observed in polyclonal luciferase-transduced popu-
lations limits side-by-side comparison of cell line deri-
vatives with targeted genetic manipulations, where
differences in signal intensity between cell lines will
optimally be due solely to differences in disease pro-
gression, rather than cell line dependent differences in
transduction efficiency and/or luciferase activity.

With the generation of monoclonal luciferase-expressing
leukemia cell lines, stability of luciferase activity over a long
period of time (> 4 months) was obtained. Comparable
bioluminescence intensity in monoclonal luciferase-tagged
cell lines with targeted genetic modifications was also
observed. Moreover, monoclonal cell populations showed
the same dynamic of bioluminescence intensity after
administration of D-luciferin in vitro, revealing a sig-
nificant advantage of this method (Figure 4). Most im-
portantly, transplantation of monoclonal luciferase-
transduced cell lines in a xenograft mouse model
resulted in genetically and phenotypically identical dis-
ease with comparable disease kinetics, thereby signifi-
cantly improving the utility and sensitivity of this
model (Figure 5).

In the system used for our investigations, we demon-
strated that the selection of monoclonal luciferase-
expressing populations based on equal luciferase activity
resulted in isolation of cell lines that were directly com-
parable, both in vitro and in vivo. Commonly the use of
an antibiotic resistance marker would likely be sufficient
for in vitro models. However, we avoided the treatment
of leukemia cells with additional antibiotic agents to
minimize putative in vivo drug interactions in future
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translational drug studies. In addition, antibiotic selected
cell populations maintain a heterogeneous expression of
luciferase, which may introduce variability to the trans-
planted cell population and may affect the consistency
during the experiment.

The method to transplant monoclonal luciferase-
transduced cell populations in murine xenograft models
presented here has several advantages, but there are also
some limitations which should be mentioned. First, we
have seen that survival in xenograft models can be
impacted by lentivirus transduction and/or luciferase
expression in leukaemia cells and thus, these models
may less accurately represent the normal biology of
leukemogenesis (data not shown). Second, our data indi-
cate that only monoclonal populations with the same
growth characteristics, luciferase activity and phenotype
can be directly compared in luciferase-based murine
xenograft models, limiting the ease of their utility for
comparison of genetically modified cell lines and their
parental counterparts.

Conclusions

In conclusion, our data demonstrate that derivation of
monoclonal cell lines is critical for development of
robust, sensitive, and reproducible luciferase-based mur-
ine xenograft models. Non-invasive, longitudinal moni-
toring of leukemia progression in murine xenograft
models based on bioluminescence intensity, as described
here, will expedite the investigation and discovery of novel
therapies. Using this methodology, direct comparison of
leukemogenesis after targeted genetic modifications and
sensitive, longitudinal determination of leukemia burden
are both possible, thereby facilitating both target valid-
ation studies and robust testing of translational agents.
Ultimately this approach may also prevent mischarac-
terization of therapies as ineffective based on unequal
development of leukemia burden detected by biolumin-
escence intensity with the use of a polyclonal luciferase-
expressing leukemia cell population.

Materials and methods

Cell lines

Jurkat, 697 and K562 human leukemia cell lines were
obtained from the American Type Culture Collection
(ATCC, Manassas, VA). All cell lines were cultured in
RPMI-1640 medium (Hyclone Laboratories, Logan, UT)
supplemented with 10% fetal bovine serum (FBS, Atlanta
Biologicals, Lawrenceville, GA) and penicillin/strepto-
mycin (100 units/ml and 100 pg/ml, Hyclone Laborator-
ies, Logan, UT). Cells were maintained at 37°C in a
humidified atmosphere containing 5% CO,. The iden-
tities of Jurkat, 697 and K562 cell lines were confirmed
by short tandem repeat analysis and all cell cultures were
determined to be free of mycoplasma contamination.
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Lentivirus production and cell transduction
pCCL-MNDUS3-LUC is a third generation HIV-1 based,
lentiviral vector containing the firefly luciferase gene
(gift from Yong-Mi Kim, Children’s Hospital Los
Angeles, CA) [19]. 293FT cells were transiently trans-
fected with pCCL-MNDU3-LUC and a three-plasmid
packaging system (Gag-Pol, Rev and VSV-G) using
Turbofect (Fermentas, Glen Burnie, MD). Viral super-
natants were harvested at 24 and 48 hours post-
transfection and concentrated by ultracentrifugation.
Jurkat wildtype, Jurkat shControl, Jurkat shMerlA, Jur-
kat shMer1B, 697 and K562 cells were transduced in
the presence of polybrene (Millipore, Billerica, MA)
and single cell sorting was performed using flow cyto-
metry. Clonal populations were screened for luciferase
activity by measurement of bioluminescence intensity
as described below. Jurkat shControl, shMerlA, and
shMerlB cell lines were generated using lentiviral
shRNA vectors shMerl (targeting Mer) and shControl
(a non-silencing vector ) as previously described [20].

In vitro bioluminescence imaging

Actively growing human leukemia cells expressing luci-
ferase were harvested from 10 cm? tissue culture plates
and viable cell counts were via trypan blue dye exclusion
staining determined as the average of two counts using a
hemocytometer. Serial dilutions of cells ranging from
1.25 x 10° to 1 x 10° cells per well were plated in 1 ml
of medium in 24-well tissue culture plates. Untrans-
fected human leukemia cells were plated in the same
manner to determine auto-fluorescence for each popula-
tion size. Wells containing medium only were used to
detect background fluorescence. D-luciferin (Caliper Life
Sciences, Hopkinton, MA) was added to a final concen-
tration of 150 pg/ml immediately before biolumines-
cence imaging. Photon counts per second were recorded
using an IVIS200 (Xenogen, Alameda, CA) imaging sys-
tem and analyzed with Living Image 3.2 software (Caliper
Life Sciences, Hopkinton, MA). Changes in biolumines-
cence intensity over time were measured and are pre-
sented as total flux values in photons/second for each
well. Reported results are the average of three independent
experiments.

Murine xenograft model

NOD scid gamma mice (NSG, Stock # 5557, The Jackson
Laboratory, Bar Harbor, ME) were sub-lethally irra-
diated with 200 rads and intravenously transplanted
with luciferase-expressing human leukemia cells (5 x 10°
cells). Transplanted mice underwent in vivo biolumines-
cence imaging at various times as specified for each
experiment. Animals were monitored daily and were
euthanized upon signs of leukemia onset (weight loss
>15%, decreased activity, and/or hind limb paralysis). All
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experiments involving animals followed the regulatory
standards approved by the University of Colorado Institu-
tional Animal Care and Use Committee.

In vivo bioluminescence imaging

NSG mice were anesthetized with inhaled isoflurane and
were maintained with 1.5-2% isofluorane during imaging
procedures. Luciferase-based bioluminescence imaging
was performed with an IVIS200 imaging system equipped
with a camera box and warming stage. Following intraper-
itoneal injection of 150 mg/kg D-luciferin dissolved in
phosphate buffered saline (PBS), mice were immediately
imaged with sequential 30, 60, 90 and 120 seconds expo-
sures. Images were captured and bioluminescence inten-
sity was quantitated using Living Image 3.2 acquisition
and analysis software (Caliper Life Sciences, Hopkinton,
MA). Total flux values were determined by drawing
regions of interest (ROI) of identical size over each mouse
and are presented in photons (p)/second (sec).

Statistical analyses

The mean bioluminescence intensities (photons/second)
and corresponding standard errors were determined for
each experiment. For all measurements, data are pre-
sented as mean * standard error of the mean (SEM).
The student’s t test was used to determine the significance
of differences between means. The level of significance for
all statistical analyses was chosen a priori to be p < 0.05.
Statistical analyses were carried out using Prism software
(Version 5.0, GraphPad Software, LaJolla, CA).
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