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Abstract

Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two
decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on
humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target
antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted
delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional
chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those
in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs
still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation
chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized
importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug
carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those
discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs,
ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug
delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for
cancer patients.
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Introduction
Several potholes mark the winding road leading to the
introduction of therapeutic monoclonal antibodies
(TMAs) into routine clinical practice. Numerous excellent
reviews have covered this period, dealing with the history
of hybridoma technology, the development of monoclonal
antibodies and their establishment as therapeutic agents
[1-4]. Notwithstanding current challenges, there is justi-
fied continual development of and increased commercial
interest in TMAs, testament to the diligence and capabil-
ities of many scientists and engineers in laboratories
around the globe. With the recent approval of Pertuzu-
mab in June of this year, the FDA had now registered
twelve TMAs for cancer therapy (http://lifesciencedigest.
com/2011/03/05/fda-approved-mabs-for-cancer-therapy).
Five of these are approved for hematological cancers. A
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number of hurdles remain to be overcome if TMAs are to
become more effective and economic cancer therapies.
These include selection of true cancer cell specific anti-
gens, enhanced recruitment of bystander cell killing
mechanisms, and development of more economic produc-
tion technologies.
TMAs have mostly been used as naked antibodies but

there is now high expectation of their employment in
Targeted Drug Delivery (TDD), mainly because TDD
systems can overcome many of the non-specific side
effects associated with traditional cancer chemotherapy
[5]. Indeed it is predicted that within the field of TMAs,
the development of more effective Antibody-Drug Con-
jugates (ADCs) will be the focus of many biotech and
pharmaceutical R&D programs over the near term.
Nonetheless, given the importance of TDD and the chal-
lenges noted above, it is prudent to ask whether under
some circumstances, TMAs may not be the most appro-
priate drug carrier. This article will discuss such situa-
tions and ask whether Peptide-Drug-Conjugates (PDCs)
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may be more appropriate alternatives to ADCs? First,
we present an overview of the biological aspects of
FDA approved TMAs, particularly those used for
hematological cancers. (For summaries of the clinical
efficacies of these drugs the reader is referred to recent
reviews [6-8]). Similarly, we then discuss ADCs, high-
lighting their potential advantages. These overviews set
the background to highlighting several limitations in the
use of antibodies as drug carriers, which leads us to con-
sider alternatives to antibodies, focusing on peptides, and
to show how PDCs can overcome some of the limitations
of ADCs. We believe these discussions are timely be-
cause identifying the advantages and disadvantages of
both ADCs and PDCs in particular situations should lead
to a more rational development and application of TDD
strategies and ultimately to a broader basket of effective
therapies for cancer patients.

Therapeutic monoclonal antibodies - a view
from above
Since Nadler et al. reported the proof-of-concept that a
monoclonal antibody against lymphoma cells could
be effective in human cancer therapy [9] and the FDA
approval of the first TMA (Orthoclone OKT3®) in
September 1992, there has been a slow but steady in-
troduction of additional antibodies into the clinic. Cur-
rently, 39 TMAs have received regulatory approval and
are marketed (IMGT database, http://www.imgt.org/
mAb-DB/index), of which 12 are used in cancer therapy
(Table 1) Despite this apparently small number, over 500
clinical trials are currently testing more than 160 candi-
date TMAs for cancer intervention ([10], ClinicalTrials.
gov), with over 70 of these being Phase III trials. Even
though a number of these trials are testing the same
Table 1 FDA approved therapeutic monoclonal antibodies for

Generic name Proprietary
name

Target Technology

Rituximab Rituxin®/
Mabthera®

CD20 Mouse Hybridoma

Transtuzumab Herceptin® HER-2 Mouse Hybridoma

Alemtuzumab Campath®/
Mabcampath®

CD52 Rat Hybridoma

Ibritomomab
tiuxitan

Zevalin® CD20 Mouse monoclonal

Tositumomab Bexxar® CD20 Mouse monoclonal

Cetuximab Erbitux® EGRF, HER-1 Mouse monoclonal

Bevacizumab Avastin® VEGF Mouse monoclonal

Panitumumab Vectibix™ EGRF, HER-1 Human monoclonal

Ofatumumab Arzerra™ CD20 Human monoclonal

Ipilimumab Yervoy™ CTLA-4 Human monoclonal

Pertuzumab Perjeta™ EGFR2, HER-2 Mouse monoclonal

BC, Breast cancer; MBC_Metastatic breast cancer; NHL, Non-Hodgkin's Lymphoma; C
arthritis; MCC, Metastatic colorectal cancer; MMel, metastatic melanoma.
TMA in different clinical settings and given that only
about 50% of Phase III trials are completed successfully,
we can optimistically expect to see at least several newer
TMAs receiving regulatory approval for cancer therapy
over the next one or two years.
Aside from the welcome increase in the number of

TMAs in clinical development, it should be noted that
currently approved TMAs, as well as most of those
undergoing clinical assessment, were developed through
the traditional process, beginning with the production of
a murine monoclonal antibody which was then adapted
for clinical use by chimerization or humanization. In re-
cent years however, TMAs produced through newer
technologies such as phage display libraries or transgenic
mice have entered clinical trial and this trend is likely to
be strengthened as these tools are further enhanced and
validated. One example of this new generation of TMAs
is Mapatumumab, discovered through the phage display
technology of Cambridge Antibody Technology Ltd.
Mapatumumab is a humanized IgG1 antibody targeting
the TRAIL R1 antigen and is currently undergoing sev-
eral Phase II assessments for advanced cervical cancer
([11], Clinicaltrails.gov).
Experience has shown that successful development of

TMAs requires more that the technical capability to
genetically engineer chimeric or humanized antibodies.
These developments have proven critical in reducing the
human-anti-mouse antibody immune response of the
first TMAs, in increasing blood TMA half-life and in
improving conscription of immune mechanisms. But it
is now evident that a more detailed understanding of
both the biology of the target cancer as well as the im-
mune and non-immune effector tasks the antibody is
expected to perform can significantly impact on the
cancer therapy

Isotype Additional
manipulations

Year FDA
approved

Approved clinical
indication

IgG1-kappa Chimeric 1997 NHL; later
CD20+CLL, FL, RA

IgG1-kappa Humanized 1998 HER-2+ MBC

IgG1-kappa Humanized 2001 CL L, T-cell
Lymphoma

IgG1-kappa Conjugated to
Yittrium-90

2002 NHL

IgG2a-lambda Conjugated to I-131 2003 NHL

IgG1- kappa Chimeric 2004 EGRF+ MCC

IgG1- kappa Humanized 2004 MCC

IgG2-kappa Human 2006 MCC

IgG1-kappa Human 2009 Refractory CLL

IgG1-kappa Human 2011 MMel

IgG1-kappa Humanized 2012 BC

LL, Chronic Lymphocytic leukemia; FL, Follicular Leukemia; RA, Rhematoid
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required molecular properties of the antibody. This was
amply illustrated in the case of IgFc glycosylation, where
it was shown that the fucose units in the polysaccharide
attached to the CH2 heavy chain domain significant-
ly affected antibody-dependant cellular cytotoxicity
(ADCC). Engineered IgG antibodies lacking fucosylated
oligosaccharides induce enhanced ADCC activity both
in vitro and in vivo [12]. Additional preclinical know-
ledge about antigen distribution in target versus normal
tissues, antibody pharmacokinetics, efficacy in different
models of the target disease and antibody uptake into
(solid) tumor tissue is essential for the rational selection
of lead antibody candidates, choice of appropriate pa-
tient study groups and effective design of expensive clin-
ical trials. Considerations of downstream manufacturing
of the final product must also not be forgotten, as these
influence not only process economics but also the mo-
lecular structure of the product [13,14].

TMAs for hematological cancer
The current picture of TMAs for hematological malignan-
cies parallels that seen with cancer immunotherapy in
general in that only a limited number of antibodies have
been approved, although a number of candidates are
undergoing clinical assessment. Of the 12 TMAs approved
for cancer therapy, 5 are employed for leukemia or lymph-
oma therapy (Table 1).

Rituxin
Rituxin, or Rituximab, was approved for the treatment
of patients with Non-Hodgkin’s B-cell Lymphoma
(NHL) in 1997 [15] and was actually the first TMA to
be approved for cancer therapy. Rituxin is a chimeric
antibody targeting CD20, a 33-35kDa cell-surface glyco-
sylated phosphoprotein. Expression of CD20 is found
on late-stage pro-B-cells (CD45R+/CD117+) and this
expression increases with B-cell maturity, although it is
absent from plasma cells [16]. CD20 was found overex-
pressed in several types of leukemias [17]. While no nat-
ural ligand has yet been described, its function may be
related to effective B-cell responses to T-cell independ-
ent antigens, although other evidence suggests that
CD20 acts as a calcium ion channel [16]. Early studies
[18] demonstrated that Rituxin could induce B-cell
depletion by several immune effector mechanisms in-
cluding ADCC and complement-dependant cytotoxicity
(CDC). Its ability to induce apoptosis has not been
clearly demonstrated. Surprisingly, despite the pleio-
trophic B-cell expression of CD20, B-cell lymphopenia
does not seem to be related to increased rates of infec-
tion in long-term treated patients. This may be due to
the ability of hematopoietic stem cells to regenerate the
B-cell population relatively quickly. Rituxin does induce
infusion reactions, possible resulting from release of
inflammatory cytokines following administration [19].
Rituxin is currently employed in the management of sev-
eral forms of NHL including Chronic Lymphocytic
Leukemia (CLL), Follicular Lymphoma (FL) and Diffuse
Large B-cell Lymphoma, most often in combination with
chemotherapies [6]. Its use has had a profound effect on
the management of patients, becoming the standard of
care in NHL and FL, as well as in CD20+ CLL.

Anti-CD20-radioisotope conjugates
Ibritumumab is a murine anti-CD20 monoclonal anti-
body conjugated to the yttrium isotope (90Y-Ibritumumab
tiuxetan). This intense β-radiation releasing immunocon-
jugate was approved in 2002 for use in patients with
NHL but has also shown efficacy in Rituxin-refractory
lymphoma [20]. Another immunoradioisotope, tositumo-
mab-I131, was approved in 2003 for treatment of patients
with CD20+ FL. Both drugs are efficacious but induce
hemato-toxicity and have been the subject of several
comparison clinical trials [21-23].

Newer anti-CD20 TMAs
Despite its proven clinical benefit, clinical response rates
to Rituxin are still modest, at about 50% for NHL [24].
The even lower figures reported for CLL [25] likely re-
flect the variable expression of CD20 on the surface of
these tumor cells as compared to some other forms of
B-cell leukemia. Possibly because more promising B-cell
leukemic markers have not yet been discovered, and also
as a result of ongoing research into the biology of anti-
CD20 antibodies, much effort has been invested recently
in overcoming some of the limitations of these first
generation antibodies. These include binding-induced
modulation of CD20 expression [26], diverted binding to
blood forms of free antigen [27], relatively low binding
affinity [28,29], development of resistance [28], genetic
variability in the FcγRIIIa receptor gene among patients
that affects ADCC activity [30] and uncertainty as to the
mechanism of action. Studies on anti-CD20 antibodies
has allowed their classification into Type 1 and Type 11
categories, based on their ability to induce changes in
the membrane distribution and configuration of the
antigen. These changes are thought to be related to the
functional characteristics of the antibodies, such as their
ability to form CD20/anti-CD20 lipid rafts, a function
that may enhance their therapeutic efficacy [31]. In
addition, while Type I antibodies effectively conscript
CDC and ADCC, they are weak in inducing direct
tumor cell death. They also modulate CD20 antigen ex-
pression, especially on CLL and mantle cell lymphoma
cells [26]. On the other hand, Type II antibodies strongly
induce direct tumor cell death , while inducing lower
CDC but higher ADCC activity than Type I antibodies
(reviewed in [16]). It should also be noted that while the
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tumor cell cytotoxicities of ADCC and CDC can be
demonstrated, the technical validation of both the
in vitro and in vivo methods is not-trivial [32-34]. In
addition, while NK cells, important effectors of ADCC,
seem to infiltrate most types of solid tumors [35], it is
unclear whether at least under some situations they also
have a tumor promoting effect, [36]. Further under-
standing the molecular differences between Type 1 and
Type 11 antibodies that might account for these differ-
ences in effector mechanisms should allow the engineer-
ing of more potent antibodies as recently discussed [37].
Several next-generation anti-CD20 TMAs are now dis-
cussed below.
Ofatumumab
This IgG1 molecule is considered as a second-
generation, fully humanized, anti-CD20 antibody and
approved by the FDA in 2009 for treatment of CLL
patients resistant to both fludarabine and alemtuzumab.
It is currently being further tested in 9 Phase III inter-
vention trials for leukemia (Clinicaltrials.gov). Like
Rituxin, Ofatumumab is a Type 1 antibody but it recog-
nizes a different CD20 epitope which seems to be related
to its ability to induce high CDC responses, which may
help explain is activity against Rituxin-resistance cells
[38,39]. Treatment with Ofatumumab results in a list of
side effects including neutropenia and increased risk of
infections, but clinical data support its use both as
monotherapy and in combination therapies [40].
Veltuzumab
Veltuzumab is another Type 1, humanized, anti-CD20,
IgG1 mAb which binds to a similar region of the antigen
as does Rituxin. The only difference in CDR structure is
a single Asp101 to Asn101 switch in the CDRH3 region
which may account for its higher binding affinity than
Rituxin, but does not explain its improved CDC activity
[41]. Veltuzumab is currently under development for the
treatment of NHL, CLL and autoimmune diseases
(Clinicaltrials.gov) [42].
Ocrelizumab
Ocrelizumab, another Type 1 humanized, anti-CD20,
IgG1 antibody, also recognizes a similar epitope to that
of Rituxin. It is a new generation antibody in that the Fc
region has been engineered to increase binding affinity
for the FcγRIIIa receptor, leading to enhanced ADCC
but reduced CDC activities [43]. While some studies
have tested its efficacy in hematological cancers [44], it
has mostly been investigated for treatment of multiple
sclerosis and rheumatoid arthritis [45].
Next-generation anti-CD20 antibodies
A series of newer, experimental anti-CD20 antibodies
(e.g. PRO-131921 and AME133v) are also in develop-
ment, of which the most clinically advanced is GA-101
(Obinutuzumab). This is a Type II, humanized antibody
that has been glycol-engineered in CHO cells and differs
significantly from previous anti-CD20 antibodies in its
glycosylation of Asp297 in the CH2 Fc region endowing
the antibody with enhanced ADCC but reduced CDC
activity [46,47]. While GA-101 recognizes an epitope
similar to that of Rituxin and Ocrelizumab, point altera-
tions in its variable region sequences result in increased
binding affinity. There are currently 9 Phase 1, II and III
trials investigating this antibody in B-cell leukemias
(Clinicaltrials.gov).
Targets other than CD-20
Alemtuzumab
This fully-humanized IgG1 antibody targets CD52, a
glycosylphosphatifylinosital-anchored cell surface glyco-
protein expressed on both normal and malignant T and
B lymphocytes, as well as on several myeloid-derived
cells such as NK, macrophages and eosinophils [48]. It
received FDA approval in 2001 for treatment of CLL
with relapsed or refractory disease and for previously
untreated CLL patients in 2007. Therapy with this anti-
body can induce T and B lymphopenia and immunosup-
pression so treatment must be accompany antibiotic and
antiviral prophylaxis. Alemtuzumab seems to invoke by
both ADCC and CDC but also directly induces apop-
tosis [49].
Milatuzumab
This humanized antibody targets CD74, an integral pro-
tein overexpressed in B-cell leukemias. The antibody is
currently undergoing assessment in 5 Phase 1/II trials.
In a pre-clinical study of mantle cell lymphoma the
combination of Milatuzumab and Rituxin gave signifi-
cantly enhanced therapeutic activity [50].
The above overview shows that the development of

TMAs for hematological malignancies is still a very ac-
tive area of basic and translational research. Predictably,
these types of cancers are more amenable to immuno-
therapy where the antibodies can bypass problems faced
in the treatment of solid tumors, such as tissue penetra-
tion (see below). Clinical response rates with these drugs
vary widely between 35-75%, depending on the clinical
setting and whether they are used as monotherapy or in
combination with chemotherapy [6]. None of these anti-
bodies target cancer cell specific antigens and a break-
through development in this area would certainly
enhance their clinical efficacy and reduce side effects.
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Antibody drug conjugates (ADCs)
Parallel to the development of TMAs has been the emer-
gence of ADCs. ADCs bring together the targeting advan-
tages of antibodies with the cytotoxic potential of
chemotherapy, heralding the promise of targeted accumu-
lation of drug in the tumor tissue. Although the idea to
combine these qualities came early on in TMA develop-
ment, creating clinically successful ADCs has proven diffi-
cult. Early attempts focused on Rituxin-Doxorubicin
conjugates but these showed little clinical efficacy. Over
time, it became clear that at least two factors are essential
in the development of successful ADCs. The first is drug
potency. From studies with early ADCs it became clear
that very low amounts of antibody actually become depos-
ited inside solid tumors [51], probably due to slow mass
transfer and also that the deposition is uneven across the
tumor tissue [52]. To overcome this limitation, drug candi-
dates with potency several orders of magnitude higher than
those used in conventional chemotherapy were selected.
Examples of drugs currently used in ADCs include micro-
tubule inhibitors such as the uristatins and maytansinoids
and DNA-damaging agents like calicheamycin or duocar-
mycin analogs (reviewed in [53,54]). The second factor is
the design of appropriate linker molecules for coupling
drugs to the antibody. These not only must maintain anti-
body binding capacity following conjugation, but also
should undergo selective enzymatic or chemical degrad-
ation inside the cell or at the cell surface, rather than sys-
temically. In view of the extremely enhanced drug potency,
this is essential if collateral damage is to be kept to a mini-
mum. These points are discussed in more detail below.
To date, only 2 ADCs have been FDA approved for can-

cer therapy; only one of these is currently in clinical use.
As the problem with tumor penetration by full length
antibodies should be less important for hematological can-
cers, it is probably not surprising that the first ADCs tar-
geted these malignancies (Table 2).

Gemtuzumab ozogamicin (Mylotag)
Gemtuzumab is a recombinant, humanized IgG4 mono-
clonal antibody (mAb) targeting CD33, an antigen
expressed on most leukemic blast cells but also on normal
hematopoietic cells, although the intensity of expression
diminishes with normal stem cell maturation. The anti-
body is linked to calicheamycin and was the first ADC
approved by the FDA (in 2000), for use in patients with
relapsed acute myelogenous leukemia [55]. Almost from
the outset however, the use of Mylotag was associated
with significant side effects [56,57] and it was eventually
withdrawn by its developers Pfizer in June 2010.

Brentuximab vedotin (Adcetris)
This ADC consists of a chimeric antibody directed to
CD30, a member of the tumor necrosis factor receptor
family. CD30 is rarely expressed on T or B-cell lymph-
omas, but is a tumor marker for classic Hodgkin's Lymph-
oma, anaplastic large cell lymphoma and embryonal
carcinomas. The antibody is conjugated to the antimitotic
compound monomethyl auristatin E. Adcetris was granted
accelerated marketing approval in August 2011 and is the
first new Hodgkin’s Lymphoma drug in 30 years [58,59].
A number of other ADCs are currently undergoing clin-

ical assessment. Indeed a recent Biopulse survey of pharma
and biotech companies clearly indicates that many drug
manufacturers are actively involved in ADC development
and expect that many more of their products will enter
the clinic in the coming years (http://www.bptc.com/sites/
default/files/biopulse_reports/adc_survey_results_2011-11-
23.pdf). Selected ADC candidates are discussed here.

Trastuzumab emtansine (T-DM1)
This conjugate is based on the well studied antibody
Trastuzumab (Herceptin) that targets the HER-2 cell
surface protein and which was approved in 1998 for use
in patients with Her-2+ metastatic breast cancer. The
extensive clinical experience with this antibody has aided
in both selection of an appropriate drug (maytansine de-
rivative DM1) and the conjugation chemistry. Following
the positive results of several preclinical [60] and recent
clinical trials [61], even in woman whose disease had
progressed during naked Trastuzumab therapy [62], the
developers (ImmunoGen/Genentech/Roche) plan to
apply for FDA approval before the end of 2012.

Inotuzumab ozogamicin (CMC-544)
The conjugate contains an IgG4 monoclonal antibody tar-
geting the CD22 antigen found on mature B cells. It is also
being developed by Pfizer that is using the same hydra-
zone linker–calicheamicin drug combination as employed
for Mylotag. It was shown to be more effective in vitro
than Mylotag in killing primary pediatric acute lympho-
blastic leukemia cells [63]. Despite the high potency of the
drug moiety, initial clinical studies suggest relatively low
tolerable doses of the CMC-544 ADC [64]. CMC-544 is
currently the subject of 15 clinical trials, including two
Phase III combination trials studies with Rituxin.

Lorvotuzumab mertansine (IMGN901)
The Lorvotuzumab humanized monoclonal antibody tar-
gets CD56, an isoform of neural cell adhesion molecule
expressed on NK cells, some T-cells and on the majority
of Multiple Myeloma and Small Cell Lung Carcinoma
cells. Different chemistry has been used to prepare this
ADC in that the antibody is coupled to mytansioid (DM1)
via a linker cleavable by disulfide reduction. In 2010 it was
granted orphan drug status both in the USA and Europe
for Mantle Cell Carcinoma, and is currently also under

http://www.bptc.com/sites/default/files/biopulse_reports/adc_survey_results_2011-11-23.pdf
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Table 2 FDA approved Antibody-Drug Conjugates and selected others undergoing clinical development for cancer
therapy

Generic name Trade/code
name

Target Antibody source Antibody
isotype

Other
manipulations

Conjugated to: Clinical status Indication

Gemtuzumab
ozogamicin

Mylotag® CD33 Mouse monoclonal IgG4- kappa Humanized Calicheamicin Approved 2000
WITHDRAWN 2010

CD33+AML

Brentuximab
vedotin

Adcentris™ CD30
(TNFR)

Mouse monoclonal IgG1- kappa Chimeric Monomethyl
auristatin E (MMAE)

Approved 2011 HL

Trastuzumab
emtansine

MCC-DM1/
T-DM1

HER-2 Mouse monoclonal IgG1- kappa Humanized Maytansinoid DM1 Phase III HER-2+ MBC

Inotuzumab
ozogamicin

CMC-544 CD22 Mouse monoclonal IgG4- kappa Humanized Calicheamicin Phase III Phase II NHL DLBCL

Lorvotuzumab
mertansine

IMGN901 CD56 Mouse monoclonal IgG1- kappa Humanized Maytansinoid DM1 Orphan Drug 2010;
Phase II

SMLC,
OC, MM

———— SAR3419 CD19 Mouse monoclonal IgG1 Humanized Maytasinoid DM4 Phase I NHL

Legend: AML – Acute myologenous leukemia; HL – Hodgkin’s lymphoma; NHL – Non Hodglin’s Lymphoma, MM – Multiple Myeloma; DLBLC – Diffuse large B cell
lymphoma; OC – Ovarian cancer; MBC – Metastatic breast cancer.
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clinical investigation for Multiple Myeloma, Small Cell
Lung Cancer and Ovarian Cancer.

SAR3419
CD19 is expressed on follicular dendritic cells. It is a vali-
dated marker of developing B cells which is lost on their
maturation to plasma cells. SAR3419 consists of the
humanized huB4 anti-CD19 antibody conjugated to a dif-
ferent derivative of mytansinoid (DM4), but as in
IMGN901, the disulphide linker is cleaved by reduction.
In vitro studies show that this ADC is internalized by
lymphoid cell lines and Phase I studies indicate it pro-
duces low hematological toxicity [65]. It is being clinically
assessed for use in several forms of B-cell NHL.
There are more than a dozen other ADCs at various

stages of preclinical and early clinical development. Unfor-
tunately, many of these still induce side effects often seen
in conventional chemotherapy such as several manifesta-
tions of myelosupression and nephritis and further re-
search is needed in this respect before ADC can fulfill
their promise of inducing less morbidity than carrier-free
chemotherapy. Further clinical details on the activity of
these agents can be found in recent reviews [54,66-68].

Limitations of Abs as drug carriers
Despite the encouraging preclinical and clinical data that
is emerging on the use of ADCs for cancer therapy, a
number of challenges remain for the successful clinical
translation of these drugs, some of which might represent
inherent limitations in the use of antibodies as drug car-
riers. The most important of these are listed in Table 3
and discussed below.

Discovering novel cancer cell specific antigens
Studies using classical biochemistry, gene and protein
array technologies and now systems biology have demon-
strated differences in the metabolism of tumor cells
compared to normal, as well as normal proliferating
cells [69-71], one consequence of which is a modified
“membrane-ome”, manifested either as altered expression
of differentiation and constitutive mature cell proteins or
re-expression of neonatal ones. This phenomenon led to
the discovery of an array of tumor associated cell surface
antigens (TAAs) [72-74] Confidence in the ability to
utilize antibodies to identify TAAs was based in part on
the success of immunologists over the years at producing
antibodies to a variety of different molecules, even when
these were considered weak antigens [75]; indeed an im-
pressive battery of antibodies to cell surface markers is
now available. Nonetheless, one take-home message from
this massive effort is that the vast majority of TMAs only
target TAAs. This was also evident from studies using
molecular cloning techniques such as SEREX (serological
analysis of autologous tumor antigens by recombinant
cDNA expression) in which a patient's own serum is ana-
lysed for immunoreactivity against proteins expressed by
their own tumor cells [72,76]. Only rarely have true
tumor specific antigens (TSAs) so far been demonstrated,
particular across different patients, the best examples
being clonotypic antibodies expressed on antigen-
educated B-cell leukemic cells such as those found in
B-cell lymphoma [77] and Multiple Myeloma although
the prevalence of these among different patient cohorts
such is still inconclusive [78]. Aside from these, the most
tumor cell “restricted” antigen identified so far, with
regards to approved TMAs, is human epidermal growth
factor receptor 2 (HER-2 or Erb-B2), which is targeted by
Trastuzumab. While TAA-directed TMAs clearly have
clinical benefit, their lack of specificity for true tumor cell
targets is intrinsically associated with side effects that
limit their efficacy.
It is noteworthy that currently approved TMAs and

many of those in advanced stages of clinical development
were generated several years ago, using technologies that



Table 3 Comparison between full length antibodies and peptides as drug carriers in targeted drug delivery

Item Antibodies (full length) Peptides

Discovery of novel cell
surface targets

Most approved TMAs do not target TSAs; for traditional mAbs target
must be antigenic; screening selects mAbs to dominant epitopes;
mAb specs depend on strain mouse/rat used

Target does not need to be antigenic; no prior
knowledge of target molecule needed

Generation technology Traditionally via murine hybridoma, then humanization; humanized
mouse; via phage scFv phage display then grafting to Ig backbone

Combinatorial DNA, RNA, peptide library phage
or cell based display technologies (random or
scFv based); Combinatorial chemistry

Molecular structure Standard Ab unit; different Ig isotypes; bispecific Ab; multi-bodies Linear; cyclic; scFv; non natural amino acids;
novel small molecules

Intracellular transport Not a selection criteria of currently approved TMAs; technically difficult
to select during screening

Screening technologies allow for easy selection
of candidates that induce rapid endocytosis

Pharmacodynamics
and Pharmacokinetics

Non-linear, depends of many variables, difficult to predict Smaller molecular mass; larger formulation
knowledge base for designed PD and PK

Conjugation of carrier
to drug (for ADC
or PDC)

Only ~50% mAb bound to drug; difficult to predict mAb/drug
stoichiometry and drug position; conjugation chemistry limited to
aqueous solutions.

Enhanced flexibility in conjugation chemistry for
coupling to linker and drug, allowing wider
selection of drugs including non-water soluble
compounds, synthesis in organic solvents and
aqueous solutions ; scaffolds available for
conjugation to different drugs; formation of
metal complexes; defined and predictable
products;

Antigenicity of final
product

Depends of extent of humanization. Negligible

Bystander immune
effector function

ADCC; CDC; CTL?; None

Tumor penetration Limited in solid tumors Enhanced

Manufacture/Quality
Control

Structure of ADC heterogeneous; high upstream development, cell
culture, bioreactor design) and downstream ( purification) costs

Significantly lower production costs (up to ~35
amino acids); increased product reproducibility

TSA – tumor specific antigen; mAb – monoclonal (hybridoma) antibody; scFv – single chain Fv region of antibody combining site; ADCC – Antibody dependant
cellular cytotoxicity; CDC – Complement dependant cytotoxicity; CTL – Cytotoxic T-lymphocyte; Ig - Immunoglobulin.
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may inherently limit the scope of molecular or structural
targets identified. For example discovery platforms based
on traditional hybridoma technologies coupled with high-
throughput or FACS screening methods tend to skew
towards selection of antibodies targeting dominant epi-
topes [79]. In addition, epitope dominance also depends of
the genetic background of the rodent strain used for
immunization, although this variable is not often studied
due to the incurring development time and costs. Other
limiting factors include the accessibility of potentially
useful epitopes within a native multi-molecular complex
to bulky antibody proteins and the lower antibody binding
affinities towards weaker antigens. It remains to be seen
whether more recent technical improvements aimed at
overcoming these variables [80] will yield clinically suc-
cessful TMAs to novel tumor cell markers.

The problem of internalization
While there are some exceptions [81], the majority of
anti-cancer drugs act intracellularly. With regards to
ADCs this means that the antibody must bind a cell sur-
face component in such a way that stimulates the formers'
internalization, usually by receptor mediated endocytosis
and then delivery of the ADC to lysosomes. In many cases,
internalization was not a criteria included in the original
selection of TMAs currently in clinical use, although sub-
sequent studies showed that some of them, such as Trans-
tuzumab, do induce uptake [82]. The requirement for
ADC internalization makes the selection of TMAs even
more complex. For example CD19, a validated B-cell mar-
ker, forms dimers with CD21 [83]. Whereas some anti-
CD19 antibodies are rapidly internalized and are being
used to develop ADCs ([65] and see above), the uptake of
others is inhibited by CD21 expression [84]. Similarly
there are conflicting reports regarding anti-CD20 anti-
bodies [82,85]. In addition, studies with anti-HER-2 anti-
bodies suggest that internalization is also related to
affinity. For example Rudnick and colleagues recently
reported that higher affinity antibodies were internalized
and degraded faster than moderate affinity antibodies,
thus limiting their tumor penetration [86]. These studies
underline the importance of early stage selection of anti-
body clones with the appropriate functionality.

Pharmacology
A number of studies have investigated the complex
pharmacokinetics and pharmacodynamics of TMAs, which
tend to be non-linear as compared to small molecule drugs
[52,87-89]. The optimal values for these parameters can
vary widely between antibodies as they depend on a wide
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variety of variables including heavy chain isotype, type and
degree of glycosylation, route of administration, rate of ab-
sorption, antibody affinity, the location, cell surface density
and turnover of antigen, charge, immunogenicity, ability to
bind the FcRn receptor, effector function and degree of
internalization.

Attachment of linker-drug to antibody
One area that has received much attention in ADC de-
velopment is the chemistry of drug attachment. Factors
important here include selection of a linker attachment
site that retains antibody activity, linker length and com-
position and the design of drug analogs for attachment
to the linker [51,53,54,82,90]. Two methods are com-
monly used for conjugating drugs to antibodies: alkyl-
ation of reduced interchain cysteine disulfides through
an enzymatically non-cleavable maleimido or simple and
cleavable disulfide linker (Figure 1a) and acylation of
lysines by cleavable linear amino acids (Figure 1b).
Spacers are usually essential extensions of the drug link-
age and are responsible for avoiding the shielding of the
active site of the antibody as well as improving solubility
properties of ADCs (for example in by the use of poly-
ethylene glycol). Cathepsin-cleavable linkers are also
utilized (for example Val-Cit, or Phe-Lys) bound to self-
Figure 1 Schematic representation of antibody- and peptide-drug con
PDC: (c) liner peptide with spacer and bio-degradable group (X); (c) cyclic p
bio-degradable group (X).
emulative moiety PABA (p-aminobenzyl alcohol), enab-
ling selective drug release in cancer cells [54], Notably,
the linkage technologies used in ADCs are also applic-
able in PDCs enriching their conjugation repertoire as
will be discussed later due course There are 8 interchain
cysteines and up to 100 lysines available for conjugation
on IgG1 antibodies and conjugation to these sites results
in heterogeneous mixtures. Cysteine conjugates provide
a greater degree of uniformity than lysine-based conju-
gates [91,92] while recombinant methods in which
cysteines are introduced into the antibody backbone at
specific sites result in still more uniform conjugation
[93,94]. In some instances, it has been observed that the
location of the conjugated drug is not as important as
the stoichiometry of drug attachment, although this is
difficult to ensure [91,93]. ADCs with two to four drugs
per antibody are generally superior to more heavily
loaded conjugates that tend to be cleared very rapidly
from the circulation [95]. Nonetheless, it has been
proved to be difficult to use chemical methods to pre-
pare ADCs with a predefined (2, 3 or 4) number of drug
molecules per antibody. Because the drugs are often
conjugated to the side chains of reactive lysine or cyst-
eine residues of the antibody, a distribution of products
results in variable numbers of drug moieties attached to
jugates. ADC: (a) maleimido linker; (b) liner amino acid linker; For
eptide with amide and disulfide bridge bearing spacer and
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various sites. Thus, the formation of reproducible ADCs
is difficult. Protein engineering has been used to circum-
vent these issues, such as inserting additional cysteine
residues [94], or replacing solvent accessible cysteines
with serines [93], although the drug loading stoichiom-
etry still varies markedly so it is still difficult to control
the number and regioselectivity of conjugated drug
molecules.

Drug bound versus free antibody
There is usually at least a 3 log10 difference in molecular
weight between antibody and the linker-drug moiety.
Therefore the conjugation of only 2–4 drug molecules
produces a situation in which it is not a trivial task to
separate the conjugated ADC from the unconjugated
antibody. For example is was reported that in the
formulation of the now discontinued Gemtuzumab
Ozogamicin ADC (Mylotarg), only 50% of the anti-
CD33 antibody was bound to 4–6 drug molecules. The
remaining antibody was unconjugated [55]. This study
underscores two problems. First, the presence of uncon-
jugated antibody would presumably undermine the effi-
cacy of the ADC. Second, the molar ratio of antibody:
drug is an average value, indicating that the drug conju-
gation process produces a heterogeneous mixture of
products with variable efficacy (discussed further below).
This mixture would also not be exactly reproducible be-
tween batches.

Tumor penetration
The limited penetration of full length antibodies into solid
tumors is a recognized factor restricting their efficacy.
Their large molecular size effects the rate of mass transfer
due to higher interstitial pressure and hypoxia caused by
leaky vasculature in the interior of the tumor mass, factors
that can also effect levels of antigen expression [96-98]. It
has however been possible to select antibody clones
according to their degree of tumor penetration [86,99].
Interestingly, in those studies truncated (single chain vari-
able fragment, scFv) and full length antibody penetration
into the tumor mass was inversely related to the antibody
affinity and internalization rate of the target antigen.
These results are counterintuitive to the traditional strat-
egy of developing high affinity antibodies and again high-
light the need for a deep understanding of the biology of
immunotherapy when selective TMA candidates. These
issues seem less pertinent for micrometastases and even
more so for hematological tumors such as CLL where the
malignant cells are blood borne.

Manufacturing issues
The current limited levels of TMA efficacy require the
use of significant quantities of product (150-350mg/m2

single dose) over multiple treatments. This situation has
stimulated an impressive expansion and improvement in
the whole gamut of upstream and downstream processes
involved in antibody manufacture (reviewed in [14]),
including animal cell recombinant expression systems,
cell culture media, cell growth conditions and product
yield/cell. Several important challenges remain in the
area of product quality control such as the production of
aggregates [100] and variation in glycosylation [101].
Moreover, further improvements are urgently needed in
bioreactor design and protein purification processes if
overall manufacturing costs is to be lowered to enable
TMAs and ADCs to be affordable for patients who need
them [14,102].
TMAs have already proven their clinical effectiveness

and it is predicted that the coming two years will see 1–2
ADCs receiving FDA approval, at least one of which will
be for hematological cancers. Nonetheless, the points
raised above indicate that both TMAs and ADCs have
some inherent limitations that are not easily overcome by
technology. In order to broaden the scope of effective
TDD therapies it is therefore prudent to search in parallel
for additional strategies that would complement the use of
ADCs for cancer therapy.

Alternatives to antibodies as drug carriers in TDD
Several other technologies have been developed to identify
TAAs and to use the products as carriers in targeted drug
delivery (see Table 3). Arguably the most developed of
these is the use of synthetic biology, often based on
the bacteriophage display library platform developed by
Winter [103]. Newer derivatives of the original platform
include the use of different phage strains, bacterial or yeast
cells, antibody cDNA, mRNA or random peptide based li-
braries and various candidate selection protocols. For fur-
ther details on these systems the reader is referred to
recent excellent reviews [2,104-108]. Historically, as phage
display systems developed in parallel with technologies for
antibody engineering, it is perhaps not surprising that
many of the early display platforms focused on combina-
torial antibody heavy and light chain variable region gene
libraries. The selection of these gene sequence combina-
tions also allowed their direct grafting onto human con-
stant region gene scaffolds, thus expanding the repertoire
of full length humanized antibodies [2]. The first FDA
approved antibody developed in this way was Adalumu-
mab, an anti-TNFα antibody registered in 2008 for use in
the treatment of several autoimmune diseases. Over 20
phage display derived full length TMAs are currently
undergoing clinical assessment, mostly for cancer therapy,
several of them for hematological cancers. In addition to
expanding the binding diversity of full length antibodies,
the single-chain "minibodies" generated by these biological
systems can be easily linked to drugs as described below.
Alongside synthetic biology methods, synthetic chemical
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techniques also have proven advantageous. A variety of
approaches are now available for the generation of com-
binatorial small molecule, peptide or aptamer libraries
for the generation of cancer cell targeting drug carriers
[109-113]. Of these strategies, the most developed is that
of peptide-drug conjugates and these are discussed
further.
Peptide-Drug Conjugates (PDCs)
During the 1980’s significant research effort and money
were invested in the development of peptide therapeu-
tics, but only isolated products reached the marketplace.
The first of these was the synthesized peptide hormone
luteinizing hormone-releasing hormone (LHRH), (leu-
prorelin) launched in 1984 by Abbot. Interest waned
however, as it became clear that problems with peptide
stability and their short blood half lives due to peptidase
sensitivity would limit the effectiveness of natural pep-
tides. Continuing progress over the ensuing years in syn-
thetic peptide chemistry and manufacturing processes
have largely solved many of the problems to the extent
that the field is flourishing today [114]. Recent surveys
show that over 50 peptide drugs have been approved for
clinical use with several of these drawings over $1billion
in annual sales. Another several hundred peptides
are in various stages of clinical assessment (http://www.
peptidetherapeutics.org/PTF_report_summary_2010.pdf).
These data give strong impetus to using peptides as drug
carriers.
Several PDCs for cancer therapy have been developed

although none have yet received regulatory approval. The
most promising of these is GRN1005, an angiopeptin-2-
paclitaxol PDC that targets lipoprotein receptor protein-1,
a cell surface molecule overexpressed on solid tumor cells.
The conjugate is under clinical assessment for treatment
of advanced solid tumors, in particular in patients with
brain metastases [115]. Examples of other PDCs in devel-
opment for cancer therapy include candidates for prostate
cancer, leukemia, lymphoma and small cell lung cancer
using both natural and synthetic peptides conjugated to
traditional or novel drugs [116-120]. Peptides as carriers
may offer advantages over antibodies and several of these
are listed in Table 3.
Figure 2 Mononuclear (a) and Binuclear (b) peptide targeted platinum
Novel target discovery
Peptide display technologies do not rely on the antigeni-
city of the target molecule. Therefore it is not necessary
to develop specialized immunization protocols to gener-
ate binding ligands to weak antigens. Also, depending of
the technology used, the displayed peptides can be struc-
turally extended from the display platform, allowing
them for freedom to bind locations on single molecule
or complex target binding sites that might be sterically
hindered from more bulky antibodies. This has already
generated the discovery of novel peptide ligands of can-
cer cell surface targets [121].
Conjugation chemistry
The important question of appropriate carrier-linker-drug
design and synthesis is easily approached with PDCs. As
with full length antibodies, the site of conjugation between
peptide and drug molecule can have a profound effect on
maintaining peptide binding affinity, drug activity and
conjugate stability. However exact knowledge of the pep-
tide sequence and the amino acids responsible for main-
taining high binding affinity often allows a higher degree
of flexibility in the design of linker length, its composition
and conjugation chemistry to the drug. Compared to
antibody-linker conjugation, peptide conjugation can then
include a wide range of chemistries encompassing amides,
carboxylic acid esters, hydrazones, thioethers and carba-
mates (for more details see [120]. Aside from small mol-
ecule drugs, peptides can also be easily conjugated to
transition metals. Mononuclear and dinuclear platinum
complexes tethered to an α9β1-integrin targeting peptide
and a nuclear-localisation peptide have been synthesized
using solid-phase synthesis [122] (see Figure 2). The cellu-
lar uptake, DNA binding and cytotoxicity of the com-
plexes was monitored in a number of different cell lines.
Some of these conjugates exerted remarkable targeted
cytotoxicity. However, linkage of platinum complex to
antibody is very problematic due to the number of com-
peting Lys amino groups situated across the antibody
molecule.
An additional advantage with random peptide libraries

is the ability to select combinatorial cyclic peptides which
may demonstrate higher selectivity for the target and
complexes, with targeting peptide.

http://www.peptidetherapeutics.org/PTF_report_summary_2010.pdf
http://www.peptidetherapeutics.org/PTF_report_summary_2010.pdf
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longer stability than linear peptides because of conform-
ational restriction [123,124]. There is also is flexibility in
cyclization strategy [120] in which an amide bond formed
between N- and C-termini or the disulphide bond formed
between two Cys residues can be engineered outside of
the receptor recognition sequence and adjacent to a linker
moiety.

Intracellular uptake
For the most part the molecular targets of anti-cancer
drugs are intracellular, a trend likely to continue with the
explosion of new information in areas such as signaling
pathways, epigenetics, DNA repair mechanisms, cell cycle
regulation and mitochondrial metabolism. Therefore it is
imperative that carrier-drug complexes induce efficient
cellular uptake, preferably through receptor-mediated
endocytosis (RME). This will initially traffic the conjugate
to endosomes/lysosomes, induce enzymatic or chemical
degradation of linker and release active drug into the cyto-
plasm [125,126]. This process has been extensively stud-
ied, with the case of transferrin being only one example
[127-130]. It should be noted that peptide carriers can also
be taken up non-specifically by pinocytosis [130], however
these peptides can be selected out by testing for uptake on
appropriate receptor negative control cells. Not only does
the RME pathway ensure that the drug payload is deliv-
ered intracellularly, but this form of uptake has been
shown to one pathway to bypassing the development of
drug resistance, a strategy that should be further exploited
to enhance the clinical efficacy of drugs already in the
clinic [131], (Gellerman et al., submitted).
There are many aspects of carrier-drug uptake/processing

pathway to be considered, the first of which is the ability
of the carrier itself to bind and activate the receptor in
such a way as to induce efficient RME. Peptide display li-
braries afford a higher statistical chance of presenting at
least some candidates in the (novel?) structural orientation
to engage the receptor binding pocket correctly and the li-
brary platforms more easily lend themselves to high
throughput screening for this specification. Furthermore
internalizing carrier peptides can be selected from these li-
braries without prior knowledge of receptor structure or
biology. This is important as cell surface receptors vary
widely in their cell surface density, turnover time, RME
kinetics and recycling and trafficking routes.

Tumor penetration
Peptide carriers are in the order of a hundredth the mass
of antibodies [132] and this is clearly an advantage to
overcoming the interstitial tumor pressure which can limit
antibody transport into the tumor interior [133,134]. Two
examples that emphasize this point are the identification
of peptides containing a CendR motif that enhance pene-
tration into tumor tissue and internalization into cells
[135] and the use of tumor-vasculature homing peptides
containing the CD13 receptor binding motif Asn-Gly-Arg
[136]. Finally, while members of the cell-penetrating pep-
tide family can [137], but usually do not demonstrate
tumor tissue specificity [138], they can be grafted to a var-
iety of targeting peptides to enhance the efficacy of TDD
[139-142].

Manufacturing
There are now several dozen peptide therapeutics ap-
proved for clinical use and the market for therapeutics
peptides is estimated to reach $11.5billion by 2013
(BioNest). Over the last decade or so, processes in pep-
tide manufacture have considerably evolved, partly due
to the experience of scaling up production from milli-
gram to multi-ton levels [143,144]). These requirements
have generated important improvements in both tech-
nical and cost efficiency aspects of process design,
manufacturing capacity and peptide synthesis [145].
With regards to synthesis, both recombinant and chem-
ical synthetic pathways are available and while tradition-
ally the latter approach had the advantage of being able
to insert unnatural amino acids that can increase stabil-
ity and flexibility in conjugation to drugs, this division is
now becoming blurred [146].

Peptide challenges
As mentioned briefly above, natural peptide drugs are
limited by their sensitivity to enzymatic degradation, ex-
tensive renal filtration, and nonspecific uptake into tis-
sues such as the liver, all of which resulted in reduced
bioavailability and reduced half life in the circulation
(minutes) as compared to antibodies (reviewed in [147].
Many of the shortcomings have been overcome by dif-
ferent synthetic chemistry strategies, resulting in the
development of peptidomimetics. These include incorp-
oration D-enantiomeric amino acids and replacement of
alanine residues to increase resistance to gut and serum
proteases and coupled the peptide to polyethylene glycol
(PEGylation) to reduce liver and kidney elimination
[105,147].

Conclusions: on today's menu – TMAs, ADCs
and PDCs
The passive infusion of TMAs directed to cell surface
antigens on tumors cells has definitely established itself as
a valid strategy for therapy of both hematological and
some solid tumors. In several cases, such as with
Rituxmab, Transtuzumab and more recently Ipilumumab
(Table 1), these treatments have revolutionized the prog-
nosis of patients with certain forms of leukemia, breast
cancer and metastatic melanoma respectively. Although
not tumor cell specific, the antigens targeted by these anti-
bodies are well characterized and validated and there is
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accumulated understanding on both the benefits and side
effects of targeting them. Concerned for their near-term
pipelines, pharmaceutical companies are leveraging this
knowledge base to develop a variety of new-generation,
genetically modified derivatives, (such as bispecific anti-
bodies and "antibody-like" proteins) aimed at improving
both the antibody’s pharmacological profiles and cyto-
toxic effects, either directly (induction of apoptosis or
interruption of growth signaling pathways) or indirectly
(through conscription of innate (ADCC, CDC) or T-cell
immune effector functions). These developments should
expand their clinical potential and are likely to result in
the approval of more TMAs in the next few years, par-
ticularly for hematological cancers and micrometastatic
disease, where limitations of tumor tissue penetration
are minimized and immune effector functions can be
maximized. While a recent survey found that antibodies
to over 90 different TAAs are in clinical study [10], it is
doubtful that these candidates will overcome the limita-
tions of TMAs described above with regards to tumor
cell specificity, solid tumor penetration and more con-
venient forms of administration. In addition, the high
cost of manufacture remains a point of concern for
health care managers.
Like most offspring, full length ADCs inherit some lim-

itations of their naked TMA predecessors listed above
and carry new ones of their own but also have the op-
portunity to overcome others. The noteworthy empha-
size of approved and development-stage ADCs targeting
hematological cancers (see Table 2) again highlights the
limitation of solid tumor penetrability. Interestingly,
the need for their uptake in cells contradicts one of the
advantages of immunotherapy – the conscription of im-
mune effector functions. On the other hand, the need to
induce cellular uptake has prompted the search for new
cell surface targets and with improvements in screening
and selection techniques it is likely that novel agents will
soon emerge.
With the recent advances in peptide chemistry, pep-

tides present a strong alternative to antibodies as drug
carriers, even though they still suffer from comparitively
reduced half-lives. Whether based on antibody variable
region (scFV) or random sequences, the technologies
now available offer greater potential for selection of
novel peptides with the characteristics required of suc-
cessful PDCs. Being structurally more flexible than
ADCs, peptide building blocks allow the design of non-
peptide mimetics with improved characteristics [148], or
their conjugation to a dendrimer scaffold comprising
several different drugs with different modes of action,
These factors become important in light of many clinical
studies showing that treatment protocols with drug
cocktails are more effective than monotherapies, due to
the multiclonal nature of most cancers.
The summary statement of the above discussions is
that targeted therapies are poised for a bright future.
Naked TMAs, ADCs and PDCs each have advantages
and disadvantages and a better understanding of these
will allow a more rational selection of mono- or even
combination therapies. For example whereas a PDC may
be more effective against a tumor mass, an ADC or
TMA could be used in combination with the PDC to at-
tack circulating tumor cells or micrometastases. Thus, in
the near future physicians, patients and health managers
can expect to be provided with a variety of alternatives
from which to select a more effective and economic tar-
geted treatment for a particular cancer type.
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