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Abstract

The Ras-dependent Raf/MEK/ERK1/2 mitogen-activated protein (MAP) kinase signaling pathway is a major regulator
of cell proliferation and survival. Not surprisingly, hyperactivation of this pathway is frequently observed in human
malignancies as a result of aberrant activation of receptor tyrosine kinases or gain-of-function mutations in RAS or
RAF genes. Components of the ERK1/2 pathway are therefore viewed as attractive candidates for the development
of targeted therapies of cancer. In this article, we briefly review the basic research that has laid the groundwork for
the clinical development of small molecules inhibitors of the ERK1/2 pathway. We then present the current state of
clinical evaluation of MEK1/2 inhibitors in cancer and discuss challenges ahead.

Introduction

Human tumorigenesis is a multistep process during
which accumulation of genetic and epigenetic alterations
leads to the progressive transformation of a normal cell
into a malignant cancer cell. During this process, cancer
cells acquire new capabilities (hallmarks) that enable
them to escape from normal homeostatic regulatory
defense mechanisms. These hallmarks are defined as:
self-sufficiency in growth signals, insensitivity to antipro-
liferative signals, evasion from apoptosis, limitless repli-
cative potential, sustained angiogenesis, and increased
motility and invasiveness [1]. While the mechanisms by
which cancer cells acquire these capabilities vary consid-
erably between tumors of different types, most if not all
of these physiological changes involve alteration of sig-
nal transduction pathways. Among the signaling path-
ways most frequently dysregulated in human cancer is
the Ras-Raf-MEK-extracellular signal-regulated kinase 1
and 2 (ERK1/2) pathway.

The Ras-dependent ERK1/2 mitogen-activated protein
(MAP) kinase pathway is one of the best-studied signal
transduction pathways (Fig. 1). Since the discovery of
MAP kinases by Ray and Sturgill in 1988 [2], more than
11,000 articles have been published on this topic. ERK1/
2 MAP kinases are activated by virtually all growth fac-
tors and cytokines acting through receptor tyrosine
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kinases, cytokine receptors or G protein-coupled recep-
tors. Typically, ligand binding to receptor tyrosine
kinases induces dimerization of the receptor and auto-
phosphorylation of specific tyrosine residues in the
C-terminal region. This generates binding sites for adap-
tor proteins, such as growth factor receptor-bound pro-
tein 2 (GRB2), which recruit the guanine nucleotide
exchange factor Sos at the plasma membrane. Sos acti-
vates the membrane-bound Ras by catalyzing the repla-
cement of GDP with GTP. In its GTP-bound form, Ras
recruits Raf kinases (ARAF, BRAF and CRAF) to the
plasma membrane, where they become activated by a
complex interplay of phosphorylation events and pro-
tein-protein interactions. Raf acts as a MAP kinase
kinase kinase (MAPKKK) and activates the MAP kinase
kinases (MAPKKs) MEK1 and MEK2, which, in turn,
catalyze the activation of the effector MAP kinases
ERK1 and ERK2 [3]. Once activated, ERK1/ERK2 phos-
phorylate a panoply of nuclear and cytoplasmic sub-
strates involved in diverse cellular responses, such as
cell proliferation, survival, differentiation, motility, and
angiogenesis [4].

MEK1/MEK2 and the family of MAP kinase kinases
MEK1 and MEK?2 belong to the family of MAPKKs (also
known as MEKs or MKKs), which are dual specificity
enzymes that phosphorylate threonine and tyrosine resi-
dues within the activation loop of their MAP kinase
substrates [5]. The human genome encodes seven
MAPKK enzymes that regulate the activity of four
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Figure 1 Schematic representation of the Ras-Raf-MEK-ERK1/2 MAP kinase pathway. The figure shows the cascade of activation of the
MAP kinases ERK1/ERK2 mediated by growth factor binding to receptor tyrosine kinases. See text for details. GF, growth factor; RTK, receptor
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distinct MAP kinase pathways (Fig. 2A). Aside from
MEK1/MEK2, the MAPKKs MKK4 and MKK7 phos-
phorylate and activate the c-Jun N-terminal kinase
(JNK) isoforms, MKK3 and MKK6 phosphorylate and
activate the p38 isoforms, and MEKS5 selectively acti-
vates ERK5. Depending on the cellular context, MKK4
may also contribute to the activation of the p38 pathway
[6,7].

Structurally, MAPKKs are proteins of ~45-50 kDa that
share 37-44% amino acid identity with MEK1/MEK2 in
the kinase domain (Fig. 2B). MEK1 and MEK2 are
themselves 86% identical in the catalytic domain. In
addition to their kinase domain, MEK1 and MEK2 con-
tain a strong leucine-rich nuclear export signal (NES) at
their N-terminal extremity [8], a feature not found in
other MAPKK family members. Contrary to MAP
kinases, MAPKKs have very narrow substrate specificity.
It is assumed, from lack of evidence to the contrary,
that the MAP kinases ERK1/ERK2 are the only sub-
strates of MEK1 and MEK2. However, the possibility
that MEK1/MEK2 have other non-catalytic effectors
cannot be excluded. For example, a recent study showed
that MEK1 interacts with peroxisome proliferator-

activated receptor y (PPARy) to induce its nuclear
export and attenuate its transcriptional activity [9].

The high sequence identity between MEK1 and
MEK2, and their significant similarity with MEK5 have
important pharmacological implications. First, this
explains why small molecule MEK1/2 inhibitors devel-
oped so far are non-selective with regard to MEK1 and
MEK? isoforms.

Although it is commonly believed that the two
MAPKK isoforms are functionally equivalent, there is
evidence, however, that they are regulated differentially
and may not be interchangeable in all cellular contexts
[10-13]. Intriguingly, it has been reported that activated
MEK1 but not MEK2 induces epidermal hyperplasia in
transgenic mice [14]. RNA interference and gene invali-
dation studies have also suggested that MEK1 and
MEK?2 may contribute differentially to tumorigenesis
[15,16]. The physiopathological relevance of these obser-
vations to human cancer remains unclear. Second, it
helps understand why the first-generation MEK1/2 inhi-
bitors PD98059, U0126 and PD184352 were also found
to inhibit MEK5 and the ERK5 MAP kinase pathway at
higher concentrations [17,18]. Elucidation of the crystal
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Figure 2 The MAP kinase kinases family. (A) MAP kinases and their upstream MAPKKs. (B) Schematic representation of human MAPKKs.
MAPKKs are composed of a kinase catalytic domain (in blue) flanked by N- and C-terminus extensions of varying lengths. The percentage of
identity of the kinase domain with MEKT is indicated. An NES, only present in MEK1 and MEK2, is indicated in yellow.

structures of MEK1 and MEK2 has revealed that MEK5
share 83% amino acid identity with MEK1 in the
PD184352-like inhibitor-binding pocket [19]. These
MEK1/2 inhibitors have been used in thousands of
papers and have proven extremely useful tools to inves-
tigate the biological functions of the ERK1/2 MAP
kinase pathway. However, their inhibitory activity
towards MEKS5, albeit weaker, indicates that we should
be cautious in the interpretation of data obtained at
high concentrations of inhibitor.

The ERK1/2 MAP kinase pathway is a key

regulator of cell proliferation and survival

Multiple lines of evidence have implicated the ERK1/2
MAP kinase pathway in the control of cell proliferation
[20]. First, ERK1 and ERK2 are activated in response to
virtually all mitogenic factors. Second, several studies
have reported that the mitogenic response to growth
factors is correlated with their ability to induce sus-
tained ERK1/2 activity [21-23]. Third, expression of

kinase-dead mutants of ERK1 or anti-sense ERK1 RNA
inhibited the activation of ERK1/ERK2 and exerted a
dominant-negative effect on cell proliferation [24].
These early findings were confirmed by subsequent
RNA interference-based studies showing that silencing
of ERK1/ERK2 expression inhibits the proliferation of
various cell types [25-27]. Fourth, treatment with small
molecule inhibitors of MEK1/MEK2 was reported to
inhibit the proliferation of a variety of cell types [28-30].
Reciprocally, expression of constitutively-active forms of
MEK1 was sufficient to stimulate cell proliferation and
relax growth factor dependency [31-33]. Further demon-
stration of the essential role of ERK1/2 signaling in cell
proliferation was provided by gene invalidation studies
in mice showing that loss of Erkl or Erk2 gene function
results in impaired proliferation of specific cell types
[34-37].

ERK1/2 signaling is required for the progression of
cells from the GO/G1 to S phase [20,38]. Activation of
the ERK1/2 pathway is associated with induction of the
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positive cell cycle regulators cyclin D1 [39] and c-Myc
[40], and with down-regulation of anti-proliferative pro-
teins such as Tobl [23], Foxo3a [41] and p21 [42]. In
addition to its direct role in the cell division cycle, the
ERK1/2 MAP kinase pathway also regulates cell growth
by stimulating protein and nucleotide biosynthesis
[20,43]. One mechanism by which the ERK1/2 pathway
increases global protein translation is through phosphor-
ylation and inactivation of tuberin (also known as
TSC2), a negative regulator of the master growth regula-
tor mammalian target of rapamycin (mTOR), resulting
in increased mTOR signaling [44,45].

Studies in several experimental systems have high-
lighted the important role of the Raf-MEK-ERK1/2
MAP kinase pathway in the control of cell survival
[46,47]. Early studies have shown that activation of the
ERK1/2 pathway prevents apoptosis induced by growth
factor withdrawal, loss of matrix attachment or cytoske-
letal disruption in cultured cells [48-51]. These findings
were reinforced by genetic studies showing that loss of
ERK1/ERK2 or MEK1/MEK?2 induces cell death in var-
ious mouse tissues [37,52,53]. ERK1/2 signaling pro-
motes cell survival by repressing the expression or
activity of pro-apoptotic Bcl-2 family proteins, such as
Bim and Bad, and by inducing the expression of pro-
survival members like Bcl-2 and Mcl-1 [47].

Hyperactivation of the ERK1/2 MAP kinase
pathway in cancer

Given the central role of the Raf-MEK-ERK1/2 signaling
pathway in cell proliferation and survival signaling, it is
therefore not surprising that alterations in this pathway
are highly prevalent in human cancer. Multiple genetic
changes can lead to hyperactivation of the ERK1/2 path-
way in cancer (Fig. 3). Aberrant activation of receptor
tyrosine kinases such as the epidermal growth factor
(EGF) receptor, as a result of gene amplification or gain-
of-function mutations, is frequently observed in carcino-
mas and brain tumors [54,55]. Activating mutations in
RAS genes, most often in KRAS, are found in ~30% of
cancers and are generally acquired early in the tumori-
genic process [56]. More recently, large-scale resequen-
cing studies have revealed that BRAF is mutated in
~20% of all cancers and in more than 40% of melano-
mas [57]. The majority of these mutations are clustered
in the kinase domain of B-Raf and lead to the stimula-
tion of ERK1/2 activity in cells [58]. It is noteworthy
that RAS and BRAF mutations are generally mutually
exclusive in tumors, suggesting an epistatic relationship.
Also, activating mutations in MEKI gene are found at
low prevalence in lung carcinomas, melanomas and
colon carcinomas [59,60]. However, no mutation in the
ERKI1 or ERK2 gene has been reported to date in
tumors. Consistent with these observations, numerous
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studies using clinical specimens have documented the
hyperactivation of MEK1/MEK2 and ERK1/ERK2 in
solid tumor and hematological malignancies [61,62].

Studies in cultured cells have revealed that expression
of activated alleles of MEK1 or MEK?2 is sufficient to
deregulate the proliferation and trigger transformation of
immortalized fibroblast and epithelial cell lines
[15,31,32,63,64]. Orthotopic transplantation of mammary
or intestinal epithelial cells expressing activated MEK1/
MEK?2 into mice induces the formation of aggressive
tumors that progress up to the metastatic stage [15,64].
Similarly, expression of activated Raf mutants in various
cell lines, including melanocytes, stimulates MEK1/2 and
ERK1/2 signaling, and induces the formation of tumors
in nude mice [65]. The oncogenic activity of the Raf-
MEK-ERK1/2 pathway was further tested in transgenic
mouse models. Transgenic expression of activated MEK1
in mouse skin induces hyperproliferative and inflamma-
tory lesions and inhibits epidermal differentiation,
mimicking features of squamous cell carcinomas
[14,66,67]. In the same way, targeted expression of acti-
vated forms of C-Raf or B-Raf in various tissues of trans-
genic mice was shown to drive lung, skin, thyroid, and
prostate tumorigenesis [65,68,69]. Importantly, deinduc-
tion of activated B-Raf expression in a conditional lung
cancer mouse model leads to dramatic tumor regression
concomitant to inactivation of ERK1/2 signaling, sug-
gesting a dependency of B-Raf-induced lung tumors on
the ERK1/2 pathway [70].

Pre-clinical pharmacological studies have demon-
strated that blockade of the ERK1/2 pathway with
small-molecule MEK1/2 inhibitors markedly restrains
the proliferation of various carcinoma and leukemic cell
lines by inducing cell cycle arrest and apoptosis
[28,30,71,72]. In vivo studies further established that
administration of orally available MEK1/2 inhibitors eli-
cits significant tumor regression in mouse xenograft
models [30,72-74]. The strategic position of MEK1 and
MEK?2 in the Ras-dependent ERK1/2 pathway in con-
junction with a promising pre-clinical profile have pro-
vided strong rationale for the development of small-
molecule inhibitors of MEK1/2 for chemotherapeutic
intervention in cancer [62].

Clinical development of MEK1/2 inhibitors

PD98059 was the first small-molecule inhibitor of
MEK1/2 to be disclosed in 1995 [28]. Biochemical stu-
dies indicated that PD98059 inhibits the activity of both
MEKI1 and MEK?2 isoforms, but fails to inhibit a panel
of other Ser/Thr kinases [75,76]. Two other potent inhi-
bitors of MEK1/2, U0126 [77] and Ro 09-2210 [78],
were subsequently identified in cell-based assays. None
of these compounds was moved to clinical evaluation
because of their pharmaceutical limitations. However,
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Figure 3 Genetic alterations of the Ras-dependent ERK1/2 pathway in cancer.

PD98059 and U0126 have proven to be invaluable aca-
demic research tools to investigate the role of the
ERK1/2 MAP kinase pathway in normal cell physiology
and disease.

To date, eleven MEK1/2 inhibitors have been tested
clinically or are currently undergoing clinical trial eva-
luation (Table 1). The chemical structures of some of
these inhibitors are given in Fig. 4.

Cl-1040 (PD184352)

The benzhydroxamate derivative CI-1040 (Pfizer) was
the first MEK1/2 inhibitor to enter clinical trials [79].
CI-1040 is a potent (IC50 of 17 nM on purified MEK1)
and highly selective inhibitor of MEK1 and MEK2 that
was identified by screening a library compound with an
in vitro ERK1 reactivation assay [30]. Similar to
PD98059 and U0126, CI-1040 and its analogs inhibit
MEK1/2 in a non-ATP and non-ERK1/2 competitive
manner. Structural studies have revealed that CI-1040-
related analogs bind into a hydrophobic pocket adjacent
to but not overlapping with the Mg-ATP binding site of
MEK1 and MEK2 [19]. Binding of the inhibitor induces
a conformational change in unphosphorylated MEK1/2
that locks the kinase into a close catalytically inactive
form. This binding pocket is located in a region with
low sequence homology to other kinases (except for
MEKS5), which explains the high selectivity of these
compounds and their noncompetitive kinetics of inhibi-
tion. In pre-clinical studies, CI-1040 was shown to

inhibit the growth of colon carcinomas by as much as
80% in mouse xenograft models [30]. Importantly, anti-
tumor activity was achieved at well-tolerated doses and
correlated with a reduction in the levels of phosphory-
lated ERK1/2 in excised tumors.

A phase I study of orally administered CI-1040 was
undertaken in 77 patients with advanced cancers [79].
Results of this study indicated that the compound was

Table 1 Small molecule MEK1/2 inhibitors in clinical trials

Inhibitor Company Phase  Status
Cl-1040 Pfizer Phase Il Development
stopped
PD0325901  Pfizer Phase I/ Development
Il stopped

AZD6244 Array BioPharma/ Phase Il In progress
AstraZeneca

GDC-0973 Exelixis/ Phase | In progress
Genentech

RDEA119 Ardea Biosciences/ Phase I/ In progress
Bayer Il

GSK1120212  GlaxoSmithKline Phase I/ In progress

Il

AZD8330 Array BioPharma/ Phase | In progress
AstraZeneca

RO5126766  Hoffmann La Roche Phase I In progress

RO4987655  Hoffmann La Roche Phase I In progress

TAK-733 Millenium Phase I In progress
Pharmaceuticals

AS703026 EMD Serono Phase I In progress
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well tolerated at doses resulting in a median 73% inhibi-
tion of phospho-ERK1/2 expression in tumor biopsies.
About 60% of patients experienced adverse effects,
mostly grade 1 or 2, with no patient having drug-related
grade 4 events. The most common toxicities included
diarrhea, asthenia, rash, nausea, and vomiting. Interest-
ingly, one patient with pancreatic cancer achieved a par-
tial response with significant symptomatic improvement
that lasted 12 months, and 19 additional patients suffer-
ing from a variety of cancers had disease stabilization
lasting 4 to 17 months. This encouraging study provided
the first demonstration that MEK1/2 can be inhibited in
vivo in humans, and the first evidence of clinical activity
for this class of agents. On this basis, a phase II study
was initiated in 67 patients with advanced breast, pan-
creatic, colon and non-small cell lung cancers [80].
Unfortunately, results of this trial were disappointing.

No patient achieved a complete or partial response, and
stabilization of disease (median of 4.4 months) was
observed in only 8 patients. The insufficient antitumor
activity, poor solubility and low bioavailability of
CI-1040 precluded further clinical development of this
compound.

PD0325901

The CI-1040 structural analogue PD0325901 (Pfizer) is a
second-generation MEK1/2 inhibitor with significantly
improved pharmaceutical properties [81]. Optimization
of the diphenylamine core and modification of the hydro-
xamate side chain imparted PD0325901 with increases in
potency, solubility and bioavailability. PD0325901 has an
ICs50 value of 1 nM against purified MEK1/MEK2, and
inhibits the proliferation of various tumor cell lines at
subnanomolar concentrations (100-fold more potent
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than CI-1040) [62,72]. In vivo studies have demonstrated
that PD0325901 potently inhibits the growth of human
tumor xenografts bearing activating mutations of B-Raf,
concomitant with suppression of ERK1/2 phosphoryla-
tion [72]. The growth of Ras mutant tumors was also
inhibited partially.

The clinical activity of PD0325901 was first evaluated
in a phase I-II study of 35 patients with advanced solid
tumors employing a dose-escalating design [82,83].
Doses > 2 mg BID efficiently suppressed ERK1/2 phos-
phorylation (average of 84%) and Ki67 expression (aver-
age of 60%) in tumor biopsies. Anticancer activity of
PD0325901 was evaluated from 27 assessable patients.
Two partial responses were observed in melanoma
patients, while 8 patients achieved stable disease lasting
3-7 months [84]. The phase I study was extended and
clinical activity was documented by 3 partial responses
in melanoma patients and 24 cases of disease stabiliza-
tion (22 melanoma and 2 non-small cell lung cancer) in
66 patients [85]. However, PD0325901 was associated
with more severe toxicity than CI-1040, including
blurred vision as well as acute neurotoxicity in patients
receiving more than 15 mg BID of the drug. The clinical
development of this drug has been discontinued in 2008.

AZD6244 (ARRY-142886)

The benzimidazole derivative AZD6244 (Array Bio-
Pharma/AstraZeneca) is another second-generation
potent inhibitor of MEK1/MEK2 [86]. AZD6244 selec-
tively inhibits purified active MEK1 and MEK2 with an
ICs50 of 14 nM by a mechanism not competitive with
ATP. In cellular assays, the compound inhibits basal
and growth factor-stimulated phosphorylation of ERK1/
2 with ICs, concentrations < 40 nM, and exerts antipro-
liferative effects on tumor cell lines harboring BRAF or
RAS mutations [86-88]. AZD6244 has demonstrated
potent dose-dependent antitumor activity against a
panel of mouse xenograft models of colorectal, pancrea-
tic, liver, skin, and lung cancer [86-89]. Inhibition of
tumor growth was found tocorrelate with the reduction
of phospho-ERK1/2 levels in tumors. Based on promis-
ing pre-clinical activity, AZD6244 was advanced into
clinical development.

A phase I clinical trial was undertaken to assess the
safety, pharmacokinetics and pharmacodynamics of
AZD6244 in 57 patients with advanced cancer [90].
Results of this study showed that the 50% maximal tol-
erated dose (100 mg BID) was well tolerated with skin
rash being the most frequent and dose-limiting toxicity.
Most other adverse events were of grade 1 or 2. Nota-
bly, 7 patients developed transient and reversible blurred
vision, an adverse effect also observed with PD0325901.
A strong reduction in ERK1/2 phosphorylation (mean
inhibition of 79%) was observed in tumor biopsies. Nine
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patients showed disease stabilization lasting for at least
5 months.

Preliminary results from four randomized phase II
clinical trials of AZD6244 have been recently reported.
In a first study, AZD6244 was compared to the alkylat-
ing agent temozolomide in advanced melanoma patients.
Antitumor activity of AZD6244 was observed, but there
was no significant difference in progression-free survival
between the two treatment arms [91]. A second study
compared the efficacy of AZD6244 with the antimetabo-
lite pemetrexed as second- or third-line treatment of
patients with non-small cell lung cancer. Again, the
study showed evidence of single agent antitumor activ-
ity, but failed to demonstrate a difference for the pri-
mary disease progression endpoint [92]. In a third study,
AZD6244 was compared to capecitabine in patients with
metastatic colorectal cancer who had failed prior irino-
tecan and/or oxaliplatin regimens. Similarly, no differ-
ence was observed between the two treatments in the
number of patients with disease progression [93].
Finally, the results of a phase II study of AZD6244 in
patients with advanced or metastatic hepatocellular car-
cinoma were recently reported. The study was stopped
prematurely due to the lack of radiographic response
[94]. Other phase II trials are currently ongoing in a
variety of tumor types.

GDC-0973 (XL518)

GDC-0973 (Exelixis/Genentech) is a potent, selective,
orally active inhibitor of MEK1/2 with an ICsq of <1 nM
in vitro [95]. In cellular studies, the compound inhibits
ERK1/2 phosphorylation at subnanomolar concentra-
tions, and exerts antiproliferative effects in multiple
tumor cell lines harboring KRAS or BRAF mutations. In
vivo pharmacodynamic studies have shown that a single
oral dose of GDC-0973 inhibits phospho-ERK1/2 in
tumors for up to 48 hours, translating into potent inhi-
bition of tumor growth in human xenograft models.
Notably, GDC-0973 appears to have reduced activity in
the brain, which may reduce the potential of central
nervous system side effects. A phase I dose-escalating
study of GDC-0973 was initiated in subjects with solid
tumors. Preliminary results from 13 patients indicates
that GDC-0973 is well tolerated with no drug-related
serious adverse events being reported [96]. One patient
with non-small cell lung cancer had stabilization of dis-
ease for 7 months and continues on treatment. Another
phase I trial of GDC-0973 in combination with the
phosphatidylinositol 3-kinase (PI3K) inhibitor GDC-
0941 is planned.

RDEA119 (BAY 869766)
RDEA119 (Ardea Biosciences/Bayer) is another orally
available, allosteric inhibitor of MEK1/2 [97]. In vitro,
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RDEA119 selectively inhibits MEK1 (ICs, of 19 nM) and
MEK?2 (IC5q of 47 nM) in a non-ATP competitive man-
ner. Cellular assays showed that RDEA119 potently inhi-
bits ERK1/2 phosphorylation (IC5q from 2.5 to 16 nM)
and cell proliferation in a panel of human cancer cell
lines. In vivo, RDEA119 exhibits potent antitumor activ-
ity in xenograft models of human melanoma, colon and
epidermal carcinoma. Interestingly, pharmacodynamic
studies have revealed that the compound has low central
nervous system penetration. RDEA119 is currently being
evaluated as single agent in a phase I study in advanced
cancer patients, and in a phase I/II study in combination
with the multikinase and Raf inhibitor sorafenib.

GSK1120212

GSK1120212 (GlaxoSmithKline) is an orally available,
selective inhibitor of MEK1/2 with reported antitumor
activity in mouse xenograft models [98]. A phase I study
of GSK1120212 was undertaken in 2008 in patients with
solid tumors and lymphoma. Preliminary evaluation of 6
patients treated at four dose levels indicates that
GSK1120212 is well tolerated with no dose-limiting
toxicity reported so far [98]. Dose escalation is ongoing.
Two other phase I/1I studies of GSK1120212 have been
recently initiated in subjects with relapsed or refractory
leukemias, and in combination with everolimus in
patients with solid tumors.

OTHER MEK?1/2 INHIBITORS

Five other MEK1/2 inhibitors are currently being evalu-
ated in phase I clinical trials in advanced cancer
patients. These are AZD8330 (Array BioPharma/Astra-
Zeneca), RO5126766 and RO4987655 (Hoffmann La
Roche), TAK-733 (Millenium Pharmaceuticals) and
AS703026 (EMD Serono). Other novel MEK1/2 inhibi-
tors such as RO4927350 and RO5068760 have recently
been reported but have not yet passed the pre-clinical
stage [99,100].

Concluding remarks and challenges

Despite strong rationale for the clinical development of
drugs targeting the ERK1/2 MAP kinase pathway in can-
cer, the effectiveness of this approach in cancer therapy
remains to be validated. The first and only inhibitor of the
ERK1/2 pathway that has received regulatory approval for
the treatment of advanced renal cell carcinoma and hepa-
tocellular carcinoma is the Raf inhibitor sorafenib (Nexa-
var) [101]. However, sorafenib is a multikinase inhibitor
that also inhibits the vascular endothelial growth factor
and platelet-derived growth factor receptor tyrosine
kinases, as well as Flt-3 and c-Kit receptors. To what
extent the inhibition of Raf signaling contributes to the
clinical activity of the drug is not clear. Future clinical
trials of more selective Raf inhibitors will help determine
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whether blocking the pathway at the level of Raf is a clini-
cally viable approach. Inhibitors of MEK1/2 are highly
selective for their targets. However, results from the first
clinical trials have been disappointing. New MEK1/2 inhi-
bitors with improved pharmaceutical properties and
reduced central nervous system activity are promising and
results of ongoing trials are anxiously awaited.

As for other targeted therapies, several outstanding
questions remain to be addressed before MEK1/2 inhibi-
tors join the arsenal of anticancer drugs. Which patients
are more likely to benefit from MEK1/2 inhibitors? Pre-
clinical studies suggest that patients harboring activating
mutations in RAS or BRAF genes are better candidates
for treatment with these kinase inhibitors. Thus, selection
of appropriate patient populations based on genetic
lesions or validated biochemical markers will be critical
for future clinical trial evaluation. Is the therapeutic effi-
cacy of MEK1/2 inhibitors hampered by dose-limiting
toxicity? The ubiquitous involvement of the ERK1/2
MAP kinase pathway in cellular responses has raised
concern about the potential toxicity of drugs blocking
this pathway. The ocular toxicity observed with
PD0325901 and AZD6244 suggests the existence of
mechanism-based adverse effects. Interestingly, new
MEK1/2 inhibitors such as GDC-0973 and RDEA119
have reduced activity in the brain, which may increase
their therapeutic window. What are the most rationale
and best combination therapies with MEK1/2 inhibitors?
The multigenetic nature of advanced cancers suggests
that MEK1/2 inhibitors will likely find their therapeutic
utility in combination with other targeted agents or con-
ventional cytotoxic drugs. Pre-clinical studies have
shown that PI3K pathway activation, through PIK3CA
activating mutations or PTEN loss of function, signifi-
cantly decreases the response of KRAS mutant cancer
cells to MEK1/2 inhibitors [102]. Importantly, simulta-
neous inhibition of the ERK1/2 and PI3K pathways was
found to exert a marked synergistic effect on tumor
regression [102,103]. These observations have provided a
strong rationale for the combination of MEK1/2 and
PI3K inhibitors in cancers that harbor concurrent activat-
ing mutations in these signaling pathways. In that con-
text, Merck and AstraZeneca have recently announced
their plan to collaborate in testing a combination therapy
of AZD6244 and the Akt inhibitor MK-2206 in cancer
[104]. Finally, is the acquisition of resistance mutations in
MEK1/MEK?2 going to limit the clinical utility of these
small molecule inhibitors? A recent study has reported
the identification of a resistant MEKI mutation in a
metastatic tumor that emerged in a melanoma patient
treated with AZD6244 [105]. Therefore, it may prove
necessary to target other components of the ERK1/2
pathway in patients who develop resistance or, even-
tually, to combine MEK1/2 inhibitors with Raf inhibitors
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to slow down the emergence of resistance. A phase /11
study of RDEA119 in combination with the multikinase
Raf inhibitor sorafenib is currently ongoing.
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