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Background
o-Lipoicacid (LA), also known as thioctic acid, occurs nat-
urally as a prosthetic group in various mitochondrial

Abstract

Background: Lipoic acid (LA), a potent antioxidant, has been used as a dietary supplement to
prevent and treat many diseases, including stroke, diabetes, neurodegenerative and hepatic
disorders. Recently, potent anti-tumorigenic effects induced by LA were also reported and evident
as assayed by suppression of cell proliferation and induction of apoptosis in malignant cells.
However, the mechanism by which LA elicits its chemopreventive effects remains unclear.

Methods and Results: Herein, we investigated whether LA elicits its anti-tumor effects by
inducing cell cycle arrest and cell death in human promyelocytic HL-60 cells. The results showed
that LA inhibits both cell growth and viability in a time- and dose-dependent manner. Disruption of
the G,/S and G,/M phases of cell cycle progression accompanied by the induction of apoptosis was
also observed following LA treatment. Cell cycle arrest by LA was correlated with dose-dependent
down regulation of Rb phosphorylation, likely via suppression of E2F-dependent cell cycle
progression with an accompanying inhibition of cyclin E/cdk2 and cyclin Bl/cdkl levels. Evidence
supporting the induction of apoptosis by LA was based on the appearance of sub-G, peak in flow
cytometry analysis and the cleavage of poly(ADP-ribose) polymerase (PARP) from its native | 12-
kDa form to the 89-kDa truncated product in immunoblot assays. Apoptosis elicited by LA was
preceded by diminution in the expression of anti-apoptotic protein bcl-2 and increased expression
of apoptogenic protein bax, and also the release and translocation of apoptosis inducing factor AIF
and cytochrome c from the mitochondria to the nucleus, without altering the subcellular
distribution of the caspases.

Conclusion: This study provides evidence that LA induces multiple cell cycle checkpoint arrest
and caspase-independent cell death in HL-60 cells, in support of its efficacious potential as a
chemopreventive agent.

enzymatic complexes and plays a fundamental role in  nase, and glycine decarboxylase complex [1]

metabolism. It is involved in different multienzyme com-
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fur molecules in LA undergo cycles of oxidation and
reduction, enabling it to function as a potent antioxidant
that is capable of directly terminating potentially damag-
ing free radicals. Several features have been described for
LA such as (a) specificity of free radical scavenging in both
oxidized and reduced forms, (b) interaction with other
antioxidants, (c) metal-chelating activity, (d) effects on
gene expression, (e) bioavailability, (f) location (in aque-
ous or membrane domains, or both), and (g) ability to
repair oxidative damage, which make it an outstanding
antioxidant [2-4]. Added to cell culture medium in vitro,
LA readily enters cells and is reduced by mitochondrial
and cytosolic enzymes to dihydrolipoic acid, most of
which is rapidly effluxed from the cell to the culture
medium [5]. Experimental and clinical studies have indi-
cated the potential usefulness of exogenous LA as a thera-
peutic agent for the prevention and treatment of various
pathologies including diabetes [6], atherosclerosis [7],
ischemia-reperfusion injury [8], degenerative processes in
neurons [9], diseases of joints [10], radiation injury [11],
heavy metal poisoning [12] and HIV activation [13]. LA is
readily absorbed from the diet, and to date, only mild side
effects have been detected following LA administration;
supports the overall feasibility of using LA as a dietary sup-
plement [3].

In recent years, LA has gained considerable attention in
the cancer field as an anticancer agent [14,15]. Results
from antiproliferation studies on cancerous cell-based
models have suggested that the tumor-suppressive effect
of LA corresponds with apoptosis induction, a critical
parameter impaired in cancer cells, and this induction is
selectively exerted in cancer and transformed cell lines,
while being less active toward normal nontransformed
cells [16-18]. Thus, LA was shown to induce apoptosis in
tumor Jurkat, FaDu, Ki-v-Ras-transformed mesenchymal
cells and human lung epithelial cancer H460 cells [19,20].
In human leukemic T cells, LA also potentiated Fas-medi-
ated apoptosis through redox regulation without affecting
peripheral blood monocytes from healthy humans [21].
In experiments using antioxidant response element (ARE)
reporter assays, LA has also been shown to induce phase
II protective genes which are involved in the prevention of
carcinogenesis, in non-cancerous animal- and cell-based
studies [22-24]. These studies support the potential utility
of LA as an anticancer agent and the importance of the
elucidation of the detailed mechanism of its antitumor
activity. Because of its widespread use and therapeutic
potential of LA, however, the mechanism by which LA
elicits its chemopreventive effects remains largely
unknown.

We sought to determine the LA-induced apoptosis and
cell cycle arrest and the underlying mechanisms of action.
Our study shows for the first time that LA is capable to
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block multiple cell cycle checkpoints including G,/S and
G,/M and induce caspase-independent cell death via AIF/
cytochrome c translocation from the mitochondria to the
nucleus. Our findings provide mechanistic support to the
potential utility of LA as an agent for the treatment of
leukemia.

Materials and methods

Reagents

DL-a-Lipoic acid was purchased from LKT laboratories (St
Paul, MN). Primary antibodies like anti-Rb, anti-E2F, anti-
cyclin B1, anti-cyclin D, anti-cyclin E, anti-cdkl, anti-
cdk2, anti-AlF, anti-cytochrome ¢, anti-bcl-2, anti-bax,
anti-actin, anti-histone H1, and secondary antibodies
were purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA). Primary antibodies like anti-pRb (ser
780) and anti-pRb (ser 807/811) were purchased from
Biosource International, Inc. (Camarillo, CA). Anti-PARP
was purchased from Biomol International, L.P. (Ply-
mouth Meeting, PA). Fetal calf serum, RPMI 1640, peni-
cillin and streptomycin were purchased from Cellgro, Inc
(Herndon, VA). All other chemicals and solvents used
were of analytical grade.

Cell culture and growth inhibition assay

Human HL-60 cells were obtained from American Tissue
Culture Collection (Manassas, VA) and maintained in
RPMI 1640 supplemented with penicillin, streptomycin
and 10% heat inactivated fetal calf serum as previously
described [25-27]. For treatment, cells were seeded at a
density of 1 x 10> cells/ml. LA dissolved in 1 N NaOH
solution and neutralized with HCI, was added to the cul-
ture media to the final concentration specified in the text.
At the specified times, control and treated cells were har-
vested. Cell count was performed using a hemocytometer
and cell viability was determined by trypan blue exclusion
[25-27]. Harvested cells were washed twice with PBS, and
pellets were stored at -80°C for additional biochemical
and molecular analyses.

Cell cycle analysis

Cell cycle phase distribution was assayed by flow cytome-
try. Following 24 and 48 h treatment of HL-60 cells with
different concentrations of LA (0, 2.5, and 5 mM), cells
were washed with PBS and stained with 1.0 pg/ml DAPI
containing 100 mM NaCl, 2 mM MgCl, and 0.1% Triton
X-100 (Sigma) at pH 6.8, as described [26,28,29]. The
DNA-specific DAPI fluorescence was excited with UV light
emitting laser (Ni-Cad), and collected with appropriate
filters in an ICP-22 (Ortho Diagnostic, Westwood, MA)
flow cytometer. MultiCycle software from Phoenix Flow
Systems (San Diego, CA) was used to deconvolute the cel-
lular DNA content histograms to obtain quantitation of
the percentage of cells in the respective phases (G;, S and
G,/M) of the cell cycle. Flow cytometry was also used to
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show cells undergoing apoptosis, evident by the appear-
ance of the sub-G, peak [26,28,29].

Preparation of whole cell extracts and subcellular
fractionation

For immunoblotting experiments, cells were collected by
centrifugation and were lysed in ice-cold RIPA buffer (50
mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100, 1% deoxycholate, 0.1 % SDS, 1 mM dithiothreitol
and 10 pl/ml protease inhibitor cocktail). The extracts
were centrifuged and the clear supernatants were stored in
aliquots at -70° C for further analysis. Subcellular fraction-
ation was performed using mitochondria isolation kit
obtained from Sigma (Sigma Chemicals, St Louis, MO)
and different compartmental proteins were used to study
the translocation of AIF and cytochrome c. Protein con-
tent of cell lysates and subcellular fractions was deter-
mined by coomassie protein assay kit (Pierce, Rockford,
IL) with BSA as standard.

Immunoblotting

The aliquots of lysates (20 pug of protein) were boiled with
sample buffer for 5 min, and resolved by 10% SDS-PAGE.
The proteins were transferred to a nitrocellulose mem-
brane and blocked in TBST buffer (10 mM Tris, pH 7.5,
100 mM NacCl and 0.05% Tween 20) containing 3% non-
fat dried milk overnight at 4°C. The blots were incubated
with various primary antibodies, followed by incubation
for 1 h with appropriate secondary antibodies conjugated
to horseradish peroxidase in TBST. Actin and histone
expression was used as loading control. Fractionation of
the mitochondrial and nuclear proteins was confirmed by
probing the membrane for mitochondrial specific cyto-
chrome c oxidase antibody or nuclear specific histone H1
using their specific antibodies. The intensity of the specific
immunoreactive bands were detected by enhanced chemi-
luminescence (ECL), using the manufacturer's protocol
(Kirkegared & Perry Laboratories) and quantified by den-
sitometry and expressed as a ratio to actin or histone, as
previously described [27].

Results

Inhibition of HL-60 cell growth by LA is both time and dose
dependent

Initially, we investigated the effect of LA on cell growth
inhibition. Exponentially growing HL-60 cells were
treated with increasing doses and exposure times of LA,
and subjected to trypan blue exclusion assay to measure
the cell growth and viability. LA treatment resulted in
dose- and time-dependent inhibition of cell growth, com-
pared with controls, and the magnitude of cell growth
suppression was seen as early as 24 h exposure to 5 mM
LA (89%; Fig. 1A). By 48 h there was a ~8%, ~64% and
86% diminution of cell growth by 1, 2.5 and 5 mM LA,
respectively, which was accompanied by ~1, ~3% and
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Control of cell growth and viability in HL-60 cells by LA. (A)
Cells were treated with 0, |, 2.5 and 5 mM LA and the cell
numbers were determined at 24, 48, 72 and 96 h. (B) Cell
viability was measured using the trypan blue dye exclusion
assay. Effects of LA were presented as a percentage of con-
trol, and values are expressed as mean + SD for three exper-
iments.

36% temporal, dose-dependent decrease in cell viability
(Fig. 1B).

LA induces HL-60 cell cycle arrest by altering the
expressions of specific signaling proteins

To assess LA-induced cell growth suppression is mediated
via alterations in cell cycle, we evaluated the cell cycle dis-
tribution by flow cytometry. Since 48 h treatment with 1
mM LA showed minimum affects on cell growth and via-
bility, only cells exposed to 2.5 and 5 mM LA for 24 and
48 h were analyzed. The percentage of cells in G;, S, and
G, phases were calculated and presented as histograms in
Fig. 2A. LA caused a significant decrease in S-phase cell
population (55.6% in control vs. 19.8% and 4.7% in cells
treated with 2.5 and 5 mM LA, respectively), accompanied
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Figure 2

Effects of LA on cell cycle phase distribution and the expression of various cell cycle regulatory proteins in HL-60 cells. (A)
Cells were treated with 0, 2.5 and 5 mM LA for 24 and 48 h and analyzed by flow cytometry. Cells with hypodiploid DNA con-
tent (sub-G,) represent apoptotic cell fractions. (B) Western blot analysis of total Rb, pRB (ser780), pRB (ser 807/811) and E2F
expression in cell lysate treated with LA for 48 h. (C) The level of immunoreactive cyclins Bl, E, cdkl and cdk2 in LA-treated
HL-60. The intensity of the specific immunoreactive bands were quantified by densitometry and expressed as a fold difference

against actin.

by a concomitant accumulation in the G, phase cell pop-
ulation (28.4% in control vs. 63.1% and 74% in 2.5 and
5 mM LA treated cells). To further explore the cell cycle
arrest by LA in HL-60 cells, specific cell cycle regulatory
proteins required for G, G,/S and S phase transition were
measured by Westerm blot analysis. First, we measured
the expressions of cyclins D, E and cdk?, as they play a piv-
otal role in controlling the phosphorylation status of Rb,
which in turn activate transcription factor E2F to induce

cell entry into the S-phase. Results in Fig. 2B show that LA
treatment caused a dose-dependent reduction in cyclin E/
cdk2 expression without affecting cyclin D1 (data not
shown), and at the same time LA treatment also resulted
in ~38 to 60% suppression of the phosphorylated Rb
(pRb). Moreover, LA caused a significant reduction in the
phosphrylation of Rb at two specific sites, Ser-780 and
Ser-807/811, was also observed (Fig. 2B). In addition, a
more pronounced decrease in the expression of E2F was
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also detected in the treated cells (Fig. 2B), suggesting that
these changes collectively contributed to the decrease in S
phase cell population by LA (Fig. 2A).

Since LA-treated cells also show alterations in G,/M pro-
gression, we also assayed the expression of cyclins A, B
and cdkl expression and observed a dose-dependent
down regulation of cyclin B1/cdk2 (Fig. 2C) without a
corresponding alteration in the expression of cyclin A
(data not shown).

http://www.jhoonline.org/content/1/1/4

LA induces apoptosis by increasing bax/bcl2 ratio and by
causing poly(ADP-ribose) polymerase (PARP) cleavage
Cell cycle analysis revealed that LA apparently induced
apoptosis as evident by the appearance of sub-G; fraction
(Fig. 2A); notably, the percentage of apoptotic cells
increased from 1.4% in control cells to 59.6% and 72.9%
in 24 and 48 h, 2.5 and 5 mM LA-treated cells, which
might contribute to the growth inhibitory effects of LA
(Fig. 3A). Corroborative evidence of induction of apopto-
sis was obtained by biochemical analysis showing that
PARP cleavage was substantially increased in cells treated
for 48 h with increasing doses of LA (Fig. 3B). As addi-
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Figure 3

Induction of apoptosis by LA and analysis on poly(ADP-ribose) polymerase (PARP) cleavage, AlF/cytochrome c expression, and bax/bcl-2 ratio and subcel-
lular distribution of AlF/cytochrome c by LA. (A) HL-60 cells were treated with 0, 2.5 and 5 mM LA for 24 to 48 h; LA induced cell death, evident by the
flow cytometric measured sub-G1 fraction was calculated and shown as % of total cell population. (B) Western blot analysis revealed down regulation of
PARP expression at accompanied by appearance of 89 kDa cleaved PARP fragment in > 2.5 mM, 48 h LA treated cells. (C) AIF and cytochrome ¢ (Cyt C)
expression in 48 h LA treated cells. (D) The actin-adjusted level of bax and bcl-2 and changes in the ratio of bax to bcl-2 in HL-60 cells treated for 48 h with
increasing dose of LA. (E) Subcellular distribution of immunoreactive AIF and Cyt C in the cytosol, mitochondria and nucleus in control and 24 and 48 h
LA-treated HL-60 cells. Actin and histone was used as loading control for cytosol and nucleus fractions, respectively. For mitochondria fraction verification

was performed as detailed in Methods.
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tional support, other apoptosis markers including AIF,
cytochrome ¢ and bax/bcl-2 ratio were also examined to
further ascertain the response of cells to LA treatment, by
western blot analysis. Treatment of HL-60 cells with 2.5
mM LA for 24 h resulted in a 1.5 fold increase in total
cytochrome ¢, while the total AIF levels remained
unchanged (Fig. 3C). As bcl-2 plays an integral role in the
release of cytochrome c during cell death, we determined
its expression and correspondingly, also bax, an apoptosis
agonist, in control and LA-treated whole cell extracts.
Western blot analysis clearly showed a dose-dependent
suppression of bcl-2 expression, accompanied by con-
comitant increases in bax, in LA-treated cells, compared to
control cells (Fig. 3D), which was most vividly illustrated
as a marked increase in bax-to-bcl-2 expression ratio (Fig.
3D). These results further support the ability of LA to acti-
vate the mitochondria-dependent apoptotic cascade.

LA induces translocation of cytochrome c and AIF
Induction of apoptosis by LA conceivably may involve the
translocation of cytochrome c and AIF. This possibility
was tested by biochemically fractionating different subcel-
lular compartments and quantifying the appearance of
cytochrome c and AIF by western blot analysis, following
treatment with LA. Typical results in cells treated with 2.5
and 5 mM LA for 24 and 48 h showed a spatiotemporal
release of AIF from mitochondria into the nucleus (Fig.
3E). Similarly, cytochrome c was also apparently released
from the mitochondria, and unexpectedly, was not
accompanied by a concomitant cytoplasmic increase (Fig.
3E). These results suggest that LA-elicited cell death may
not occur via a classical cytochrome ¢ mitochondria-
cytosol translocation mechanism but rather, a caspase-
independent mode of cell death via the nucleus directed
shuttling of AIF and cytochrome c.

Discussion

LA has pleiotropic pharmacologic effects. The therapeutic
potential of LA in cancer treatment has been shown in sev-
eral studies [14,17,20], however, the mechanisms by
which LA elicits its chemopreventive properties remain
largely unknown. Using HL-60 cells, we have confirmed
the cancer cell growth suppressive effects of LA. Further,
we now provide evidence for two novel LA-elicited
changes that possibly contribute to its chemopreventive
potentials: (i) LA induces blockade at both well estab-
lished cell cycle checkpoint, respectively, G,/S and G,/M,
(ii) LA promotes the demise of treated HL-60 cells, possi-
bly by a combination of mechanisms that includes the
mitochondria-dependent apoptotic cascade encompass-
ing a caspase-independent mode of cell death mediated
via the translocation of AlIF/cytochrome c. The proposed
mechanism of LA is depicted in Figure 4.

http://www.jhoonline.org/content/1/1/4

Targeting dual checkpoints of the cell cycle by LA is partic-
ularly noteworthy as it effectively, as a single agent,
accomplishes the same cellular endpoint as what has been
eloquently proposed by Li et al [30] of inducing malig-
nant cell demise through the deliberate bi-checkpoint
blockade-mediated induction of apoptosis, as exempli-
fied by the combined administration of -lapachone and
taxol to deliver a one-two punch for tumor cell killing and
eradication. The mechanism by which LA acts in dual cell
cycle checkpoint control may be complex and appears to
involve at least the down regulation of cyclin E/cdk2 and
cyclin B1/cdkl in a manner that effects synergistic cell
cycle arrest and induction of apoptosis [30,31]. It is nota-
ble that earlier studies have also demonstrated the post-
translational elevation of p27Kip1 and p21Cip1 as spe-
cific LA elicited effects [14,19]. Taken together, these
results not only reinforce the essential role of LA in cell
cycle control but are likely to be directly involved in con-
tributing to its therapeutic potential in cancer treatment.

Results of flow cytometry analysis assessing the presence
of cells with fractional DNA content (evident as the sub-
G, peak), in combination with the appearance of specifi-
cally processed 89-kD PARP product as demonstrated by
immunoblot analysis (Figures 2 and 3), showed clearly
the restoration/activation of programmed cell death in
HL-60 cells treated with LA. Since the flow cytometric data
appeared to show a more pronounced effect of prolonged
treatment by LA, especially at the higher concentrations it
is possible that more than one mode of cell death is trig-
gered by LA. Equally likely is the possibility that these two
assays alone are not sufficiently definitive to establish the
mode of cell death in the treated cells. Experiments
exploring TUNEL and agarose gel electrophoresis for
detecting appearance of DNA ladders, and the use of cas-
pase inhibitors are contemplated to address these and
other possibilities. Despite the limitations mentioned
above, it is important to point out a significant finding in
this study, i.e., the demonstration of translocation of two
proteins, respectively, AIF and cytochrome ¢ from mito-
chondria to the nucleus after LA treatment. A dose-
dependent increase of AIF appearing in the nuclear frac-
tion was observed as early as 24 h, whereas cytochrome c
release and nuclear accumulation occurred at 48 h. Recent
studies have demonstrated that AIF plays a critical role in
caspase-independent induction of apoptosis [32,33]. Our
studies also showed that LA down regulated bcl-2 expres-
sion, which in turn may aid the release of AIF by altering
mitochondrial permeability and contributing to its relo-
calization to the nucleus, and thereby promoting the
induction of caspase-independent apoptosis. A compan-
ion and equally important change in this regard may be
the cellular fate of cytochrome ¢, which, in our studies of
the effects of LA, became nuclear bound. It is notable that
previous studies have demonstrated a novel role of cyto-
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Figure 4

Proposed mechanism of action of LA. In this model, the ability of LA to suppress cell proliferation and induce apoptosis in HL-
60 cells is hypothesized to involve (A) disruption of cell cycle control, (B) perturbation in apoptogenic/anti-apoptotic (bax/bcl-
2) regulatory protein expression and translocation of mitochondrial AIF and cytochrome ¢ (Cyt C) from mitochondria to
nucleus and promoting the caspase-independent induction of apoptosis.

chrome c in the activation caspase-independent apopto-
sis, as involving the nucleus accumulation of cytochrome
¢ instead of a more generally accepted classical mecha-
nism in which the cytoplasmic translocation of cyto-
chrome ¢ from mitochondria provides a key trigger for
caspase-dependent apoptosis [34]. Indeed, there is
increasing awareness and acceptance regarding the co-
existence of caspase-dependent and caspase-independent
apoptotic and other modes of cell death for a given cell
type [35]. Such as notion is consistent with and supported
by our observation of the re-localization of mitochondrial
proteins, AIF and cytochrome c into nucleus by LA treat-
ment, suggesting that LA signals cell death in responsive
cells by a caspase-independent, nuclear activated other
apoptotic and perhaps other cell death mechanism.

Importantly, the concentrations of LA used in this study
are similar to those used in other in vitro studies reporting
the cell cycle arrest and apoptosis inducing properties of
LA [19]. Notably also, mM LA concentrations have been
reported in the plasma after oral dosing in pharmacoki-
netic studies and are considered non-toxic. Moreover, the
half-life of LA in plasma is short (30 min), suggesting that
it is rapidly taken up into tissues or further metabolized
[36]. Therefore, it is plausible that high concentrations, in
the mM range, may accumulate in target tissues.

Conclusion

The results of this study demonstrate conclusively that LA
treatment causes cell cycle arrest and alterations in the
expression/translocation of mitochondrial apoptogenic/
anti-apoptotic proteins including AIF and cytochrome c,
and the net result being a reduction in cell proliferation
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concomitant with cell cycle arrest and induction of apop-
tosis. These findings may be part of the mechanisms that
underlie or contribute to the beneficial effects of this read-
ily available dietary supplement in cancer prevention.
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