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Abstract

and fidelity of spike propagation.

Background: The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission
to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure,
especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological
impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by
local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC).

Results: We have investigated the natures of spike propagation and the role of VGSCs in this process by recording
spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and
fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive
than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by
facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation.

Conclusion: Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity
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Introduction
Information flows among network neurons are fulfilled
by spike propagation on the axons, signal transmission
at the synapses, synaptic integration on the dendrites/
soma [1-5]. The axons as a subcellular compartment
play critical roles in processing neuronal codes [1], such
as spike initiation [6-18], spike amplification [19,20] and
spike propagation [21-24]. The patterns of axonal digital
spikes constitute neuronal output codes to organize the
brain functions. The amplification of axonal spikes en-
sures neuronal codes to be digital. The fidelity and ve-
locity of axonal spike propagation influence the spikes to
be efficient codes [25].

The secure propagation of sequential spikes toward axonal
terminals has been challenged recently [23,24,26-28]. The

* Correspondence: jhw@sun5.ibp.ac.cn

'Institute of Biophysics, State Key lab for Brain and Cognitive Sciences,
Chinese Academy of Sciences, Beijing 100101, China

’Qingdao University, Medical College, 38 Dengzhou, Shandong 266021, China
Full list of author information is available at the end of the article

( BioMVed Central

infidelity of spike propagation occurred in the neurons
that produced high frequency spikes [1,29], such as cere-
bellar Purkinje cells whose firing rates were up to 500 Hz
[9,30-32]. Furthermore, the velocity of spike propagation
presumably reduced in firing sequential spikes [1]. The in-
fidelity of spike propagation enables some digital spikes to
be lost, and the deceleration of spike propagation influ-
ences the temporal precision of neuronal digital codes. In
order to secure axonal spike propagation without any loss
of these digital codes and their precision, we have to figure
out the mechanisms underlying spike propagation infi-
delity and deceleration.

The fidelity of spike propagation on the axons was influe-
nced by membrane potential that altered VGSC kinetics
[33-35], such as worsened by a depolarization and im-
proved by a hyperpolarization [24,28]. Spike propagation
was presumably triggered by local currents that raised
membrane potentials to activate VGSCs [1]. Moreover, the
depolarization recorded in vivo was classified into the
steady and fluctuation patterns [36]. The steady-state
depolarization inactivated VGSCs [19,33], and the
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hyperpolarization pulses facilitated their activation [34]. In
addition, action potentials in vivo were sequential in nature
[37-40], which affected VGSCs’ kinetics [41,42]. Therefore,
the deceleration and infidelity of spike propagation may re-
sult from the alternation of VGSC functional status. We ex-
amined this hypothesis in the axons of cerebellar Purkinje
cells, and found time-dependent deceleration and infidelity
in spike propagation via VGSC inactivation.

Results

The velocity and fidelity of spike propagation were mea-
sured at various time points of sequential spikes. Time-
dependent changes in propagation velocity and fidelity,
such as deceleration and infidelity, were hypothetically re-
lated to the functional status of voltage-gated sodium
channels (VGSC). To test this hypothesis, we analyzed the
changes in the velocity and fidelity of spike propagation
while upregulating or downregulating VGSC’s functions.
The proportional changes in VGSC dynamics vs. spike
propagation denote that the deceleration and infidelity of
spike propagation are controlled by VGSC’s functions.

The time-dependent deceleration and infidelity of spike
propagation on the axons of Purkinje cells

Spike propagation on the main axons of cerebellar Purkinje
cells was measured while sequential spikes were evoked on
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their somata by whole-cell pipette and the propagated
spikes were recorded at their axonal terminal blebs by
loose-patch pipette (Figure 1A). Spike propagation fidelity
was assessed by the number of spikes propagated into
terminals versus the number of spikes evoked at soma
[23,24,29]. Spike propagation velocity was calculated by a
formula that the lengths between soma and axonal bleb
were divided by peak-time from somatic spikes to axonal
ones (Figure 1C). Sequential depolarization pulses were
given for 0.5 second, which was based on a fact that the
responses of Purkinje cells to in vivo stimuli lasted for se-
conds [43,44]. The spikes reaching to axonal terminals
were accounted if their amplitudes were above the mean
values plus three-times’ standard deviation of signal noise
(red lines in Figure 1B; [23]).

Figure 2 illustrates the effect of spiking time on spike
propagation at different frequencies. The waveforms from
top to bottom in Figure 2A are axonal spikes, somatic
spikes’ dV/dt and somatic spikes (100 Hz), respectively.
Pair waveforms in Figure 2B are the expanded axonal
spikes (top) and somatic spikes’ dV/dt (bottom) in dif-
ferent phases (corresponding colors in Figures 2A and
1B), in which the spikes are induced by pulses at 100
(left column) and 200 Hz (right). Peak-time intervals be-
tween somatic spikes and axonal ones indicate that spike
propagation delays while spiking duration prolongs and
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Figure 1 The fidelity and velocity in the propagation of sequential spikes are measured on the main axons of cerebellar Purkinje cells
(PC). A) Left panel shows the diagram of a whole-cell recording on PC soma and a loose-patch recording on its axonal bleb. Right panel is a
neurobiotin-labeled PC whose main axon extends to deep cerebellar nucleus. B) Top trace shows axonal spikes recorded by a loose-patch on
axonal bleb, bottom trace shows spikes recorded by a whole-cell recording pipette at PC soma, and middle trace shows the dV/dt values of
somatic spikes. Somatic spikes are induced by sequential depolarization pulses at 200 Hz. Spike propagation is defined as a failure if axonal spikes
are lower than three times of standard deviation of mean baseline value (red lines & arrows). C) Top trace shows the expanded axonal spikes
recorded by a loose-patch on axonal bleb and bottom trace shows the dV/dt values of somatic spikes. The difference of their peak time is called
as the delay, which is used to calculate the velocity that is equal to the division of axonal length by time delay.
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Figure 2 The velocity and fidelity of spike propagation on the main axons of cerebellar Purkinje cells (PC) decrease when spiking time
increases. A) Top trace shows spikes recorded by loose-patch on axonal bleb, bottom trace is somatic spikes induced by a whole-cell recording
pipette at depolarization pulses 100 Hz, and middle trace shows dV/dt values of somatic spikes. Calibration bars are 0.1 mV for axonal spikes,
20 mV for whole-cell spikes, 60 mV/ms for dV/dt and 50 ms. B) shows the spikes on axons (top traces) and the dV/dt of somatic spikes (bottom
traces) in initial (red), middle (green) and late phases (blue) under the conditions of spike frequencies at 100 Hz (left column) and 200 Hz (right).
The traces in different colors are taken from the boxes in 2A and 1B with corresponding colors. C) shows the normalized velocity of spike propagation
vs. time at 100 Hz of spikes. D) illustrates the normalized velocity of spike propagation versus time at 200 Hz of spikes. The velocity of spike propagation
decreases to two levels, level one (blue dash line) and level two (purple). Red vertical bars show time points of spike propagation failure. E)
shows normalized spike propagation velocity vs. time under the conditions of spike frequencies at 100 Hz (black symbols) and 200 Hz
(reds; n=12). F) illustrates spike propagation fidelity (a ratio of axonal spikes to somatic ones) vs. time under the conditions of spike frequencies
at 100 Hz (black symbols) and 200 Hz (reds; n = 12).

spiking frequency rises. Moreover, spike propagation is in-
creasingly failed (red vertical bars) when spiking time pro-
longs (Figure 2C ~ D). In spike frequency at 200 Hz, the
decrease of spike propagation velocity is ahead of the fai-
lure of spike propagation. Statistical analyses in Figure 2E
illustrate the normalized velocity of spike propagation ver-
sus time at 200 (red symbols; n=12) and 100 Hz spikes
(blacks). Figure 2F shows the fidelity of spike propagation
vs. time at 200 (reds; n=12) and 100 Hz (blacks). These
results indicate time- and frequency-dependent attenu-
ation in spike propagation velocity and fidelity, i.e., spike
propagation deceleration and infidelity. Parallel changes in
spike propagation velocity and fidelity indicate that they
may share similar mechanism.

We then analyzed whether spike propagation velocity or
fidelity is more sensitive to spiking time. Figure 3 illus-
trates the velocity and fidelity of spike propagation versus
time, in which somatic spikes are induced at different fre-
quencies (100 in A, 150 in B and 200 Hz in C). With

increases in spiking time and frequency, the attenuation
of propagation velocity appears ahead of that of fidelity.
Figure 3D shows the relationship between spike propa-
gation velocity and fidelity at 200 Hz in frequency, in
which their values are taken from corresponding time
points in Figure 3C. These results indicate that the spike
propagation velocity is more sensitive to spiking time
than propagation fidelity.

In terms of a relationship between spike propagation
velocity and fidelity, Figure 4 illustrates the changes in the
velocity and fidelity of spike propagation during long-term
spikes. A deceleration of spike propagation is ahead of the
infidelity of spike propagation (Figure 4A ~ B). Interes-
tingly, the attenuation of spike propagation velocity partially
recovers after a spike fails to propagate (Figure 4C ~ D).
Moreover, the propagation velocity appears attenuated to
two levels (Figure 4B), in which level one (blue dash-
line) is defined when spike failure occurs randomly and
level two (purple) is defined when the propagation of
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Figure 3 The time-dependent deceleration and infidelity of axonal spike propagation in different spike frequencies. A) shows the
normalized velocity (filled symbols) and fidelity (opens) of spike propagation versus time when somatic spikes are induced at 100 Hz. B) shows
the normalized velocity (filled symbols) and fidelity (opens) of spike propagation vs. time when somatic spikes are induced at 150 Hz. C) shows
the normalized velocity (filled symbols) and fidelity (opens) of spike propagation vs. time when somatic spikes are induced at 200 Hz (n=12).
D) illustrates spike propagation velocity versus fidelity at 200 Hz of spike frequency. The data indicate that the deceleration of spike propagation
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subsequent spike fails absolutely. Spike propagation vel-
ocity recovers to level one from level two after it fails.
The immediate recovery of propagation velocity after
the propagation failure of a spike implies that the decel-
eration and infidelity of spike propagation may share
similar mechanisms.

Spike propagation was presumably based on local cur-
rents that depolarized membrane potentials to activate
VGSCs [1,21-24,33,35]. We focused on studying the
roles of VGSC’s functional status in the deceleration and
infidelity of spike propagation on the axons of cerebellar
Purkinje cells.

Facilitating VGSC's reactivation reverses the time-dependent
deceleration and infidelity of spike propagation

The facilitation of VGSC reactivation was done by two
approaches, i.e., the prevention of VGSC inactivation by
using anemone toxin (ATX), a blocker of VGSC inactiva-
tion [45,46], and the promotion of VGSC recovery from
inactivation by hyperpolarization [34]. If VGSC functional
status controls the time-dependent deceleration and infi-
delity of spike propagation, the facilitation of VGSC reacti-
vation should block these phenomena. Moreover, the
values of dV/dt for spike rising phase (the change of spike
potentials per time unit) were thought to be the indices of

VGSC'’s activation and reactivation [47,48]. We also mea-
sured the changes of spike’s maximal dV/dt during long-
term spiking.

Figure 5 illustrates the dynamical changes of maximal
dV/dt values when the axons of cerebellar Purkinje cells
propagate sequential spikes. The maximal dV/dt values ap-
pear reduced during long-lasting spiking (Figure 5A; n =
12). By plotting spike propagation velocity or fidelity versus
maximal dV/dt in corresponding time points, we observed
the proportional correlations between the normalized vel-
ocity of spike propagation and maximal dV/dt (Figure 5B,
Boltzmann’s fitting) or between the fidelity of spike propa-
gation and maximal dV/dt (Figure 5C). These results indi-
cate that the ability of VGSC reactivation influences the
velocity and fidelity of spike propagation.

We subsequently examined the roles of hyperpolariza-
tion in regulating spike propagation velocity and fidelity
since a hyperpolarization promoted VGSC recovery from
inactivation [34]. Figure 6 shows the effect of hyperpo-
larization on spike propagation fidelity. Hyperpolariza-
tion appears to attenuate the failure of spike propagation
(Figure 6A ~B). The failure of propagating sequential
spikes at 200 Hz (black symbols in Figure 6C) is signifi-
cantly prevented by hyperpolarization (red symbols; n =
9, p<0.01). In the meantime, the decrease of maximal
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Figure 4 Propagation failure of a spike makes the propagation
deceleration of subsequent spike partially recovered. A) Top
trace shows axonal spikes, and bottom trace shows dV/dt values of
somatic spikes. A comparison of peak time indicates a sequence that
spike propagation slows down, spike propagation fails and spike
propagation velocity recovers. B) shows normalized velocity of spike
propagation versus time at 200 Hz of sequential spikes. The velocity
of spike propagation decreases to two levels, i.e,, initial level one
(blue dash line) and subsequent level two (purple). Red vertical bars
show the time points of spike propagation failure. C) shows
normalized velocity of spike propagation vs. time, which was taken
from B) in corresponding time. A decrease in spike propagation
velocity is followed by loss of spikes during their propagation and a
subsequent propagation velocity recovery (blue lines). D) illustrates
the normalized velocity of spike propagation before and after spike
propagation failure, i.e., the recovery of spike propagation
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dV/dt values during long-term spiking (black symbols
in Figure 6D) is reversed by hyperpolarization (red
symbols; n=9, p<0.01). Moreover, Figure 7 shows the
effect of hyperpolarization on spike propagation velocity.
Figure 7A ~ B shows that the hyperpolarization pulses
appear to attenuate the deceleration of spike propaga-
tion. The deceleration of propagating spikes (200 Hz) at
level one and level two (black symbols in Figure 7C ~ D) in
this example is prevented by hyperpolarization (reds). Sta-
tistic analysis in Figure 7E shows that the deceleration of
spike propagation (black symbols) is reversed by hyper-
polarization (red symbols; n=9, p<0.01). Therefore, the
upregulation of axonal VGSC’s functions by hyperpolariza-
tion secures the velocity and fidelity of propagating spikes.

Furthermore, we examined the roles of ATX in regula-
ting spike propagation velocity and fidelity. 5 uM ATX
was puffed to axonal middle points between somata and
axonal blebs of Purkinje cells. Figure 8 illustrates the effect
of ATX on spike propagation fidelity. ATX appears to
reduce propagation infidelity (Figure 8A ~ B). The short-
fall of spike propagation at 200 Hz (black symbols in
Figure 8C) is partially blocked by ATX (reds; n=38, p<
0.01). The decrease of maximal dV/dt during spike propa-
gation (black symbols in Figure 8D) is also reversed by
ATX (red symbols; n =8, p < 0.05). In addition, Figure 9
shows the influence of ATX on spike propagation vel-
ocity. Figure 9A ~ B shows that ATX appears to reduce
the deceleration of spike propagation. The deceleration
of propagating spikes (200 Hz) to level two (black sym-
bols in Figure 9C ~ D) in this example is reversed by
ATX (red symbols). This reversion is statistically sig-
nificant (p < 0.05, n = 8; Figure 9E). Thus, ATX secures
spike propagation velocity. The upregulation of axonal
VGSC dynamics by ATX secures the velocity and fide-
lity of propagating sequential spikes.
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Figure 6 Afterhyperpolarization (AHP) improves the time-dependent infidelity of spike propagation on the main axons of cerebellar
Purkinje cells. A) Top trace illustrates spikes recorded by a loose-patch on axonal bleb, bottom trace is somatic spikes induced by a whole-cell recording
pipette at depolarization pulses (200 Hz) and middle trace shows dV/dt values of somatic spikes under control. The arrows under axon-recorded signals
show the failure of spike propagation. Calibration bars are 0.2 mV for axon spikes, 10 mV for whole-cell spikes, 20 mV/ms for dV/dt and 50 ms. B) Top
trace illustrates spikes recorded on axonal bleb, bottom trace is somatic spikes induced by depolarization pulses (200 Hz) and middle trace shows dV/dt
values of somatic spikes under the condition of giving AHP (biphasic pulses, depolarization plus hyperpolarization in bottom trace). An arrow under
axon-recorded signals shows a spike propagation failure on axon. Calibration bars are 0.3 mV for axonal spikes, 20 mV for whole-cell spikes, 60 mV/ms
for dV/dt and 50 ms. C) shows spike propagation fidelity vs. somatic spiking time under the conditions of control (black symbols) and biphasic pulses
(reds; two asterisks, p < 0.01; n=9). D) shows maximal dV/dt vs. spiking time under the conditions of control (black symbols) and AHP (reds; asterisks,
p<001;n=9).
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Figure 7 Afterhyperpolarization (AHP) improves a time-dependent deceleration of spike propagation on the main axons of cerebellar
Purkinje cells. A ~ B) shows the spikes on axons (top traces) and dV/dt of somatic spikes (bottom traces) in initial (red), middle (green) and late phases
(blue) under conditions of control (A) and biphasic pulses (B). The traces in different colors are taken from the boxes in 6A ~ B with corresponding
colors. Q) illustrates the normalized velocity of spike propagation versus time at 200 Hz of spikes under controls. The velocity of spike propagation
decreases to two levels, level one (blue dash line) and level two (purple). Red vertical bars illustrate the time points of spike propagation failure. D)
shows the normalized velocity of spike propagation vs. time at 200 Hz of spikes when biphasic pulses (AHP) is given. E) shows the normalized velocity
of spike propagation vs. somatic spiking time under the conditions of control (black symbols) and biphasic pulses (reds; asterisks, p < 0.01; n=9).
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The results above indicate that the lowered functional
status of axonal VGSCs is reason for the deceleration and
infidelity of propagating sequential spikes. To be sure that
the functional status of axonal VGSCs is essential to the fi-
delity and velocity of spike propagation, we examined
whether the attenuation of VGSC function makes spike
propagation deceleration and infidelity to be worsen.

Suppressing VGSC’s reactivation worsens the time-
dependent deceleration and infidelity of spike propagation
As VGSC’s inactivation is depolarization- and time-
dependent [33,35], VGSC’s functional status was suppressed
by depolarizing membrane potentials. Instead of applying a
train of depolarization pulses to induce spikes, we applied a
long-term steady depolarization to evoke sequential spikes
and measured the fidelity and velocity of spike propagation.
Figure 10 shows the effect of long-term steady
depolarization on the fidelity of spike propagation on
the axons of cerebellar Purkinje cells, in which the
depolarization (0.5 second) is set on an intensity to in-
duce spikes at 100 Hz. Comparing the spikes induced
by the steady depolarization to the spikes induced by a
train of depolarization pulses at 100 Hz (Figure 10A),

we can see that some spikes induced by the steady
depolarization (Figure 10B) fail to be propagated to the
axonal terminal. Spike propagation fidelity shifts toward
downside in this steady depolarization (red symbols in
Figure 10C), compared to that in a train of depolarization
pulses (black symbols). In the meantime, maximal dV/dt
for the spikes induced by steady depolarization decrease
with time (red symbols in 10D). Thus, the steady de-
polarization worsens the time-dependent infidelity of
spike propagation by inactivating VGSCs on the axons of
Purkinje cells.

Figure 11 shows the effect of long-time steady depo-
larization on the velocity of spike propagation on the
axons of cerebellar Purkinje cells. The peak-time diffe-
rences between axonal spikes and somatic spike dV/dt ap-
pear shorter during pulse depolarization (Figure 11A)
than steady depolarization (Figure 11B). Figure 11C shows
a significant lower propagation velocity of somatic spikes
induced by the steady depolarization (red symbols) than
by a train of depolarization pulses (black symbols). There-
fore, a steady depolarization worsens the time-dependent
deceleration of spike propagation by inactivating VGSCs
on the axons of Purkinje cells.
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Discussion

Our study demonstrates the time-dependent infidelity
and deceleration of spike propagation in the axons of
cerebellar Purkinje cells (Figures 1 and 2), in which spike
propagation velocity is more sensitive to spiking time
(Figures 3 and 4). Propagation fidelity and velocity are
proportionally correlated to spike rising slopes (Figure 5).
The time-dependent infidelity and deceleration of spike
propagation are improved by facilitating VGSC reactiva-
tion (Figures 6, 7, 8 and 9) and are exacerbated by inacti-
vating VGSCs (Figures 10 and 11). Thus, the functional
status of VGSCs is essential to control the propagation
of digital spikes on the axons, sharing similar mechan-
ism to their generation. These data reveals a notion that
the fidelity and velocity of spike propagation depend on
the time of firing sequential spikes. The influences of
membrane potentials on spike propagation are based on
the change of VGSC'’s functional status.

The fidelity of spike propagation enables the digital
spikes to reach axonal terminals and trigger synaptic
transmission, such that digital codes in the brain are se-
curely propagated in neural networks. The stable velocity
of spike propagation secures the temporal precision of
neural codes. The amplification of incomplete spikes en-
sures the neuronal digital codes to reach axonal terminal

[19,20]. To most neurons, these characteristics of spike
propagation are beneficial to the efficient output of neur-
onal codes and the homeostasis of the neuronal networks.
On the other hand, some neurons fire high frequency
spikes, such as cerebellar Purkinje cells [9,30-32]. Their
responses to in vivo stimulation lasted for seconds [43,44].
Persistent spikes in these neurons will intensively inhibit
their downstream neurons to make them being function-
ally silent. The infidelity and deceleration of spike propa-
gation as well as the failure of synaptic transmission will
prevent the enhanced inhibition of their target cells. There-
fore, the axons through regulating spike propagation and
VGSC’s dynamics make their downstream neurons work-
ing properly, such that the brain functions are executed in
the manners of precision and homeostasis.

Another physiological impact for the fidelity of spike
propagation may be to make sure functional compati-
bility between presynaptic axons and postsynaptic neu-
rons. The axons of cerebellar Purkinje cells sprout the
branches, main axon and recurrent one. The main axon
innervates neurons in deep nucleus and the recurrent
axons project to adjacent Purkinje neurons [49-52]. The
ability to encode digital spikes are diversified in these
postsynaptic neurons [4,53-56]. The activity diversity of
postsynaptic neurons require presynaptic axonal branches
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to be functionally differentiated. They may follow a rule
that the activity levels of presynaptic axonal branches
match the activity levels of their target cells, i.e., the
functional compatibility between presynaptic and post-
synaptic partners. In our study, the fidelity of spike
propagation is higher in recurrent branches vs. main
axon. The abilities of encoding spikes are advanced in
Purkinje cells vs. deep nucleus cells. In addition to func-
tional differentiations among Purkinje cell axon branches
and among their target neurons, the activity strengths be-
tween presynaptic and postsynaptic partners are propor-
tionally correlated, i.e., active axonal branches innervate
active target cells, or vice versa. Computational simulation
indicates that their functional compatibility makes the
neurons in microcircuit being activated appropriately.
Hence, each cerebellar Purkinje cell differentiates the
function of its axonal branches to be compatible with
the function of their target neurons in order to form a
homeostatic and efficient unit [56].

The “all or none” feature of the action potentials can
be understood as their identical amplitudes in spike ge-
neration and the fidelity in spike propagation. This con-
cept is not suitable for the infidelity and deceleration of
spike propagation, in which the propagation of sequen-
tial spikes on the axons is failed to reduce their number
at the terminals and is decelerated to slow down neuronal
encodings. For instance, spike propagation was failed on
the axons of certain neurons that fire high frequency
spikes [23,24,26-28]; Figures 1, 2, 3 and 4). This infidelity
of spike propagation on the axons makes neuronal digital
codes deteriorated, such that the messages coded in the
presynaptic neurons cannot be precisely detected by the
postsynaptic neurons. In order to secure neural digital
codes, spike propagation is expected to be ensured. Our
results indicate that the prevention of VGSC inactivation
or the facilitation of VGSC reactivation improves the infi-
delity of spike propagation, which should be a strategy to
secure the neuronal digital codes.

The membrane depolarization recorded in vivo was gen-
erally classified into two patterns, steady depolarization
and fluctuation in synaptic integrated signals [36]. Steady
depolarization inactivated VGSCs [33,35]. Hyperpolariza-
tion pulses improved VGSC’s activation [34,42]. Spikes’
generation on the fluctuated pulses is easily propagated
to axonal terminals, and such less infidelity and dece-
leration may be useful to the neuronal encoding under
the physiological condition. Spikes’ generation on steady
depolarization (a more excitable state) is easily lost du-
ring their propagation on the axons, which may prevent
the pathological overexcitation and save cellular energies.
Thus, membrane potential and synaptic signal patterns
regulate the fidelity and velocity of spike propagation in
the favorable manners for neuronal encoding and seizure
prevention. This functional coordination among synapses,
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cell bodies and axons constitutes a homeostatic process
among subcellular compartments [57]. The optimal
ranges for spike generation and propagation within the
efficient and physiological encodings remain to be
defined.

In terms of correlations between the velocity and fidel-
ity of spike propagation, our study indicates that the
propagation velocity is more easily affected by long-term
depolarization and spikes (Figures 3 and 4). The de-
creases of spike propagation velocity fall into two steps,
level one and level two (Figures 4, 7 and 9). Once the
velocity of spike propagation is lowered to level two, a
subsequent spike is surely failed to propagate to axonal
terminals. After this failure, the velocity of spike propaga-
tion recovers to level one. The interaction of spike propa-
gation velocity and fidelity indicate that spike propagation
deceleration and infidelity share the common mechanism,
i.e, VGSCs' dynamics, in which the spike propagation
velocity is more dependent of VGSC’s functions. The find-
ing that both velocity and fidelity of spike propagation are
controlled by VGSCs is advanced compared to previous
studies that are focused on spike propagation fidelity or
velocity [1].

What subtypes of VGSCs are involved in regulating
the velocity and fidelity of spike propagation? Type I, II
and VI are major type of VGSCs on the axons of the
cerebellar Purkinje cells [50,58-62]. Their inactivation
during sequential spikes may lead to the infidelity and
deceleration of spike propagation. NaV1.1 ~ 1.2 are dis-
tributed in the proximal axons of Purkinje cells, whereas
NaV1.6 is abundant at nodes of Ranvier in distal axons
[62]. Therefore, NaV1.6 is most likely involved in time-
dependent deceleration and infidelity of spike propaga-
tion in Purkinje cell axons, which remains to be exam-
ined once we are able to specifically manipulate NaV1.6
dynamics. It is noteworthy that the generation of action
potentials needs both voltage-gated sodium channels
and potassium channels. The role of potassium channels
in spike propagation has not been placed in the scope of
our current study. Previous studies indicated that potas-
sium channels through affecting membrane potentials
regulated the fidelity of spike propagation [24,28]. The
membrane potentials influence action potentials via
VGSCs [34,42]. The effect of potassium channels on
spike propagation may be eventually through regulating
the functional status of VGSCs, such that we focused on
studying the role of VGSCs in spike propagation. The
future studies should be focused on how sodium chan-
nels and potassium channels coordinately regulate the
velocity and fidelity of spike propagation.

The infidelity and deceleration of spike propagation is
due to VGSC inactivation. It remains to be investigated
whether the processes are regulated by the intracellular
signals, such as Ca®*/CaM-dependent protein kinases
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and phosphatases [57]. As the infidelity and deceleration
of the axonal spike propagation occur in the late phase
of depolarization-induced spikes, these spikes will more
or less raise intracellular Ca**. This regulation is very
likely. It is noteworthy that these signal molecules regulate
the function of synapses and soma [63-66]. Therefore, the
encodings of synaptic analogue signals and somatic digital
spikes as well as the output of axonal spike signals are
commonly regulated by intracellular signaling pathways.
Whether these regulations are homeostatic in nature re-
mains be examined.

The studies in cellular imaging suggest that action po-
tentials can reach to axonal terminals. For instance, Ca**
transient was detected at both locations of somatic spike
generation and transmitter release [67]. The spikes based
on imaging sodium signals indicated that somatic spikes
were faithfully propagated toward main axon as well as
axonal collaterals in the limited frequency (<250 Hz; [50].
These results were obtained from the studies in a single
spike propagation or proximal axons. This suggestion may
not be suitable for sequential spikes and their propagation
to axonal terminals. In addition, one could argue that the
axons might be injured during cutting cerebellar slices. As
the infidelity of spike propagation can be almost reversed
by afterhyperpolarization to reactivate VGSCs (Figure 6),
this argument may not be an issue.

Methods and materials

Brain slices and neurons

All experiments were approved by the Institutional Ani-
mal Care Unit Committee in Administration Office of
Laboratory Animals Beijing China (B10831). Cerebellar
sagittal slices (400 um) were prepared from Wistar rats
in postnatal day 14 ~ 15 that were anesthetized by inject-
ing chloral hydrate (300 mg/kg) and decapitated by a
guillotine. The slices were cut by a Vibratome in the
modified and oxygenized (95% O, and 5% CO,) artificial
cerebrospinal fluid (mM: 124 NaCl, 3 KCl, 1.2 NaH,PO,,
26 NaHCOs3;, 0.5 CaCly, 5 MgSO,, 10 dextrose and 5
HEPES; pH 7.4) at 4°C, and were held in the normal
oxygenated ACSF (mM: 126 NaCl, 2.5 KCl, 1.25 NaH,PO,,
26 NaHCOs3, 2 CaCl,, 2 MgSO, and 25 dextrose; pH 7.4)
at 35°C for 1-2 hours. A slice was transferred to a
submersion chamber (Warner RC-26G) and perfused
by normal ACSF for electrophysiological experiments
[57,68-70].

Cerebellar Purkinje cells were identified based on their
morphology and functions. Purkinje cells (somata above
40 pm) in the slices for whole-cell recording were lo-
cated at the border between molecular layer and granule
cells, and infused by fluorescence Alex-488 (5 uM in pi-
pettes) under a DIC/fluorescent microscope (Nikon, FN-
E600). The excited fluorophore showed the typical
dendrites and axonal branches of Purkinje cells, through

Page 11 of 13

which we traced their main axons for recording spikes
by loose-patch. Purkinje cells also were labeled by
neurobiotin (Figure 1A). Purkinje cells showed fast
spiking and no adaptation in amplitude and frequency
[18,42,71-75].

Electrophysiological studies

Sequential spikes in Purkinje cells propagate on their main
axons. The experiments were conducted by whole-cell re-
cordings on their somata to induce spikes and by loose-
patch recordings on the remote ends of their main axons
(Figure 1A) to record the propagated spikes. The electrical
signals were recorded by a MultiClapm-700B amplifier
(Axon Instrument Inc, CA USA) and inputted into a
pClamp-10 with 50 kHz sampling rate. The transient cap-
acitance was compensated and output bandwidth was
3 kHz. The pipette solution for recording spikes in whole-
cell model included (mM) 150 K-gluconate, 5 NaCl, 0.4
EGTA, 4 Mg-ATD, 0.5 Tris- GTP, 4 Na-phosphocreatine
and 10 HEPES (pH 7.4 adjusted by 2 M KOH). The solu-
tion for axonal loose-patch recording was ACSF. The
osmolarity of pipette solution made freshly was 295-305
mOsmol, and pipette resistance was 8 ~ 10 MQ.

In the study of spike propagation on the main axons
of Purkinje cells, we injected depolarization pulses in
various durations and intervals into the somata to in-
duce the spikes at 100 ~200 Hz, and recorded spike
propagation at the remote ends of their main axons. In
addition to fluorescent tracing, the spikes at soma and
axonal bleb with phase-locking indicated the signals
from a Purkinje cell. The fidelity of spike propagation on
the axonal branches of Purkinje cells was assessed by a
ratio of spikes recorded at axonal terminals to spikes in-
duced on somata. The velocity of spike propagation on
the axons of Purkinje cells was calculated by the formula
that the lengths from somata to axonal blebs were di-
vided by the peak-time intervals between axonal spikes
and somatic ones, in which the somatic spikes were con-
verted into dV/dt [17,76]. As spike propagation was
time-dependent, the fidelity and velocity of spike propa-
gation at every 50 ms were averaged from ten spikes.
This calculation method was also used to quantify spike-
rising slope (maximal dV/dt). As the lengths of axons
may be variable in our experiments, the presentation of
spike propagation velocity was normalized.

The influence of VGSC’s functional status on spike
propagation was studied. The inactivation of VGSCs was
prevented by using anemone toxin (ATX), a blocker of
VGSC inactivation [45,46], or hyperpolarization pulses
[34,42]. 5 uM ATX was puffed onto the middle segment
of main axons by ATX-containing pipette, while using
whole-cell recording on soma and loose-patch recording
on axonal bleb. The inactivation of VGSCs was made by
using a steady depolarization [34,42].
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The data were analyzed if the recorded neurons had res-
ting membrane potentials negatively more than -60 mV
and action potentials above 70 mV. The criteria for the ac-
ceptation of each experiment also included less than 5%
changes in resting membrane potential, spike magnitude,
input and seal resistance. The values of the spike propaga-
tion velocity, fidelity and maximal dV/dt are presented as
mean + SE. The comparisons between groups are done
by t-test.

Neurobiotin staining for cerebellar cells

Pipette solutions for whole-cell recordings included 0.2%
neurobiotin, which were back-filled into the recording pi-
pettes whose tips contained the standard solution. After
electrophysiological study, the slices were rapidly placed
into 4% paraformaldehyde in 0.1 M phosphate buffer so-
lution (PBS) for fixation at 4°C about 48 hours. The
slices were incubated in avidin and horseradish peroxi-
dase (Vectastain ABC) for 3 hours, and then 1% DAB-
CoCl2 (Sigma) 1 min for staining neurobiotin-filled cells.
This reaction was stopped by PBS [77]. Neurobiotin-
stained cells were photographed under a scanning con-
focal microscope (Olympus FV-1000, Japan).
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