Caron et al. Parasites & Vectors 2014, 7:66
http://www.parasitesandvectors.com/content/7/1/66

Parasites
&Vectors

RESEARCH Open Access

New insight in lymnaeid snails (Mollusca,
Gastropoda) as intermediate hosts of Fasciola
hepatica (Trematoda, Digenea) in Belgium and

Luxembourg

Yannick Caron", Koen Martens?, Laetitia Lempereur®, Claude Saegerman® and Bertrand Losson'

Abstract

Background: The present study aims to assess the epidemiological role of different lymnaeid snails as intermediate
hosts of the liver fluke Fasciola hepatica in Belgium and Luxembourg.

Methods: During summer 2008, 7103 lymnaeid snails were collected from 125 ponds distributed in 5 clusters

each including 25 ponds. Each cluster was located in a different biogeographic area of Belgium and Luxembourg.
In addition, snails were also collected in sixteen other biotopes considered as temporary wet areas. These snails
were identified as Galba truncatula (n = 2474) (the main intermediate host of F. hepatica in Europe) and Radix sp.
(n=4629). Moreover, several biological and non-biological variables were also recorded from the different biotopes.
DNA was extracted from each snail collected using Chelex® technique. DNA samples were screened through a
multiplex PCR that amplifies lymnaeid internal transcribed spacer 2 gene sequences (500-600 bp) (acting as an
internal control) and a 124 bp fragment of repetitive DNA from Fasciola sp.

Results: Lymnaeid snails were found in 75 biotopes (53.2%). Thirty individuals of G. truncatula (1.31%) and 7 of
Radix sp. (0.16%) were found to be positive for Fasciola sp. The seven positive Radix sp. snails all belonged to the
species R. balthica (Linnaeus, 1758). Classification and regression tree analysis were performed in order to better
understand links and relative importance of the different recorded factors. One of the best explanatory variables
for the presence/absence of the different snail species seems to be the geographic location, whereas for the
infection status of the snails no obvious relationship was linked to the presence of cattle.

Conclusions: Epidemiological implications of these findings and particularly the role of R. balthica as an alternative
intermediate host in Belgium and Luxembourg were discussed.
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Background

Fasciola hepatica is a digenean platyhelminth parasite,
also called liver fluke, which induces fasciolosis mainly in
domestic ruminants and humans. This disease is respon-
sible for important financial loss on livestock production
worldwide. In northern Belgium (Flanders), the yearly cost
of infection in dairy production was estimated to be
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around 8.2 million euros [1], and approximately 52 million
euros in Switzerland [2].

Liver fluke needs a lymnaeid snail as intermediate host
to complete its life cycle. Although Galba truncatula plays
this role in Europe [3,4], it seems that other lymnaeid
species could also act as alternative intermediate hosts [5].
Globally about 20 species of Lymnaeidae were described
as potential intermediate hosts of Fasciola spp. [4]. In
Europe, several species were experimentally infected or
found naturally infected with F. hepatica. These species
belong to species of the genera Lymnaea [6-11]. Omphis-
cola [12-17], Stagnicola, Pseudosuccinea [18], and Radix
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[6,8,11,16,17,19-22]. These observations suggest that many
different species of lymnaeid snails may be potential hosts
for the larval stages of F. hepatica.

In a previous study, R. labiata (Rossmaessler, 1835)
was suspected to act as an alternative intermediate host
of F. hepatica in Belgium since it harbored the intra-
molluscan development and allowed subsequent shedding
of cercariae. Furthermore, these metacercariae were as
infective as those produced in G. truncatula as demon-
strated by parasitological and serological data collected
from experimentally infected rats [20]. Recently, a lym-
naeid snail species collected in Ireland was found to be
naturally infected by F. hepatica and was identified as R.
peregra by PCR amplification and sequencing of internal
transcribed spacer 2 (ITS-2) gene [22].

Systematics of the family Lymnaeidae is controversial as
its members can exhibit a great diversity in shell morph-
ology with extremely homogeneous internal anatomical
traits [23]. Furthermore, for sibling species belonging to
the genus Radix, morphometric analyses demonstrated,
that shell shape was unsuitable to define homogeneously
and discretely recognizable entities, because the variation
was continuous [24]. Taxonomy, deduced from rDNA
sequences, particularly the ITS-2 may help to differentiate
between lymnaeid species [25].

Several techniques aim to detect Fasciola sp. in the
snail intermediate host such as microscopy or molecular
techniques [26]. The latter technique should be effective
and cheap enough to screen large numbers of individuals
for naturally infected snails. Some studies [22,27-32] used
molecular biology - based tools to investigate prevalence
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of F. hepatica in lymnaeids, but very few were tested on
naturally infected snails collected in the field.

The aims of the present study were firstly, to assess
analytic reliability of DNA extraction and multiplex PCR
during a nationwide sampling campaign. Secondly, the
potential epidemiological role of other lymnaeid species
(Radix spp.) was assessed regarding the presence of F.
hepatica in Belgium and Luxembourg. Finally, the pres-
ence and abundance of snails and the prevalence of
larval stages of F. hepatica in the snail populations were
studied in relation with biological and non-biological
variables pertaining to the studied ponds.

Methods

Sampling

Five biogeographic regions were characterized in Belgium
and Luxembourg: Polders, Sand region, Loam region,
Chalk region and Gutland (Figure 1). In each of these
regions, five circular areas of 38 km” were defined, into
which 5 ponds were randomly selected. A total of 125
ponds were thus selected according to a strict a priori de-
fined spatial design. Lymnaeid snails (> 4 mm) were sam-
pled in each pond (and surrounding permanent wet area)
and additionally in 16 temporary wet areas during summer
(July - August) 2008. Snails were collected during a max-
imum of 15 minutes in spots separated by 4-5 meters all
around each pond (irrespective to the presence/absence of
snails) and immediately placed in a tube containing 70%
alcohol. Several variables were also measured such as GPS
coordinates, temperature, pH, soil type (clay, silt, sand,
stone), and presence of fence, cattle, trampling, and faecal
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Figure 1 Location of the 25 pond clusters (abbreviations) spread over five biogeographic regions in Belgium/Luxembourg: 1) Polders
(BKNO, BUIT, BKLE, BDAM, BLAP), 2) Sand region (CKRU, CSTE, CHOU, CBOO, CMEC), 3) Loam region (DHAS, DZOU, DALK, DRIK, DDIE),
4) Chalk region (ESOR, EPES, EBEA, EFOC, EHAI), 5) Gutland (ANOB, ASCH, ABER, ACAP, AUSE).
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pats. Ponds were classified in three types: (i) intensively
used, mostly characterized by a surrounding environment
with high agricultural or breeding of cattle activity, (ii) nat-
ural, representing ponds in nature reserves and (iii) exten-
sively used, surrounded by environments with intermediate
agricultural or cattle breeding activity. Morphological iden-
tification was based on a dichotomous key [33] allowing
discrimination between G. truncatula and Radix sp. using
a binocular microscope (x10). Snails were stored in alcohol
70% until further analyses.

DNA extraction and pooling

DNA extraction was based on Chelex” method as previ-
ously described [34]. Briefly, the snail was mechanically
disrupted with the help of a pellet mixer (Trefflab) in
100 pl of Chelex” 5% (BioRad) and incubated for one
hour at 56°C and 30 min at 95°C in a Peltier Thermal
Cycler (M] Research). The mixture was centrifuged at
13,000 x g for seven minutes. The supernatant was col-
lected and stored at —20°C until further analyses. DNA
concentration and quality (260/280 wavelength ratio) were
measured using a spectrophotometer (Thermo Scientific,
NanoDrop 1000).

In order to reduce the number of PCRs, pools of
individuals of the same genus were formed by mixing
together one ul of each DNA sample with a maximum
of 10 snails per pool. This mixture was considered un-
diluted. One pl of the mixture was then tested in the
multiplex PCR described below.

The absence of internal control amplification (PCR inhib-
itors) for a pooled or an individual sample was assessed
through 1/10 and 1/100 dilutions. Furthermore, the addi-
tion of 0.05% Bovine Serum Albumin (BSA) in the PCR
mixture at 1/10 dilution was tested for samples with
absence of internal control amplification whereupon nega-
tive samples were definitely excluded from the study.

Multiplex PCR and sequencing reaction

A multiplex PCR assay [34] was used to amplify a highly
repeated 124 bp sequence (microsatellite) specific for
Fasciola spp. [35] and ITS-2 rDNA sequence specific for
lymnaeids (500-600 bp). ITS-2 sequence of the snail
acts as a PCR internal control as its absence indicates
potential presence of PCR inhibitors. The primers
used for amplification of Fasciola spp. sequences were
Fshl 5'-GAT-CAA-TTC-ACC-CAT-TTC-CGT-TAG-TC
C-TAC-3" and Fsh2 5'-AAA-CTG-GGC-TTA-AAC-G
GC-GTC-CTA-CGG-GCA-3" and for lymnaeids ITS-2
amplification were News2 5'-TGT-GTC-GAT-GAA-GA
A-CGC-AG-3" and Its2Rixo 5'-TTC-TAT-GCT-TAA-
ATT-CAG-GGG-3’ [36,37]. The sequences were amplified
using a commercial kit (Taq PCR Master Mix, Qiagen) in a
total volume of 25 pl in a Peltier Thermal Cycler (M]
Research) with an initial denaturation step at 95°C for five
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minutes, followed by 40 cycles, each comprising denatur-
ation at 95°C for one minute, annealing at 56°C for one
minute, extension at 72°C for one minute and a final exten-
sion step at 72°C for ten minutes. The amplification prod-
ucts were electrophoretically resolved in 2% agarose gels
and stained with ethidium bromide. The limit of detection
and specificity of this multiplex PCR were studied in a
previous study [34].

ITS-2 rDNA sequence of 100 Radix sp. (93 randomly
selected and 7 Fasciola sp. positive samples) were am-
plified and sequenced for species identification. ITS-2
DNA products were purified using MSB-Spin PCRapace
(Invitek). Cycle sequencing reactions were performed (in
duplicate and in both direction) by BigDye terminator
v3.1 (3730 DNA analyzer; Applied Biosystems) by GIGA
Genomics Facility (Liege University, Belgium). Consensus
sequences were made according to the results of se-
quencing of the PCR products and were analyzed using
BLASTn searches in GenBank (www.ncbinlm.nih.gov)
and aligned using BioEdit 7.0.9.0 [38].

Statistical analysis

Classification and regression tree (CART) analysis

A CART analysis is a non-linear and non-parametric
model that is fitted by binary recursive partitioning of
multidimensional covariate space [39]. Using CART 6.0
software (Salford Systems, San Diego, CA, USA), the ana-
lysis successively splits the dataset into increasingly homo-
geneous subsets until it is stratified and meets specified
criteria. CART performs cross validation by growing
maximal trees on subsets of data then calculating error
rates based on unused portions of the data set.

When the primary splitting variable is missing for an
individual observation, that observation is not discarded
but, instead, a surrogate splitting variable is sought.
Thus, the program uses the best available information in
the face of missing values. In datasets of reasonable
quality, this allows all observations to be used. This is a
significant advantage of this methodology over more
traditional multivariate regression modelling, in which
observations that are missing any of the predictor
variables are often discarded. Further details about
CART are presented in previously original papers or
reviews [40,41].

A CART analysis was conducted on two data sets.
Four different analyses were performed. For CART I and
11, the dependant variable was the presence of Radix sp. or
G. truncatula, respectively and the independent variables
were the county of origin of the pond, geologic character-
istics of the soil, type and depth of pond, and temperature
and pH of the water. For CART III and IV, the dependant
variable was the presence of infected Radix sp. or G. trun-
catula in ponds, respectively and the independent vari-
ables were the presence of fences, (traces of) presence of
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animals, the type of pond and the number of specimens of
Radix sp. or G. truncatula.

Assessment of lymnaeid presence data

The presence of Radix sp. and G. truncatula in all the
biotopes were compared in order to assess their agree-
ment with our results using Fisher’s exact test [42] and
concordance analysis. The level of agreement was also
expressed in terms of indices of positive and negative
agreement [43], respectively the observed agreement
proportion for positive and negative results (i.e., presence
and absence).

Results

Sample collection

Seven thousand one hundred and three lymnaeid snails
were collected during summer 2008 of which 2474 were
morphologically identified as G. truncatula (34.8%) and
4629 as Radix sp. (65.2%) (Figure 2). Lymnaeid snails
were found in 53.2% (75/141) of biotopes investigated,
in which G. truncatula was found in 60% (45/75) of all
the biotopes and 80% (36/45) in ponds, whereas Radix
sp. was recorded in 64% (48/75) of all the biotopes and
85.4% (41/48) in ponds. A percent of 35.8% (886/2474)
and 8.2% (378/4629) of the collected G. truncatula and
Radix sp. were collected from the sixteen temporary wet
areas respectively. G. truncatula and Radix sp. were
present together in 24% (18/75) of the biotopes. G. trun-
catula was most abundant in Sand, Loam and Chalk
Regions (83.2%). Most of the Radix species were found
in Polders (57.2%), where G. truncatula were relatively
under-represented.

Multiplex PCR and sequencing

Two thousand four hundred and seventy four G. trunca-
tula were pooled in 271 batches. Although different dilu-
tion factors were tested (undiluted, 1/10, 1/100 and 1/10 +
BSA), 195 snails (7.89%) were eliminated from the study
due to PCR inhibition. Twenty eight pools containing 270
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Figure 2 Number of G. truncatula and Radix sp. found in the five
biogeographic regions.
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snails were found positive for Fasciola sp. These 270 snails
were individually screened using the multiplex PCR and
30 G. truncatula were found positive, resulting in a preva-
lence of 1.31% (30/2279).

Four thousand six hundred and twenty nine Radix sp.
were pooled in 486 batches of a maximum of 10 snails
each. Four hundred and four snails (8.77%) were elimi-
nated from the study due to PCR inhibition. The 124 bp
specific band of Fasciola sp was amplified in six pools
(60 snails). These 60 snails were individually tested and
7 snails were positive. The frequency of snails with para-
site DNA in Radix sp. was estimated to be 0.16% (7/4225).
The geographical location of ponds where Fasciola sp.
infected snails was found is illustrated in Figure 3.

In order to accurately identify Radix sp., [TS-2 of the
7 Fasciola sp. DNA positive Radix sp. and 93 other
Radix sp. randomly selected were sequenced. Ninety
eight sequences (named as PRT1) [GenBank: KC544264]
were found to be 100% identical to R peregra (Miiller,
1774) (GenBank: HQ283271.1). The two remaining se-
quences (named as PRT2) [GenBank: KC544265] were
identified as 100% identical to R. labiata (Rossmaessler,
1835) [GenBank AJ319637.1]. The 7 Radix sp. positive for
Fasciola sp. all belonged to PRT1.

Statistical analysis

CART analysis

Presence/absence The presence/absence of G. trunca-
tula (CART 1) and Radix sp. (CART II) were assessed for
the 125 sampled ponds using CART analysis. Table 1
presents results of both CART analyses. The geographic
location seems to be the best explanatory variable for the
presence of G. truncatula and Radix sp. Presence of G.
truncatula seems strongly linked to pH, water tempe-
rature and ground type whereas presence of Radix sp. is
essentially related to the ground type.

Infected/non infected The infection status of G. trunca-
tula (CART III) and Radix sp. (CART IV) was also
assessed using CART analysis. Table 2 presents results of
both CART analyses. The number of collected snails was
identified as the best explanatory factor. Factors relative to
cattle presence (trampling, faecal pats, and fence) was not
linked to the infection status.

Assessment of lymnaeid presence data

The distribution of G. truncatula and Radix sp. was not
significantly different within biotopes (Fischer’s exact
test; P=0.34). The Py, and P, are 0.39 and 0.70,
respectively.

Discussion
This is the first time a molecular based technique has
been used to assess natural Fasciola sp. prevalence in
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found infected.
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Figure 3 Location of the ponds where Fasciola sp. infected snails species were found: 1) Polders, 2) Sand region, 3) Loam region, 4)
Chalk region, 5) Gutland; Bold for G. truncatula; Italic for Radix sp.; Italic and bold for pond where G. truncatula and Radix sp. were
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intermediate hosts in Belgium. One hundred and twenty
five ponds and sixteen other interesting areas in five differ-
ent biogeographic regions in Belgium and Luxembourg
were sampled for snails with environmental factors in-
formation. In Belgium in 2008, winter and spring were
particularly mild. Furthermore, during that summer the
rainfall and the number of rainy days were quite abnormal
(Royal Meteorological Institute of Belgium; http://www.
meteo.be). Those conditions are the most suitable for snail
development. More than half of these biotopes (53.2%)
were colonized with lymnaeid snails. Soil composition in
Flanders (sand, silt) in Polders, Sand Region, and Loam
region seem to be suitable for the development of
lymnaeid snails. A great diversity in shell morphology with
extremely homogenous anatomical traits created a great
confusion regarding the systematics of lymnaeids especially

Table 1 CART analysis | (G. truncatula) and Il (R. balthica):
presence/absence; explanatory percentage for each of
the independent variables was indicated

G. truncatula R. balthica

County 100% County 100%
pH 73% Ground type 59.25%
Water temperature 46.81% Pond type 23.04%
Ground type 45.32% Water temperature 23.04%
Pond type 13.85% pH 14.25%
Tree sensibility 84.44% Tree sensibility 81.25%
Tree sensitivity 81.25% Tree sensitivity 60.22%

those belonging to the genus Radix. Some authors [25]
considered R. peregra (Miiller, 1774) as a synomym of R.
ovata (Draparnaud, 1805) and R. balthica (Linnaeus,
1758), while others maintained all species as valid [44]. In
this present study, R. balthica was used to represent all of
these synonymous species (R peregra=R. ovata=R.
balthica = PRT1) because the name R peregra was aban-
doned by Bargues et al. [37]. The genus Radix was more
represented than the main intermediate host of F. hepatica
since only one third of the 7103 collected snails belonged
to the species G. truncatula. Indeed, R. balthica (= R. pere-
gra =R ovata) is considered as a very widespread and re-
silient species [45], which is able to live in waste water [46],
in contrast to G. truncatula. Furthermore, ponds are not
typical biotopes of G. truncatula, which prefers peripheral
extremities of open drainage furrows, spring head sur-
roundings, temporary wet meadow, and ditches [47]. In
sixteen of those specific biotopes, G. truncatula (35.8%)
was more frequent than Radix sp. (8.2%). However, the

Table 2 CART analysis Il (G. truncatula) and IV (R. balthica):
infection status; explanatory percentage for each of the
independent variables was indicated

G. truncatula R. peregra

Number of snail 100% Number of snail 100%

Pond type 22.14% Ground type 29.84%
Tree sensibility 83.33% Tree sensibility 100%

Tree sensitivity 97.78% Tree sensitivity 82.35%
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Fisher’s exact test indicates that there is no difference
between lymnaeid fauna composition and biotopes
(permanent wet vs temporary wet areas). Prevalence
of F. hepatica in permanent and temporary water habitats
were never compared even though some consider these as
equal [48].

Establishment of pools including a maximum of 10
snails was advantageous to reduce PCR number and con-
sequently cost and time consumption. The proportion of
PCR inhibition was relatively high despite dilution and use
of BSA [27,34]. More than 66% (130/195) of the discarded
G. truncatula snails were collected in a tractor track prob-
ably polluted with some PCR inhibitors (complex polysac-
charide, humic acid, or proteinase).

Fasciola sp. prevalence was evaluated to 1.31% in G.
truncatula and 0.16% in Radix sp using an optimized
multiplex PCR. This PCR-based prevalence is relatively
low in the main intermediate host of liver fluke in Europe,
particularly when compared to prevalence obtained with
microscopy-based techniques [26]. This could be due to
the pooling process, which is responsible for a dilution of
PCR available DNA (up to 1/100). However, in a previous
study [34] a pool containing the DNA from one F. hepat-
ica naturally infected snail and 9 negative specimens, was
found positive using the same technique (total DNA con-
centration of 100 pg (1/10.000 dilution)). Only two studies
assessed the prevalence of Fasciola sp. in naturally infested
G. truncatula with PCR-based techniques. In Poland, a
preliminary study using a limited number of snails (<200)
and based on the same 124 bp repeated sequence [29]
estimated the prevalence to be 26.2%. In Switzerland [32]
more than 4700 snails were collected with a prevalence
estimated to be 7% using a real time TagMan PCR.
Nevertheless, these snails were collected in infected
cattle farms and the real regional prevalence was probably
overestimated.

Fasciola sp. infection rates in other intermediate hosts
vary greatly from less than 1% to more than 60%: 0.032%
(1/3072) in L. modicella [31]; 1.5% (79/5246) in Fossaria
cubensis [28]; 51.3% (123/240) in L. columella and 61.8%
(21/34) in L. viatrix [27]. In Ireland, a study [22] using
PCR amplifying a part of the cytochrome c oxidase sub-
unit 1 (cox 1) gene provided prevalence of 73.9% (n=17)
in Succinea sp. and from 10.3% (n = 8) to 61.1% (n =22) in
R. balthica (= R. peregra = R. ovata). Radix balthica may
harbour incidental infection and experimental infections
are difficult to implement [49,50]. However, other authors
have shown [20-22,25] that R. balthica can maintain inter-
molluscan stages of F. hepatica enabling the parasite to
multiply. The frequency of snails with parasite DNA
obtained for R. balthica in this study was very low and its
epidemiological role seems weak. Nevertheless, R. balthica
(= R. peregra = R. ovata) are more aquatic and more inva-
sive [51] than amphibious G. truncatula and could lead to

Page 6 of 8

the extension of fasciolosis in previously free areas, par-
ticularly where G. truncatula is absent [6,13,22]. The
genus Radix seems to be very permissive to Trematoda
infection as natural infections were recorded for F. gigan-
tica [52] Fascioloides magna [51], Trichobilharzia regenti
[53,54], and T. franki [55], and finally echinotostomatid
species [37]. The reasons for this parasitic tolerance are
poorly understood although widespread distribution, high
density and immune mechanisms of this genus seem to be
the most plausible hypothesis. Studies on niche modeling
predicted northward expansion of R. balthica (= R. pere-
gra =R. ovata), as already observed in Sweden probably
due to increasing water temperature in lakes (M. Pfennin-
ger, unpublished data). During a previous study [20], R.
labiata (Rossmaessler, 1835) (= PRT2) was shown to be
able to shed cercariae. The metacercariae obtained were
infective to rats in the laboratory contrary to metacercar-
iae obtained from experimentally infected R. balthica.
This could be linked to the difficulties encountered during
breeding of this last species under laboratory conditions
(highest average mortality: 54%) [20] or prevalence variabil-
ity between populations as it was described for G. trunca-
tula [56]. Furthermore this species was under-represented
in the samples.

The presence/absence of lymnaeids and their infest-
ation status were both assessed using CART analysis.
Galba truncatula seems to be more stenoecious, since
this species is very sensitive to environmental factors
(pH and water temperature for example) and lives in a
more restricted range of habitats [47] than R. balthica
(the “travelling species”) which is more tolerant to variable
environmental conditions.

The number of snails collected was found as the best
explanatory factor related to the infection status. Sur-
prisingly, presence of cattle (trampling, stools, fences)
was not found to be a factor linked to the snail infest-
ation status. However, a lack of power in the analyses is
possible, because of the low prevalence of infection
observed and this might have caused non-significant
correlations. This could also suggest that wild fauna can
intervene in the maintenance of F. hepatica life cycle.
Generally, farmers consider that the presence of ponds
in their meadow has a negative impact on cattle breed-
ing, while European funds support the maintenance and
digging of ponds in order to promote biodiversity. This
last result could highlight the importance of temporary
aquatic biotopes in the epidemiology of F. hepatica in
Belgium. Nevertheless, pond types (intensive, natural
and extensive) were not very informative on the infest-
ation status (less than 30% in Cart analysis Table 2).

Digenetic trematode species are usually oioxenous
(one parasite species infect a single snail species) or ste-
noxenous (one parasite species infect several closely
related snail species). But the case of F. hepatica seems to
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be different as it shows a broad capacity to infect local and
phylogenetically distant lymnaeid species [44]. Therefore,
rather than focusing on a single, or a handful of snail spe-
cies, fasciolosis control programs should cover a broader
spectrum of intermediate hosts that inhabit diverse habi-
tats and ecological conditions [44]. The multiplex PCR
method used in this study confirms this approach can
address such concerns and highlights the role of R balthica
(= R peregra = R. ovata) in the epidemiology of F. hepatica
in Belgium.

Conclusion

A multiplex PCR was used to assess the parasitological
status of 7103 lymnaeid snails collected in natural bio-
topes in Belgium. This technique was fully reliable and
this is the first time in Belgium that naturally infected
snails collected in the field were analyzed through
molecular biology — based tools.
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