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Abstract

Background: Schistosomiasis is a parasitic disease affecting ~200 million people worldwide. Schistosoma
haematobium and S. mansoni are two relatively closely related schistosomes (blood flukes), and the causative
agents of urogenital and hepatointestinal schistosomiasis, respectively. The availability of genomic, transcriptomic
and proteomic data sets for these two schistosomes now provides unprecedented opportunities to explore their
biology, host interactions and schistosomiasis at the molecular level. A particularly important group of molecules
involved in a range of biological and developmental processes in schistosomes and other parasites are the G
protein-coupled receptors (GPCRs). Although GPCRs have been studied in schistosomes, there has been no detailed
comparison of these receptors between closely related species. Here, using a genomic-bioinformatic approach, we
identified and characterised key GPCRs in S. haematobium and S. mansoni (two closely related species of schistosome).

Methods: Using a Hidden Markov Model (HMM) and Support Vector Machine (SVM)-based pipeline, we classified and
sub-classified GPCRs of S. haematobium and S. mansoni, combined with phylogenetic and transcription analyses.

Results: We identified and classified classes A, B, C and F as well as an unclassified group of GPCRs encoded in the
genomes of S. haematobium and S. mansoni. In addition, we characterised ligand-specific subclasses (i.e. amine,
peptide, opsin and orphan) within class A (rhodopsin-like).

Conclusions: Most GPCRs shared a high degree of similarity and conservation, except for members of a particular
clade (designated SmGPR), which appear to have diverged between S. haematobium and S. mansoni and might
explain, to some extent, some of the underlying biological differences between these two schistosomes. The present
set of annotated GPCRs provides a basis for future functional genomic studies of cellular GPCR-mediated signal
transduction and a resource for future drug discovery efforts in schistosomes.
Background
Diseases caused by parasites inflict major socio-economic
impact worldwide, particularly in developing countries.
For instance, schistosomiasis affects more than 200 mil-
lion people, and 600 million are at risk of contracting
disease in endemic areas [1-3]. Schistosomiasis is caused
by blood flukes (schistosomes; Phylum Platyhelminthes;
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class Trematoda). Schistosoma haematobium and S.
mansoni are two main causative agents of this disease
in humans, predominantly in Africa [4]. As there is no
vaccine against schistosomiasis, treatment relies almost
exclusively on the use of one drug, praziquantel [5].
With concerns regarding the emergence of praziquantel
resistance in schistosomes, there is a need to search for
alternative, effective compounds [6,7].
Schistosomes, including S. haematobium and S. mansoni,

have complex, aquatic life cycles, involving snails as
intermediate hosts [4]. After leaving snails in water, larvae
(cercariae) infect humans by penetrating skin. The ensuing
schistosomules migrate via the bloodstream to the lung
and then toward the liver, where they develop to adults
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and mate. Subsequently, adult couples migrate to their
final destination to reproduce. S. mansoni migrates to the
mesenteric venules and the portal system, eggs pass into
the liver or through the intestinal wall and are then ex-
creted in the faeces. Conversely, S. haematobium migrates
to the vessels of the urinary bladder, where females produce
eggs that pass through the bladder wall and are released in
urine. Eggs of both schistosome species hatch in freshwater
and infect an intermediate, snail host; S. haematobium pre-
fers snails of the genus Bulinus [8], whereas S. mansoni pre-
fers Biomphalaria [9]. Pathological changes in the human
host arise when eggs become entrapped in tissues, causing
granulomata and subsequent fibrosis [10]. Symptoms of
chronic schistosomiasis include fatigue, malnutrition,
diarrhoea, anaemia and/or severe abdominal pain [11].
Chronic S. haematobium infection is known to be associ-
ated with bladder cancer [12,13] and can predispose to
HIV/AIDS [14]. Although biological differences exist be-
tween these closely related species, some morphological
and life history strategies should be relatively conserved,
including processes involved in receiving endogenous and
exogenous molecular signals.
Schistosomes rely on conserved signal transduction path-

ways for a broad range of cellular processes, such as
mating, reproduction, nutrient recognition and uptake
as well as host responses [15-17]. Current evidence indi-
cates that environmental signals are transduced from
the external surface of the tegument [18]. The tegument
of trematodes is rich in excretory/secretory (ES) inclu-
sions, bounded externally by a plasma membrane bearing
a dense glycocalyx, and is composed of conserved pro-
teins, suggesting similarities in the structure and function
of the surface layer [19]. Proteomic and functional expres-
sion analyses [20-23] have identified various salient, mo-
lecular components of the tegumental matrix, including G
protein-coupled receptors (GPCRs).
GPCRs are the largest transmembrane (TM) protein

superfamily of eukaroytes, and are responsible for detecting
many extracellular signals and transducing them to the
heterotrimeric G proteins, which then communicate with
various downstream effectors, including key molecules in-
volved in developmental and/or neuromuscular functions
[24]. A salient, usually conserved feature of GPCRs is their
seven inter-membrane, anti-clockwise alpha helices, each
containing 25 to 35 amino acid residues. GPCRs have been
explored as drug targets, because of their diversity and
essential biological roles, and it is estimated that 30-40%
of the current pharmaceuticals available today target
these receptors [25]. Well-characterized ligands that bind to
GPCRs include neurotransmitters, odorants, pheromones
and hormones. This interaction produces signals that are
transduced into the cell, activating, via G-proteins, specific
intracellular events. Based on their functional similarity or
homology, the GPCR superfamily is usually divided into
six main classes: A (rhodopsin-like), B (secretin receptor
family), C (metabotropic glutamate/pheromone), D (fungal
mating pheromone receptors), E (cyclic AMP receptors)
and F (frizzled/smoothened) [26], although other classifica-
tion systems, such as GRAFS, have also been proposed
[27]. Among the known classes of GPCRs, the large group
of class A (rhodopsin-like) receptors, particularly the amine
subclass, are recognised as targets for the development of
novel drugs [28,29].
High throughput genomic sequencing, increased com-

puting power and better bioinformatic tools have enhanced
the in silico characterization and annotation of GPCRs of
metazoan organisms [30-41]. Extensive diversity within the
GPCR family poses a challenge for the identification and
classification of receptors from divergent species [42]. To
overcome this challenge, pipelines have been proposed or
established for GPCR identification and classification from
inferred proteomes using machine learning techniques,
such as Hidden Markov Models (HMMs) [43] and Support
Vector Machines (SVMs) [44]. Using this approach, platy-
helminth GPCRs have been identified and characterized
for S. mansoni and the free-living planarian Schmidtea
mediterranea [45]. However, in the latter study, the lack
of genetic similarity between these two species and the
fragmented nature of the S. mediterranea genome lim-
ited the characterisation of GPCRs in each species. To
address this, herein, we undertook a comprehensive
study of GPCRs in two closely related parasitic trema-
todes, employing well-assembled draft genomes. Since
GPCR families are diverse both functionally and struc-
turally, there is a need to identify and classify receptors
from flatworms with confidence, particularly if the goal
is to search for new drug targets. Logically extending a
previous investigation [45], we (i) employed an improved
bioinformatic approach for the identification and classifi-
cation of GPCRs in S. haematobium and S. mansoni, two
closely related species of schistosome [46], (ii) undertook
a detailed exploration of members of class A (rhodopsin-
like), and (iii) discussed the findings in the context of
functional genomics and drug discovery.

Methods
Inferred protein sequences and GPCR data sets for training
Amino acid sequences were conceptually translated from
genes of S. haematobium [47] and S. mansoni [48,49].
With the exception of class F, training and reference
sequences encoding GPCRs were obtained from a public
GPCR database (GPCRDB) [50], including 35829 class A
(rhodopsin-like), 1969 class B (secretin-like), 1701 class C
(metabotropic glutamate/pheromone), 337 vomeronasal
receptors (V1R and V3R), 8 class E (cAMP) and 721 taste
receptors (T2R); 588 class F (frizzled) sequences were
obtained from the Pfam database [51]. Sequences in
GPCRDB are classified using the International Union of
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Pharmacology (IUPHAR) system [52]. Sequences with
discrepancies in description or family classification in
GPCRDB and without experimental support of functional-
ity were removed. Experimentally validated GPCRs of
S. mansoni and molluscs, including Aplysia californica,
Lymnaea stagnalis and Spisula solidissima [22,23,53-59],
were added to the data set.

Prediction of TM domains and construction of Hidden
Markov Models (HMMs) and Support Vector Machine
(SVM) protein classifiers
TM domains were predicted for each protein sequence
in the GPCR training sets and from those inferred for
S. haematobium and S. mansoni using TOPCONS-single
[60]. Custom Python scripts were written to parse results
generated by TOPCONS-single, and also to extract and
concatenate transmembrane (cTM) domain sequences.
For validation purposes, human sequences were removed

from the GPCRDB-derived data set used for subsequent
HMM training. The cTM domain sequences of each GPCR
training set were aligned using the program MAFFT [61],
converted to the Stockholm format and an HMM was built
for each GPCR class using hmmbuild [62]. The quality of
the cTMD alignments and HMM models was assessed by
determining whether the GPCR training sequences from
each class were accurately identified by their respective
HMM using hmmsearch [62]. In addition, GPCRs pre-
dicted from the human proteome were compared with
those from the ENSEMBL database [63] to assess HMMs.
The sensitivity and specificity of GPCR prediction were
assessed by conducting an area-under-the-curve (AUC)
analysis based on expected and observed predictions, also
considering the proportions of false-positive and false-
negative results [64].
Sub-classification of the class A GPCRs was performed

using a “one-against-one” approach [65]: one for the 19
class A subclasses (SVM1), and another for the 7 class
A-amine-subclasses (SVM2). Each SVM was generated
using the program LIBSVM [66]. For SVM1, TM do-
mains were extracted and concatenated for each subclass
within class A. Fixed-length, dipeptide frequency vectors
were calculated for each cTM domain using an available
Perl script [45]. For the purpose of training SVM1,
GPCRs classified as class A were divided into training
(20%) and test (80%) subsets using the subset.py script
in LIBSVM [66], ensuring that each subset included an
even proportion of each GPCR subclass. For SVM2, di-
peptide frequency vectors were calculated from full-length
amino acid sequences, and 5-fold cross-validation was
applied. The script easy.py in LIBSVM was used for the
optimum selection of the kernel parameters, employing
a grid space and applying data-scaling as well as 5-fold
cross-validation. The most accurate parameters from the
cross-validation steps were used for SVM training.
Identification, classification and sub-classification of
schistosome GPCRs
The cTM domains extracted from the inferred proteomes
of S. haematobium and S. mansoni were used to classify
or subclassify GPCRs. Classification was inferred using
hmmsearch (E-value cut off: < 0.01) to identify the most
homologous GPCR HMM model for each cTM. Dipeptide
composition vectors were then created for individual class
A GPCRs, which were then classified based on their
predicted ligand specificity using the SVM1 model.
Rhodopsin-like (class A) GPCRs predicted to bind an amine
ligand were classified further using a second SVM model
(SVM2). Prior to SVM classification, each GPCR data set
was first scaled using LIBSVM [66], with the parameters
defined by each SVM training optimization process,
inferred using the program Python v.2.6 and an avail-
able Python script (scale.py) [66]. Putative GPCRs were
then examined for the presence of non-GPCR protein
sequences based on amino acid sequence homology
(BLASTp, E-value cut-off: < 0.00001) to proteins in Inter-
ProScan (including Pfam), ChEMBL, GPCR SARfari, KE
GG, Pfam, SwissProt and TrEMBL databases [51,67-70].
Sequences with significant homology to non-GPCR pro-
teins of other organisms were removed.

Phylogenetic analysis
Trees were constructed for each class A subclass and
also for classes B and F. Putative GPCRs containing 5–8
TM domains and identified by HMM models in both S.
haematobium and S. mansoni were grouped according
to their corresponding GPCR classes/subclasses, and then
aligned using the program PRALINE [71]. The program
PRALINE [71] was used to progressively align amino
acid sequences using PSI-BLAST (3 iterations; E-value
cut-off: < 0.01; Protein Data Bank, PDB), integrating
secondary structural information predicted using the pro-
gram PSIPRED [72] as well as TM information employing
the program PHOBIUS [73] and the BLOSUM62 amino
acid scoring matrix, with fixed gap opening (12) and exten-
sion (1) penalties. The final alignment was improved using
the program MUSCLE employing the -refine option [74].
The final, predicted GPCR data sets were each sub-

jected to phylogenetic analysis by Bayesian inference (BI)
in MrBayes v.3.2 [75], employing the Whelan and Goldman
model [76] and using the final 75% of 100000 iterations to
construct a 50% majority rule tree, with the nodal support
for each clade expressed as a posterior probability value
(pp). The BI analysis was run until the potential scale re-
duction factor (PSRF) was approximately 1. Phylogenetic
trees were drawn using the program FigTree v.1.4 (http://
tree.bio.ed.ac.uk/software/figtree/).
If no orthologous sequence was initially detected in the

heterologous species of schistosome, genomic, transcrip-
tomic and proteomic datasets were scrutinized, employing
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the programs BLAT [77], tBLASTn [78] and BLASTp
[78], respectively, until an ortholog was found. In the ab-
sence of a complete match using available protein se-
quence data sets, the sequence was inferred based on the
conceptual reverse translation of the protein to nucleotide
sequence and alignment to a genomic scaffold (including
10000 bp up- and down-stream) using BLAT [77]. This
genomic region was then exhaustively searched for a pre-
dicted coding domain matching the missing protein using
the program Exonerate [79], employing the multi-pass
suboptimal alignment algorithm and the protein2genome:
bestfit model.

Analysis of transcription
Following the selection of GCPRs, levels of transcription
were explored in the adult stages of S. haematobium and
S. mansoni using available RNA-seq data [47,49]. These
data were filtered for quality (PHRED score of >30) using
Trimmomatic [80] and aligned to the final nucleotide
domains encoding the GPCR orthologs identified here
using the Burrows-Wheeler Alignment (BWA) tool [81].
For each RNA-seq library, reads that mapped to individual
coding domains were counted using SAMtools [82]. For
each data set, levels of transcription were normalised and
expressed as reads per kilobase per million mapped reads
(RPKM) [83]. For each GPCR, a relative measure of
transcription in the adult stage was inferred by ranking
individual genes from S. haematobium and S. mansoni
by their RPKM values (highest to lowest). The top 25%
of genes were defined as having very high transcription
(S. haematobium RPKM range: 62 to 18765; S. mansoni:
68 to 16368), and 26-50% as high (S. haematobium:
18 to 62; S. mansoni: 20 to 68), 55-75% as medium (S.
haematobium: 3 to 18; S. mansoni: 4 to 20), and 75-100%
as low (S. haematobium: 0.02 to 3; S. mansoni: 0.03 to 4).

Results
Improvements and validation of HMMs for GPCR
classification
A consensus approach was used to identify TM domains
in proteins submitted to GPCRDB. These domains were
extracted and concatenated for each sequence. For every
GPCR class, TM domain sequences (with the exclusion
of those predicted from human proteins) were then
aligned. Due to substantial sequence variation among
representatives of class A in GPCRDB, cTMs of each of
the 19 subclasses of class A were aligned separately. HMMs
constructed for each set of aligned cTMs were reliable, with
>95% (E-value cut-off: <0.01) of GPCRDB-classified pro-
teins being correctly assigned to their original category
using the trained HMMs.
As GPCRs of humans are best characterized structur-

ally, functionally and as drug targets [25,84,85], we used
these GPCRs to validate our HMM approach. Using our
HMMs to interrogate the human proteome, there was
no evidence of false-positive results. The calculated AUC
value of >99% demonstrated a high specificity and sensi-
tivity of prediction. We were also able to predict all hu-
man GPCR sequences that had been removed from the
training set. Of the predicted human GPCRs with at
least one GPCR Pfam domain (1701), ~90% (1523) were
predicted to possess between 5 and 8 TM domains; thus,
we defined this range as a “gold standard” filter for pre-
dicting membrane-spanning proteins in the schisto-
somes studied.

GPCRs encoded in the S. haematobium and S. mansoni
genomes belong to classes A, B, C and F
From the inferred proteomes of S. haematobium/S.
mansoni, 443/441 sequences were predicted to contain
TM domains (Figure 1). Based on amino acid sequence
homology (E-value cut-off: <0.00001), 165/149 S. haema-
tobium/S. mansoni proteins shared significant homology
to annotated GPCRs in public databases. In total, only 31
GPCRs from S. haematobium and 27 from S. mansoni did
not share significant amino acid sequence homology to
manually-curated proteins in the SwissProt database,
indicating a sequence divergence from organisms other
than trematodes.
Using our HMMs, GPCRs including 73/65 class A,

8/4 class B, 2/2 class C, and 4/4 class F (Figure 1) were
identified in S. haematobium/S. mansoni. Additionally, we
found 11/4 sequences with significant homology (E-value
cut-off: <0.00001) to GPCRs that had not been predicted
by our HMMs. These latter sequences might not have
been identified due to significant divergence from the
HMMs. Classification and further sub-classification of
schistosome GPCRs was performed only on proteins
detected by HMMs and predicted to encode 5 to 8 TM
domains. Using these stringent criteria, 53/39 class A,
5/1 class B, 1/2 class C and 3/4 class F GPCRs were
identified in S. haematobium/S. mansoni.
Exhaustive searches were conducted in heterologous

schistosome genomes to identify any one-to-one GPCR
orthologs that were absent from published gene sets
(Figure 1). Matching genomic regions and coding domains
were identified, and protein sequences conceptually trans-
lated. By comparing corresponding orthologs, we also
detected three incorrect intron-exon boundaries (within
genes represented by codes Smp_160020, Sha_107760
and Sha_100228) that needed correcting. In total, 26
GPCR sequences were retrieved using this approach; these
sequences were then annotated and added to the data
set (see Additional file 1: Table S1). Phylogenetic trees
were constructed using this final set of predicted GPCRs
(Figures 1 and 2). In the predicted proteomes of S. hae-
matobium/S. mansoni, 53/59 class A (rhodopsin-like),
5/5 class B (secretin-like), 2/2 class C (metabotropic



Figure 1 Summary of results for the identification and classification of GPCRs in Schistosoma haematobium and S. mansoni. Top to
bottom: First, from the inferred proteomes [47,49], the numbers of sequences with transmembrane (TM) domains, the numbers of GPCRs of each
class predicted by Hidden Markov Models (HMMs) and the numbers of significant matches to known* GPCRs (from databases such as SwissProt,
TrEMBL and KEGG) are presented. Second, the preliminary sets of GPCRs categorised to the class level are shown, after filtering sequences that
did not contain 5–8 transmembrane domains. Third, orthologs not detected in published gene sets were identified in the phylogenetic trees
generated (paired one-to-one orthologs were expected for the two closely related schistosome species). Fourth, the final sets of GPCRs for each class,
including the numbers of sequences found by homology but not predicted by HMMs, are shown. Finally, the numbers following sub-classification by
SVM1 (class A subclass) and SVM2 (class A amine sub-classification – ligand affinity) are given.
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glutamate/pheromone) and 4/4 class F (frizzled) GPCRs
were identified. These numbers correspond to ~ 5% of
the total number of sequences of the inferred proteomes.
GPCRs representing other classes were not detected. The
final GPCR-coding domains, their classification and hom-
ology search results were compiled (see Additional file 1:
Table S1).
In most cases, predicted GPCRs were identified in both

S. haematobium and S. mansoni, with the exception of
proteins classified within the amine subclass of class A
GPCRs containing a previously characterized S. mansoni-
specific (SmGPR) clade [23] (Figure 2). For this group,
we identified paralogous sequences (Sha_101833 and Sha_
104648; Smp_043270, Smp_145520, Smp_043300 and
Smp_043320), possibly resulting from gene duplication
(Figure 2). Four of the S. haematobium-specific sequences
grouped with SmGPRs (Figure 2). However, unlike the
other classified GPCRs, these molecules did not group in a
pairwise, orthologous manner. The class A amine tree dis-
playing the SmGPR sequences is consistent with a previ-
ously published dendogram [23], suggesting that SmGPRs
share a common basal group, and have diverged in these
two schistosome species, with paralogs Smp_043260, Sha_
Exo1, Smp_043290 and Sha_105723 diverging first.

SVM-based sub-classification and analysis of class A GPCRs
reveal distinct differences between S. haematobium and
S. mansoni in the amine subclass
We applied the strategy of dipeptide composition frequen-
cies for the GPCR sub-classification employing SVMs
using an established method [44]. To enhance the specifi-
city of our SVMs, potentially misclassified sequences in
GPCRDB were removed and experimentally validated
GPCRs from molluscs added. GPCRs of molluscs were
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included, as these invertebrates are taxonomically related
to schistosomes and belong to the Super-phylum Lopho-
trochozoa [86].
Class A GPCR sequences identified by HMMs were

sub-classified by SVM1. After parameter training and
optimization, both SVMs were able to classify >95% of
the validated sets correctly. SVM1 sub-classification
identified 13/15 amine, 36/36 peptide, 3/3 (rhod)opsin
and 5/5 orphans among the class A GPCR sequences
(Figure 1). A phylogenetic tree was constructed for each
subclass of class A, and also for classes B and F (Figure 2); a
tree was not constructed for class C due to the small num-
ber of sequences identified (Additional file 1: Table S1).
Figure 2 Phylogenetic trees displaying the relationships of GPCRs rep
identified in Schistosoma haematobium and S. mansoni. In each tree, th
(pp) of each node is indicated by small circles (pp = 0.7-0.8) or dots (pp > 0
adult stages of the schistosomes is identified by asterisks. The class A amin
affinity. Asterisks indicate experimentally validated GPCRs. Relationships of t
enlargement). Shae and Smp are codes for sequences from S. haematobium
Of all subclasses within class A, the peptide ligand sub-
class is the most abundant for schistosomes. This subclass
mainly represents proteins involved in neuropeptidergic
signalling, which is essential for parasite development and
survival [87]. Based on annotation (see Additional file 1:
Table S1), peptide ligand GPCRs showed homology to
known neuropeptides, such as neuropeptide F (NPFs) and
neuropeptide Ys (NPY) characterized in other organisms,
whereas some of them appear to be schistosome-specific
[88]. The opsin ligand subclass included GPCRs that were
inferred to be involved in photoreception, converting
photons of light into electrochemical signals [89] (see
Additional file 1: Table S1). Finally, an orphan group of
resenting subclasses of class A, and also classes B and F
e amino acid changes per site are shown. The posterior probability
.8) at nodes. Medium to high transcription (cf. Methods section) in the
e tree shows the SVM sub-classification, coloured according to ligand
he sequences representing the SmGPR clade [23] (inset a shows an
and S. mansoni, respectively.
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proteins was identified; these proteins had significant
sequence homology to class A rhodopsin-like receptors
but not to other known subclasses. The orphan GPCRs
identified are likely to be flatworm- or schistosome-
specific.
For the amine subclass, the SVM2 model was used to

infer ligand affinity for 5/6 dopamine, 6/6 serotonin and
1/1 acetylcholine GPCRs in S. haematobium/S. mansoni
(Figures 1 and 2; Additional file 1: Table S1). In addition,
two S. mansoni GPCRs (encoded by genes Smp_043340
Smp_043260) were classified as histamine receptors
(Additional file 1: Table S1). Interestingly, based on SVM2
classification, one S. haematobium protein (encoded by
Sha_Exo_1) was classified as an adreno-receptor but
was orthologous to the Smp_043260 histamine recep-
tor (Figure 2), which suggests orthologs may bind dif-
ferent ligands. This was also observed for sequences
within the SmGPR clade (Figure 2), which showed variation
in ligand specificity, despite their high amino acid sequence
similarity (37-86%; mean: 62%) upon pairwise comparison.
An alignment was made of sequences representing

the SmGPR clade, and the TM domains were identified
(Figure 3). In total, five sequences within the clade were
predicted as being dopamine-responsive. In addition, two
receptors were predicted to bind serotonin and one to his-
tamine; these protein sequences had extended N-termini,
which was a remarkable difference compared with those
inferred to bind dopamine. Although conservation was
observed within the TM domains among all sequences
represented in the SmGPR clade, there was considerable
sequence variation (mean of 50%) in the intracellular loop
between TM domains 5 and 6 (see Figure 3).
Figure 3 Alignment of sequences representing the SmGPR clade (cf. F
red; the most conserved amino acid residues in other sequence regions ar
within this clade were predicted, using a Support Vector Machine (SVM), to
extended N-termini.
Transcription analysis of GPCRs indicated active orthologs
in the adult stage
Of the 70 GPCRs identified in S. haematobium, five, 14
and 46 were transcribed at high, medium and low levels,
respectively; five did not have RNA-seq support (see
Additional file 1: Table S1). Of the 68 GPCRs identified
in S. mansoni, two, 10 and 44 were transcribed at high,
medium and low levels, respectively; 12 did not have
RNA-seq support (see Additional file 1: Table S1). One-to-
one orthologs with high or medium levels of transcription
are indicated in the phylogenetic trees (Figure 2). In the
amine, peptide and orphan subclasses (class A) and the
class B tree, four, two, respectively one and two orthologs of
S. haematobium and S. mansoni exhibited medium to high
levels of transcription. In addition, 10 GPCRs from S. hae-
matobium, and two from S. mansoni displayed medium to
high transcription levels, in contrast to their corresponding
orthologs (Figure 2). Sequences in the SmGPR clade did
not represent genes with high transcription.

Discussion
The availability of genomic and transcriptomic data sets
for schistosomes [48,49,90] provides unprecedented op-
portunities to explore GPCRs that are essential for para-
sitic flatworm life and survival. Here, subsets of GPCRs
encoded in the genomes of S. haematobium and S. man-
soni were predicted and classified with a high degree of
confidence. Although the method established here is simi-
lar to a previous approach [45], it applies stricter criteria
to remove false-positive results, incomplete sequences
and includes transcriptional evidence of gene predic-
tion, thus increasing specificity. Our approach improved
igure 2). Conserved, transmembrane (TM) domains are outlined in
e in blue, with the least conserved residues in palest. Most sequences
bind to dopamine, with the exception of those with
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the classification of class A receptors by creating HMMs
for each subclass within this class, instead of relaxing
the level of significance of the HMMs. A “gold standard”
was also applied to filter sequences according to the
number of TM domains. Comparing the two closely re-
lated species, S. haematobium and S. mansoni, at the gen-
omic level improved GPCR annotation by identifying
orthologs missing from published gene sets and enhanced
structural prediction of genes.
The GPCR repertoires of S. haematobium and S. mansoni

are conserved, except for members of the SmGPR clade,
which appear to have diverged in these species. The para-
logs in the SmGPR clade might result from gene dupli-
cation events or mutations that alter ligand affinity. These
differences might explain, to some extent, some of the
underlying biological differences between S. haematobium
and S. mansoni. Interestingly, the experimentally validated
receptors SmGPR-1 and SmGPR-2, which are responsive
to histamine, have been reported as expressed in the
peripheral nervous system (PNS) and the suckers of
adult S. mansoni [58]. In addition, SmGPR-3, being
responsive to dopamine, is highly expressed in the central
nervous system (CNS) of this schistosome in both larval
and adult stages, and has also been detected in PNS and
suckers of adult worms [23]. Given the divergence in amino
acid sequence and sub-classifications of GPCRs within each
S. haematobium and S. mansoni, further study of their
functional differences between these species is warranted.
Importantly, the bioinformatic pipeline used here was able
to correctly classify all experimentally validated GPCRs of
S. mansoni studied to date [22,23,58] and might thus be
applied to GPCRs of other metazoan parasites.
In the present study, 13 and 15 proteins responsible

for biogenic amine signalling were predicted for S. hae-
matobium and S. mansoni, respectively. Receptors of the
biogenic amine subclass (class A) are of significant bio-
logical interest, because they are known to be respon-
sible for several modulations in neuromuscular function,
including metabolic activity, movement and muscle con-
traction [91-93]. The activity of these receptors is highly
likely to be essential for parasite survival inside the host.
This subclass includes small molecules, such as acetylcho-
line, serotonin (5-hydroxytryptamine: 5HT), histamine,
catecholamines (adrenaline, noradrenaline and dopamine)
and also invertebrate-specific ligands, such as octopamine
and tyramine. Depending on the neurotransmitter, they
can either stimulate or inhibit neuromuscular or meta-
bolic activity [91]. Serotonin is known to stimulate muscu-
lar activity, whereas dopamine causes muscular relaxation
in schistosomes [56,94-96]. For these reasons, biogenic
amines are well recognised as anthelmintic drug targets
[97], and could be the focus of future studies.
As adult schistosomes establish within the vasculature

system of the human host, they are the ideal developmental
stage to target for treatment [98]. In this study, a number
of GPCRs were identified as being transcribed in the adult
stages of both S. haematobium and S. mansoni. Despite
the importance of SmGPRs as potential drug targets [58],
based on RNA-seq data, none of the SmGPR gene homo-
logs were amongst the GPCR-encoding genes most abun-
dantly transcribed in the adults of the two schistosomes
studied. Although transcription has been investigated only
in the adult stage to date, SmGPR members might also
have key roles in other developmental stages. High
coverage RNA-seq [99] should be used to explore the
transcription of GPCRs in all developmental stages of
these schistosomes; this information might be used to
prioritise GPCR drug target candidates.
As praziquantel is the sole drug widely used in millions

of people against schistosomiasis, efforts are required to
develop new anti-schistosomal drugs, because of concerns
of anti-praziquantel resistance in schistosomes. GPCRs
have been shown to be valuable drug target candidates in
some organisms, but key functional mechanisms of mem-
bers of this complex superfamily still require detailed in-
vestigations [84]. Because membrane proteins are unstable
[100], tertiary structures of only a small number of GPCRs
have been solved to date using X-ray crystallography;
clearly, such structures underpin drug discovery. This is
why advanced in silico approaches are needed to predict,
comprehensively characterize and classify GPCRs based
on genomic, transcriptomic and proteomic data. Other
bioinformatic tools might be applied to predict receptor
structures and drug screening [101]. Despite the chal-
lenges of identifying and classifying GPCRs, repertoires
have been defined for various organisms, including mem-
bers of the Platyhelminthes [45]. However, functional valid-
ation is still required to support most predictions. Although
evidence indicates that the number of predicted GPCRs
in GPCRDB is inflated, the addition of experimentally-
validated sequences from different groups of organisms
will likely contribute to enhancing the prediction of
machine learning models that rely heavily on GPCRDB
to build sets for training, validation and testing.

Conclusions
In conclusion, the present study provides a useful resource
for the selection of high-priority candidates for functional
genomic and biological studies as well as drug target dis-
covery in schistosomes. Methods, such as RNA interfer-
ence (RNAi) [102,103], can now be used for the functional
validation of GPCR-encoding genes in S. haematobium
and S. mansoni. In addition, immuno-molecular methods
are already in use for the identification of GPCR ligands
and their localization in flatworms [22,23,58]. Using these
tools, future insights into the roles of GPCRs in signal
transduction, development, reproduction and nutrient
uptake in these schistosomes could provide a path to
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understanding the molecular biology of these worms
and parasite-host interactions, and might underpin the
design of new interventions. Clearly, this study provides
GPCR data for schistosomes that will assist future inves-
tigations on both fundamental and applied levels. Im-
proved annotation of GPCRs from other schistosomes
might also foster broader comparative investigations.

Additional file
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