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Abstract

parasite Trypanosoma rangeli.

lacks two of the four lysine residues (Lys®® and Lys'®*)

Antioxidant defence

Background: Cysteine, a sulfur-containing amino acid, plays an important role in a variety of cellular functions such
as protein biosynthesis, methylation, and polyamine and glutathione syntheses. In trypanosomatids, glutathione is
conjugated with spermidine to form the specific antioxidant thiol trypanothione (T[SH],) that plays a central role in
maintaining intracellular redox homeostasis and providing defence against oxidative stress.

Methods: We cloned and characterised genes coding for a cystathionine B-synthase (CB3S) and cysteine synthase
(CS), key enzymes of the transsulfuration and assimilatory pathways, respectively, from the hemoflagellate protozoan

Results: Our results show that T. rangeli CRS (TrCBS), similar to its homologs in T. cruzi, contains the catalytic
domain essential for enzymatic activity. Unlike the enzymes in bacteria, plants, and other parasites, T. rangeli CS
required for activity. Enzymatic studies using T. rangeli
extracts confirmed the absence of CS activity but confirmed the expression of an active C(3S. Moreover, C(3S
biochemical assays revealed that the T. rangeli CRS enzyme also has serine sulfhydrylase activity.

Conclusion: These findings demonstrate that the RTS pathway is active in T. rangeli, suggesting that this may
be the only pathway for cysteine biosynthesis in this parasite. In this sense, the RTS pathway appears to have an
important functional role during the insect stage of the life cycle of this protozoan parasite.
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Background

L-cysteine, a sulfur-containing amino acid, is indispens-
able for the survival of virtually all living organisms,
from bacteria to higher eukaryotes. This amino acid is
implicated in several processes, including the stability,
structure, regulation of catalytic activity, and post-
translational modification of various proteins [1]. Due to
the ability of its thiol group to undergo redox reactions,
L-cysteine forms the basic building block of all thiol
antioxidants, acting as a direct antioxidant and also as a
precursor for the biosynthesis of glutathione, trypa-
nothione, or ovothiol [2]. In addition, cysteine is also
essential for the synthesis of biomolecules, including
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coenzyme A, hypotaurine, taurine, and ubiquitous iron-
sulphur (Fe-S) clusters, which are involved in electron
transfer, redox regulation, nitrogen fixation, and regula-
tory process sensing [3,4].

Two different routes for cysteine biosynthesis have
been described: reverse-transsulfuration (RTS) and de
novo or assimilatory pathways. RTS has been demon-
strated in fungi and mammals and includes the complete
process leading to cysteine from methionine via the
intermediary formation of cystathionine [5]. These reac-
tions are catalysed by two enzymes, CBS (cystathionine
B-synthase), which synthesizes cystathionine from homo-
cysteine and serine, and CGL (cystathionine y-lyase),
which forms cysteine from cystathionine [6]. The de novo
pathway is also catalysed by two steps starting with serine
acetyltransferase (SAT) to form O-acetylserine (OAS)
from L-serine and acetyl-coenzyme A. Subsequently, OAS
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reacts with sulfide to produce cysteine in an alanyl-
transfer reaction by cysteine synthase (CS) [7]. This de
novo pathway for cysteine biosynthesis is found in plants,
bacteria, and some protozoa, such as Entamoeba histoly-
tica, Entamoeba dispar (8], Leishmania major [9], and
Leishmania donovani [10], but is absent in mammals [11].
Both CPBS and CS are PLP-dependent enzymes that are
evolutionary-related and in most cases some CS activity
has been demonstrated for the CBS enzymes described to
date [12].

It is well established that the antioxidant defence sys-
tem plays a key role in the host-parasite interaction for
intracellular pathogenic trypanosomatids such as 7. cruzi
and Leishmania spp., promoting the protection of the
parasite against macrophage-derived oxygen and nitrogen-
reactive species [13,14]. Among trypanosomatids, the
mammalian-infective and non-pathogenic Trypanosoma
rangeli is of growing interest because its intracellular life
stage within mammalian hosts is still unknown and its
sympatric occurrence with 7. cruzi [15].

Because T. rangeli is required for a response to a var-
iety of oxidative stresses in both mammalian and inver-
tebrate hosts, the present study characterised genes
encoding key enzymes of cysteine biosynthesis, a crucial
precursor of trypanothione.

Methods

Parasites and culture

Epimastigotes of T. rangeli Choachi strain and 7. cruzi Y
strain were grown at 26.5°C in liver infusion tryptose
medium (LIT) supplemented with 10% heat-inactivated
fetal bovine serum (FBS), 100 units/mL penicillin, and
100 pg/mL streptomycin by weekly passaging [16]. Para-
sites were harvested at the late log phase for DNA
or protein extraction as well as for thiol profiling and
in vitro oxidative and nitrosative stress testing. Trypo-
mastigotes of 7. rangeli were obtained in vitro under
conditions previously described [17].

T. cruzi culture-derived trypomastigotes and amasti-
gotes were obtained from THP-1 differentiated macro-
phage-like cells (ATCC) infected with Y strain metacyclic
trypomastigotes [18]. Briefly, THP-1 cells (ATCC) were
cultured in RPMI 1640 medium supplemented with 10%
FBS at 37°C in a 5% CO, atmosphere and transformed
to adherent macrophages using phorbol myristate acet-
ate (50 ng/mL) for 72 h at 37°C and 5% CO, prior to
experiments. THP-1 macrophage-like cells were infected
with 7. cruzi trypomastigotes for 2 h at a 3:1 parasite-
cell ratio and then washed to remove the extracellular
parasites. After 72 h at 37°C under 5% CO,, the trypo-
mastigotes were collected from the culture supernatant,
centrifuged at 600 x g for 30 min, and then left under
the same conditions for 3 h to separate the trypomasti-
gotes from the amastigotes and cellular debris. The
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supernatant containing the trypomastigotes was used for
protein extraction.

Identification of T. rangeli CBS and CS

Both the T. rangeli genome and transcriptome databases
(http://www.rangeli.lncc.br) [19] were searched using the
TBLASTN algorithm with the protein sequences of
cystathionine [-synthase (CPS) and cysteine synthase
(CS) from bacteria, yeast, plants, and parasitic protozoa
as queries to identify putative 7. rangeli proteins in-
volved in transsulfuration and assimilatory pathways.
Other coding sequences for potential enzymes compris-
ing the two biosynthetic pathways were also searched in
the genome and transcriptome databases. T. rangeli gen-
omic DNA (gDNA) was isolated by the phenol—chloro-
form method following a standard protocol [20]. The
open reading frames (ORFs) of the CBS and CS genes
were amplified by PCR using gene-specific primers:
CBTrXhol (5'-CTC GAG ACC ATG GCT CAA ACC
CAC-3’) and CBTrBamHI (5'-GGA TCC GCG CAC
CTG CTT TTT ATC C-3°) for CS and CSTrNdel (5'-
CAT ATG GAA GCT CTC ATC GGG G-3') and
CSTrXhol (5'- CTC GAG CCA GCA CCA CGG GAA
GC-3") for CS. Sites for restriction enzymes (included in
the primer name; bolded nucleotides) were included to
allow cloning. All PCR assays were carried out using a
Mastercycler® Gradient (Eppendorf, Hamburg) for 30 cy-
cles of denaturation (94°C, 1 min), annealing (60°C,
45 sec), and extension (72°C, 1 min), followed by a final
extension step (72°C) for 5 min. The PCR products were
cloned into the pGEM-T-Easy vector (Promega), and the
resulting constructs were verified by sequencing using a
Megabace 1000° DNA Analysis System with the DYE-
namic ET terminators kit (GE Healthcare) according to
the manufacturer’s conditions. Both DNA strands were
sequenced for each clone obtained; after analysis using
the Phred/Phrap/Consed package [21], only high-quality
DNA sequences (Phred >20) were compared with the
public databases using the GenBank BLAST algorithm.

Protein expression and purification

The inserts corresponding to the CSS and CS ORFs
cloned into pGEM-T-Easy (Promega) were excised and
subcloned into the pET14b expression vector (Novagen)
pre-digested with the appropriate restriction enzymes
(included in the PCR primers). The resulting plasmids
containing the CJS and CS genes were named pET14-
TrCpS and pET14-TrCS, respectively, and re-sequenced
for confirmation as described above.

The pET14-TrCpS plasmid was used to transform E.
coli BL21 (DE3) for recombinant protein expression.
Pre-inoculum was grown overnight in LB (Luria—
Bertani) broth supplemented with 100 pg/mL ampicillin
at 37°C and then used to inoculate fresh LB until an
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0.D.g0 of 0.6 was reached. The expression of recombin-
ant CPS (r'TrCPS) was induced with 1 mM isopropyl p-
D-thiogalactopyranoside (IPTG) for 2 h at 37°C. The
cells were harvested and resuspended in 5 mL of buffer
A [50 mM sodium phosphate, 0.3 M NaCl, pH 8.0, and
25 uM pyridoxal phosphate (PLP)] containing 5 mM
imidazole and then disrupted by sonication. The soluble
and insoluble fractions were recovered by centrifugation
at 16,000 x g for 30 min at 4°C [9]. rTrCpBS was purified
from insoluble fractions by affinity chromatography on a
Ni**-nitrilotriacetic (NTA) column (Qiagen) following
standard procedures. Briefly, the insoluble fraction was
resuspended in a buffer containing 8 M urea, 10 mM
Tris, and 100 mM NaH,PO,, pH 8.0, and incubated for
1 h at 65°C to dissolve the inclusion bodies and then
centrifuged (10,000 x g for 30 min at 4°C). The superna-
tants were then applied to the Ni**-nitrilotriacetic
(NTA) resin (Qiagen) pre-equilibrated with the same
buffer and incubated for 1 h at 4°C under continuous
agitation. The resin was washed three times using wash-
ing buffer (100 mM NaH,PO,4, 100 mM Tris/HCI, and
8 M urea, pH 6.3), and rTrCpS elution was carried out
using an appropriate buffer (100 mM NaH,PO,,
100 mM Tris/HCI, and 8 M urea, pH 4.5). The eluted
proteins were dialysed using 50 mM NaH,PO, pH 7.4,
300 mM NaCl and 150 mM imidazole overnight at 4°C.
The purity of the recombinant protein was then assessed
by SDS-PAGE, and its concentration was determined by
the Bradford method (Bio-Rad) using BSA as a standard.
The protein was stored at —20°C.

To obtain recombinant CS (rTrCS), different approaches
were assessed. pET14-TrCS was introduced into E. coli
BL21 (DE3), BL21 (DE3)pLysS, and Rosetta strain, and ex-
pression was induced using different IPTG concentrations
(0.2, 0.5, or 1.0 mM) and temperatures (15°C, 25°C, or
37°C). Despite the number of experimental conditions
tested, it was not possible to obtain recombinant TrCS.

Production of a-rTrCAS mouse polyclonal antibodies
Approximately 50 pg of purified rTrCBS (44 kDa) was
subcutaneously inoculated into Balb/C mice using Alu-Gel
(Serva) as an adjuvant. Each mouse received four consecu-
tive inoculations at 12-day intervals, with monitoring for
an antibody response using enzyme-linked immunosorbent
assay (ELISA) with rTrCpS as the antigen.

Comparative analysis of CBS expression by T. rangeli and
T. cruzi

Quantification of CBS expression was performed using
soluble protein fractions from T. rangeli and T. cruzi. A
total of 1x 10°® epimastigotes or trypomastigotes were
washed once with D-PBS and lysed by repeated aspir-
ation in ice-cold lysis buffer (0.25 M sucrose, 0.25%
Triton X-100, and 10 mM EDTA) containing a protease
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inhibitor cocktail (Sigma-Aldrich). Cellular debris was
removed by centrifugation at 12,000 x g for 20 min at
4°C [22]. The protein concentrations in the extract were
determined by the Bradford method (Bio-Rad) using
BSA as a standard and stored at —20°C.

Soluble protein extracts (30 pg) of the different life
cycle stages of T. rangeli and T. cruzi were fractionated
on 12% SDS-PAGE and electroblotted onto nitrocellu-
lose membranes (GE Healthcare) in an appropriate buf-
fer (25 mM Tris; 192 mM glycine; 20% v/v methanol,
pH 8.3). The membranes were then blocked with
5% non-fat milk in blotting buffer (25 mM Tris—HCI
pH 7.4, 150 mM NaCl, and 0.1% Tween-20) overnight
at 4°C [23]. After blocking, the membranes were incu-
bated for 1 h with an anti-rTrCBS mouse polyclonal
antiserum (1:4,000) or anti-a tubulin monoclonal anti-
body (1:10,000) used as a loading control. After washing,
the membranes were incubated with anti-mouse IgG con-
jugated to horseradish peroxidase (1:10,000), followed by
washing and detection on radiographic films using an ECL
kit (Pierce) according to the manufacturer’s recommenda-
tions. The western blots were digitally analysed using the
software package Image ] 1.463r, subtracting the back-
ground of each blot prior to measuring the intensity of
specific bands. Integrated densities for each band were de-
termined for each protein of interest and its correspond-
ing loading control. The ratio of the band intensity of the
protein of interest versus the band intensity of the corre-
sponding loading control was used as the relative protein
expression level and allowed the comparison with other
samples.

Enzymatic assays for CBS and CS activities

Cystathionine B-synthase

The assay method described by Walker and Barret
was used [24]. Briefly, the reaction mixture contained
70 pumol Tris—HCI buffer (pH 8.4), 0.4 mM PLP, and
1.5 pg/uL of total protein extract from parasites or
0.1 pg/pL of rTrCPS (as a positive control) in a final
volume of 100 pL. In the case of the protein extract,
the mixture also contained 0.1 mM CuSO, to inhibit
cystathionase activity. All components were equilibrated
for 2 min at 37°C, and the reaction was initiated by
the addition of 40 mM D,L-homocysteine and 20 mM
L-serine. The reaction was stopped 45 min later by the
addition of 100 puL 50% (w/v) trichloroacetic acid. The
precipitated protein was removed by centrifugation at
12,000 x g for 5 min, and the amount of cystathionine
was determined by adding 1 mL of acid-ninhydrin re-
agent (1 g ninhydrin dissolved in 100 mL concentrated
acetic acid and 1/3 volume of phosphoric acid) to
100 pL of the assay supernatant fraction. The mixture
was then boiled for 5 min, cooled for 2 min on ice, and
incubated for 20 min at room temperature (25°C) for
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Figure 1 (See legend on next page.)
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Figure 1 Multiple alignment of deduced amino acid sequences of C@S from T. rangeli (TrCBS) and other representative organisms.
The identity (black background) and conservation (grey background) of the amino acid residues are shown. Brackets indicate the consensus
amino acid residues of the putative pyridoxal phosphate-binding motif (PXXSVKDR), and other motifs vital for CRS activity are indicated with
asterisks (¥). The oxido-reductase motif of HsCPRS is highlighted with (+). The lysine residues required for CS catalytic activity are marked with
triangles. The positions of the heme-binding residues within the heme domain of the human CBS enzyme (Cys® and His®®) are marked with (|).
HsCRS: Human (P35520); TcCRS: Trypanosoma cruzi (Tc00.1047053511691.20); ScCRS: Saccharomyces cerevisiae (P32582) LtaCRS: Leishmania
tarentolae (LtaP17.0270); ToCRS: Trypanosoma brucei (Tb11.02.5400); LbrCBS: Leishmania braziliensis (LbrM.17.0230).

colour development. The absorbance was measured at
455 nm. Each enzymatic assay was performed including
negative controls (all reagent components without enzyme
or without substrate). A standard curve was prepared
using 0-3 pmol of cystathionine dissolved in acid-
ninhydrin reagent and treated as described above to quan-
tify the amount of cystathionine formed [25].

Cysteine synthase

The CS activity in the total protein extracts from para-
sites (1.5 pg/puL) or bacteria (positive control) was deter-
mined by measuring cysteine production at 37°C in a
500 pL reaction containing 200 mM potassium phos-
phate buffer (pH 7.5), 10 mM DTT, 0.2 mM PLP,
6.5 mM O-acetylserine (OAS), and 4 mM sodium sulfide
(Na,S). All the components except sodium sulfide were
pre-incubated for 5 min at 37°C; the reaction was initi-
ated by the addition of sodium sulfide and incubated for
another 30 min and then stopped using 50 pL of 20%
trichloroacetic acid (w/v). The mixture was centrifuged
for 5 min at 12,000 x g, and the supernatant was used
for cysteine analysis, as previously described with some
modifications [26]. Briefly, an aliquot (500 pL) of the
supernatant was added to 500 pL of ninhydrin reagent
(250 mg ninhydrin dissolved in 10 mL concentrated
acetic acid: concentrated HCI, 60 ~ 40 v/v). The mixture
was boiled for 10 min and immediately cooled on ice be-
fore the addition of 500 pL of 95% (v/v) ethanol. The
amount of cysteine formed was determined by measur-
ing the absorbance of the reaction mixture at 560 nm
[27]. Each enzymatic assay was performed including
negative controls (all reagent components without en-
zyme or without substrate). A standard curve was pre-
pared with L-cysteine (0—1 umol) dissolved in ninhydrin
reagent and treated as described above to quantify the
amount of cysteine formed. The serine sulfthydrylase
activity of CS was determined in the same way as de-
scribed for the CS assay above, except that 6.5 mM
serine was used instead of OAS.

Cellular thiol contents

The total thiol content of T. rangeli and T. cruzi epimas-
tigotes was determined using deproteinised parasite ex-
tracts prepared as formerly described [28]. Epimastigotes
in the exponential phase (1 x 10° parasites/mL) were

harvested, washed with D-PBS, and suspended in 0.6 mL
of 25% trichloroacetic acid. After 10 min on ice, the de-
natured proteins and cell debris were removed by centri-
fugation at 13,000 x g for 10 min at 4°C. The thiol
content of the supernatant solution was determined by
Ellman’s method [29] using 0.6 mM 5,5'-dithio-bis(2-
nitrobenzoic acid) (DTNB) in 0.2 M sodium phosphate
buffer (pH 8.0). The concentration of DTNB derivatives
of thiols was estimated spectrophotometrically at 412 nm.
Calibration curves were performed with known amounts
of cysteine.

Epimastigote susceptibility to oxidative and nitrosative
stress in vitro

Parasite susceptibility to oxidative or nitrosative stress was
assessed using Alamar blue (AB) assays, as described else-
where [22,30] with minor modifications. Briefly, 5 x 10°
T. rangeli and T. cruzi epimastigotes were incubated
for 48 h with 100 pL parasite culture in quadruplicate
in 96-well plates. Aliquots of 100 pL of 30% hydrogen per-
oxide (Sigma-Aldrich) or S-nitroso-N-acetylpenicillamine
(SNAP, Molecular Probes’- Life Technologies) prepared at
different dilutions (0-100-150-300-500—1000-1500 uM
and 0-5-20-50-150-300—-500—-1000 uM, respectively)
were added, as reported [22,31]. After incubation at 26°C
for 24 h, 20 pL of AB reagent (Invitrogen) was added to
each well to assess parasite viability via fluorescence emis-
sion at 600 nm. Data from treated and non-treated
cultures were used to calculate the ICs5y by a sigmoidal
regression analysis (with variable slope) using GraphPad
Prism v.5.0. Untreated control parasites and reagent
blanks were included in each test plate.

Statistical analysis

All experiments were performed in triplicate, and the re-
sults are presented as the mean and the standard deviation
(SD) or standard error of the mean (SEM). Normalised
data were analysed by a one-way ANOVA followed by
Bonferroni post-tests or Student’s ¢-test, as indicated in the
figure legends, using the software GraphPad Prism v.5.0.

Ethical approval

The procedures involving animals were previously approved
by the UFSC Ethics Committee on Animal Use — CEUA
(Reference number: 23080.025618/2009-81).



Romero et al. Parasites & Vectors 2014, 7:197
http://www.parasitesandvectors.com/content/7/1/197

Page 6 of 11

TraCs
TcCs
LbrCS
Lm3Cs
EhCS
TvCS
StCs &
5tCs B

[ S S S e S R

TraC5 14 T- D---
TcCS 29 K--MID---
LbrCs 28 T
Lmjcs 28 -
EnCS 30 HGVTEHPRIK
TvCS 19 -HRiP--N
stcs & 21 e —
StCS B 17 Q--R§EP--D

TIraCs 80 RSEIVEYHHA
TcCS R YKVII#MPES]
LbrCS 96 YKVII“HP?S
LmjCSsS EI YKV ITnMPES
EnCS 102 pEEERLIgST
TIvCS 87
S5tC5 A 86 pELTLIRIST
5tC5 B 85

Tecs 174
LbrCS 173
Lmics 173
EhCS 179
TvCS 165
StCS A 164
StCS B 161

GVARELK,
GVBR!LK
GVAMILEK

TraCS 155 ——————--—m --
TeCs 323 ALXVLSAADI --
LbrCS 322 SLEVVDASEL QD
LmjCS 322 SLEVVDASEL QD
EhCS 328 IQILDSLLNE --
TvCS 299 —mmmmeeeee o
StCS A 321 LQQ------- --
stcs B 301 BGI--————- —-

------------------ MSVQEFDP
------------------- MARPFDT
___________________ MARPFDK

TraC5 155 ————————== —————————— —————_S___ ____

TraCs 155 f _________________________________
TcCS 246 ICVSGD

LbrCS 245 CVSGD

LmjCSs 245 CVAG

EhCS 251 31T TQ

IvCS 230 HI SE

S5tCS A 244 VRETNE

5tCS B 226 LIpEICN

Figure 2 Multiple alignment of deduced amino acid sequences of CS from T. rangeli and other representative organisms. The identity
(black background) and conservation (grey background) of the amino acid residues are shown. Brackets indicate the consensus amino acid
residues of the putative pyridoxal phosphate-binding motif (PXXSVKDR); the substitute for the proline residue is marked with (-), and the lysine
residues required for cysteine synthase activity are indicated with triangles. The 38-39 loop at the entrance of the active site is indicated with an
asterisk (¥), and the positively charged residues involved in binding with SAT are indicated with (+). TraCS: Trypanosoma rangeli; TcCS: Trypanosoma cruzi
(Tc00.1047053507165.50); LbrCS: Leishmania braziliensis (LbrM.35.3820); LmjCS: Leishmania major (LmjF.36.3590); ENCS: Entamoeba histolytica; TvCS:
Trichomonas vaginalis (XP0O01325874); StCS A: Salmonella typhimurium CysK (POAT1E4); StCS B: Salmonella typhimurium CysM (NP_456975).
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Results

The T. rangeli genome contains genes encoding Cf3S and

CS enzymes

Using the nucleotide and protein sequences of CBS and
CS orthologs from plants, bacteria, yeast, and parasitic

protozoa as queries, a search of 7. rangeli genome and

transcriptome databases allowed the identification of

genes encoding CBS and a partial gene sequence for CS.

Additionally, the T. ramngeli genome contains a single
copy of the cystathionine y-lyase (CGL) gene of the RTS
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pathway but lacks the genes encoding serine acetyltrans-
ferase (SAT) present in the de novo biosynthetic pathway
of other trypanosomatids. The sequences for CBS and
CS were then back-searched using the SWISSPROT and
NCBI databases, which confirmed the identity of both
genes. These results suggest that, as in other trypanoso-
matids, 7. rangeli possesses genes coding for the en-
zymes involved in these two cysteine biosynthetic routes:
CBS in the transsulfuration pathway and CS in the de
novo biosynthesis pathway.

After cloning and sequencing, it was found that T.
rangeli CBS (TrCpBS) predicts a protein of 373 amino
acids (44 kDa) that reveals high sequence identity with
CBS from T. cruzi (84%), T. brucei (78%), and L. major
(75%) compared to human CBS (50%). Multiple se-
quence alignment confirmed that TrCBS contains three
out of the four lysine residues (Lys >*, Lys®*, Lys*'®) re-
quired for CS activity; the consensus sequence for the
putative cofactor pyridoxal phosphate-binding domain is
highly conserved. rTrCpS, as well as CBS from other try-
panosomatids, differs from H. sapiens CPS (HsCpS) by
lacking the haem-binding (redox sensor) and oxidore-
ductase motifs (Cys XX Cys) at the N- and C-termini,
respectively (Figure 1).

The T. rangeli CS gene (TrCS) encodes a protein of 155
amino acids (~16.8 kDa) that is 53% identical to the
T. cruzi ortholog but exhibits lower identity with L. major
(46%) and L. infantum (45%). Although CPS and CS are
evolutionarily related enzymes, we found a low identity
between TrCpS and TrCS (<13%) when compared to the
TrCS identity with the other orthologues from plants and
bacteria (~31-33%). An analysis of the predicted amino
acid sequences of TrCS revealed an amino acid change
of Pro*> — Ser within the putative pyridoxal phosphate-
binding domain (PXXSVKDR). Unlike other CSs, TrCS
has only two of the four lysine residues (Lys>’, Lys *°)
shown to be important for the catalytic activity of the
enzyme. Furthermore, TrCS does not have the canonical
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8-B9 loop described in CS enzymes, which is important
for access to the active site, and neither of the positively
charged residues (Lys-His-Lys) involved in binding with
serine acetyl-transferase (SAT) (Figure 2).

Stage-specific expression of CBS in T. rangeli

The relative abundance of the CBS protein was evaluated in
T. rangeli epimastigote and trypomastigote forms by western
blotting, showing no significant differences between the
forms. The absence of TrCpS stage-specific expression con-
trasts with the homologous protein in 7. cruzi (TcCpS), for
which the expression level of CBS was found to be signifi-
cantly increased in epimastigotes (Figure 3A, B).

CBS is active in T. rangeli
The enzymatic studies on 7. rangeli extracts showed that
CBS activity is detectable in both epimastigotes
(0.13 upmol min™' mg') and trypomastigotes
(0.079 pmol min' mg™" of protein) (Figure 4A), whereas
CBS activity was 1.9 times higher in the extracts from
T. cruzi epimastigotes versus trypomastigotes. Con-
versely, CS activity was undetectable in the protein
extracts from both 7. rangeli forms (Figure 4B).

rTrCPS showed CBS activity of 2.2+0.2 pmol min™*
mg " of protein (Figure 4A), with a km of 1.702 + 0.11 mM
for L-serine and a Km of 7301+19 mM for L-
homocysteine, indicating a high binding affinity for L-serine
and a weak binding affinity for L-homocysteine. rTrCBS
was also capable of generating L-cysteine from serine and
sodium sulfide, but with a very low specific activity (serine
sulfhydrylase activity of 0.013 umol min™" mg™" of protein).
Different from T. cruzi CBS, rTrCpS did not show any CS
activity (data not shown).

Total thiol content in T. rangeli and in vitro oxidative/
nitrosative stress phenotyping

A comparative analysis of the total thiol levels of 7. rangeli
and T. cruzi revealed significant differences between these

-
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Figure 3 Protein expression levels of CBS in T. rangeli and T. cruzi. A. Western blot analysis of soluble extracts obtained from epimastigotes
(E), and trypomastigotes (T) of T. rangeli and T. cruzi, and amastigotes (A) of T. cruzi. B. Densitometric analysis of CRS expression using Image)J
software and significant differences in CPS expression between epimastigotes and trypomastigotes, as determined by the t-test (*P < 0.05,

**P < 0.01). The normalisation of protein loading was performed by the immunodetection of a-tubulin.
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Figure 4 Detection of CBS and CS activities in protein extracts of T. rangeli and T. cruzi epimastigotes and trypomastigotes. A. The
activities of CPS were determined in soluble extracts from trypanosomes using the recombinant enzyme rTrCBS as a positive control (axis 2).
The results represent the average of five independent experiments performed in triplicate + SD. B. The activities of CS were determined in
soluble extracts from trypanosomes. The data represent the mean of five independent experiments performed in triplicate + SD. Significant
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parasites. 7. cruzi showed a thiol content of 7.8 nmoles/10°
parasites, whereas 7. rangeli had a thiol content that was al-
most seven times less (1.1 nmoles/10® parasites) (Figure 5A).

Based on these results, the T. rangeli susceptibility to
oxidative and nitrosative stress was evaluated by subject-
ing epimastigotes to stress conditions in vitro with HyO,
or SNAP. This parasite was found to be more sensitive
than T. cruzi to oxidative stress (H,O,), showing an ICsq
of 53 uM, which is significantly less (P <0.01) than the

ICs5o obtained for T. cruzi epimastigotes (188.3 pM).
Nevertheless, the difference between these parasites
was less pronounced under nitrosative stress conditions
(SNAP), with T. rangeli being more resistant than T. cruzi
(ICs0: 312 uM and 240.7 uM, respectively) (Figure 5B).

Discussion
Our results indicate that RTS appears to be the only
pathway for cysteine biosynthesis in T. rangeli. At the

A .
O T rangeli O T. rangeli
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10- T
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Figure 5 Total thiol content and effects of oxidative and nitrosative stress on T. rangeli and T. cruzi viability. A. The total thiol content
was determined in soluble extracts obtained from the epimastigote form. Error bars represent the SEM of three independent experiments.
B. In vitro susceptibility of epimastigotes of T. rangeli and T. cruzi exposed to oxidative stress by hydrogen peroxide (H,0,) or nitrosative stress
by S-nitroso-N-acetylpenicillamine (SNAP). Error bars represent the SEM of three independent experiments, performed in quadruplicate.
Significant differences were detected by a one-way ANOVA, followed by Bonferroni post-tests (**P <0.01, ***P < 0.001).
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genomic level, T. rangeli contains single copies of genes
coding for the CBS and CGL (cystathionine y-lyase) en-
zymes of the RTS pathway but lacks genes encoding a
protein of the cysteine de novo biosynthetic pathway
(SAT). Additionally, a partial gene sequence for CS was
found that has an A-G nucleotide transition at position
470, which generates a stop codon (TAG) (data not
shown); thus, the truncated protein encoded lacks two
of the four lysine residues required for CS activity.

A biochemical analysis of rTrCBS showed a higher
CPS activity compared to hsCPBS for generating cystathi-
onine via the condensation of L-serine and L-homocyst-
eine, though rTrCpS is less active than TcCpS [32-34].
In spite of this, the binding substrate affinity was com-
parable to the affinity of the CBS enzyme from L. major
and humans [9]. Similar to other C(Ss, rTrCpS can also
form cysteine from L-serine and sodium sulfide, but is
unable to utilise OAS and sulfide to catalyse the produc-
tion of cysteine. Nevertheless, inter-species variations in
other CPS catalysed reactions [24] could explain the ab-
sence of CS activity mediated by TrCpS.

The presence of a truncated CS gene as revealed by
high-quality sequencing (Phred >50), and the absence of
CS activity in both epimastigote and trypomastigote ex-
tracts suggests that the de novo cysteine biosynthetic
pathway is absent or not functional in 7. rangeli. Never-
theless, T. rangeli possesses a functional RTS pathway, a
characteristic shared with T. brucei, for which only CBS
activity has been reported in bloodstream trypomastigote
extracts but at a very low level [35]. This result indicates
that similarities in the metabolism of sulfur-containing
amino acids exist between 7. rangeli and T. brucei, an-
other parasite that does not possess an intracellular mam-
malian host stage. Such findings may suggest that the
extracellular stage of the life cycle of parasitic protozoa
and the RTS biosynthetic pathway are causally connected.

No stage-specific association was found for T. rangeli
CPBS activity and protein levels, contrasting with 7. cruzi,
with epimastigotes (insect-form) that present signifi-
cantly higher activity and protein levels. Other studies
on the RTS pathway in T. cruzi have demonstrated the
same stage-specific regulation of this pathway and have
shown a likely association with the complex life cycle of
this parasite and the availability of sulfur-containing
amino acids in different parasite environments [33,34].

We found significantly lower levels of total thiol con-
tent in 7. rangeli compared to T. cruzi epimastigotes.
Based on the fact that cysteine forms the basic building
block of all thiol antioxidants [2], one possible explan-
ation for the lowest thiol levels observed may be because
T. rangeli only uses the RTS pathway as a cysteine bio-
synthesis source. Another important aspect is related to
the fact that exogenous organic sulfur-containing amino
acids can be supplied by transporters [3,9,36]. However,
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such a mechanism and its possible influence on the total
thiol levels in T. rangeli remain to be explored.

Different from 7. cruzi, which faces oxidative stress in
the mammalian host and within the triatomine vector’s
digestive tract, T. rangeli is exposed to further oxidative
and nitrosative stress while reaching the triatomine
hemolymph and salivary glands [37]. Recently, studies
have demonstrated the activation of the vector immune
system during 7. rangeli-Rhodnius prolixus interactions,
including the generation of nitric oxide and superoxide
free radicals [38-40]. The greater resistance of T. rangeli
to SNAP compared to 7. cruzi could be explained by the
ability of T. rangeli to modulate insect immune/cellular
factors [38,41], especially those related to nitrosative pro-
duction, thus allowing the parasite to survive and multiply
freely in the insect’s hemolymph and to invade and
complete its development within the salivary glands [42].

Because thiols have been demonstrated to be the cen-
tral metabolites in the redox metabolism of several para-
site species [43], thus playing an important role in
protection against oxidative stress, the higher T. rangeli
susceptibility to hydrogen peroxide may be due its re-
duced total thiol content. In addition, the absence of an
active CS enzyme potentiates the T. rangeli susceptibility
to hydrogen peroxide, leading to the death of the para-
site. Such findings are in agreement with reports in
amoebae, whereby the overexpression of CS increases
the total cellular thiol content and the resistance to oxi-
dative stress due to hydrogen peroxide [8].

Conclusion

These findings demonstrate that the RTS pathway is ac-
tive in 7. rangeli, suggesting that this may be the only
pathway for cysteine biosynthesis in this parasite because
no CS activity was detected in epimastigotes and trypo-
mastigotes and the CS genes are truncated due to the
presence of stop codons. In this sense, the RTS pathway
would have an important functional role during the in-
sect stage of the life cycle of this protozoan parasite.
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