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Abstract

Background: Fascioliasis is an important and neglected disease of humans and other mammals, caused by
trematodes of the genus Fasciola. Fasciola hepatica and F. gigantica are valid species that infect humans and
animals, but the specific status of Fasciola sp. (‘intermediate form’) is unclear.

Methods: Single specimens inferred to represent Fasciola sp. (‘intermediate form’; Heilongjiang) and F. gigantica
(Guangxi) from China were genetically identified and characterized using PCR-based sequencing of the first and
second internal transcribed spacer regions of nuclear ribosomal DNA. The complete mitochondrial (mt) genomes of
these representative specimens were then sequenced. The relationships of these specimens with selected members
of the Trematoda were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian
inference (BI).

Results: The complete mt genomes of representatives of Fasciola sp. and F. gigantica were 14,453 bp and 14,478 bp in
size, respectively. Both mt genomes contain 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA
genes, but lack an atp8 gene. All protein-coding genes are transcribed in the same direction, and the gene order in
both mt genomes is the same as that published for F. hepatica. Phylogenetic analysis of the concatenated amino acid
sequence data for all 12 protein-coding genes showed that the specimen of Fasciola sp. was more closely related to
F. gigantica than to F. hepatica.

Conclusions: The mt genomes characterized here provide a rich source of markers, which can be used in combination
with nuclear markers and imaging techniques, for future comparative studies of the biology of Fasciola sp. from China
and other countries.
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Background
Food-borne trematodiases are an important group of
neglected parasitic diseases. More than 750 million people
are at risk of such trematodiases globally [1,2]. Fascioliasis
is caused by liver flukes of the genus Fasciola, and has a
significant adverse impact on both human and animal
health worldwide [3]. Human fascioliasis is caused by the
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ingestion of freshwater plants or water contaminated with
metacercariae of Fasciola [4]. It is estimated that millions
of people are infected worldwide, and more than 180
million people are at risk of this disease worldwide [5].
To date, no vaccine is available to prevent fascioliasis.
Fortunately, this disease can be treated effectively using
triclabendazole [6], but there are indications of resistance
developing against this compound [7].
The Fasciolidae is a family of flatworms and includes

the genus Fasciola. Both F. hepatica and F. gigantica,
which commonly infect livestock animals and humans
(as definitive hosts), are recognized as valid species [8]. The
accurate identification of species and genetic variants is
relevant in relation to studying their biology, epidemiology
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Table 1 Sequences of primers used to amplify mt DNA
regions from Fasciola spp.

Primer Sequence (5’ to 3’)

F. gigantica

FGCF1 TGTTTACTATTGGTGGGGTTACTGGT

FGNR1 CAAACCCTACAGAACTATCCCTCCAA

FGNF1 GTTATGGGATTCAGTCTTGGAGGGAT

FGCR1 CGTATCCAAAAGAGAAGCAGAAAGCA

Fasciola sp.

FZCF1 GGGTTACTGGTATTATGCTTTCTGCT

FZNR1 CCCTACAGAACTATCCCTCCAAGACT

FZNF1 GGTGGTATTATGGGCAGTTATGGGAT

FZCR1 CAGAAAGCATAATACCAGTAACCCCA
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and ecology, and also has applied implications for the
diagnosis of infections. Usually, morphological features,
such as body shape and perimeter as well as length/
width ratio, are used to identify adult worms of Fasciola
[9]. However, such phenotypic criteria are unreliable for
specific identification and differentiation, because of
considerable variation and/or overlap in measurements
between F. hepatica and F. gigantica [10].
Due to these constraints, various molecular methods

have been used for the specific identification of Fasciola
species and their differentiation [5]. For instance, PCR-
based techniques using genetic markers in nuclear riboso-
mal (r) and mitochondrial (mt) DNAs have been widely
used [11-13]. The sequences of the first and second
internal transcribed spacers (ITS-1 and ITS-2 = ITS)
of nuclear rDNA have been particularly useful for the
specific identification of F. hepatica and F. gigantica,
based on a consistent level of sequence difference (1.2% in
ITS-1 and 1.7% in ITS-2) between them and much less
variation within each species [11,14]. Nonetheless, studies
in various countries, including China [5], Iran [15], Japan
[16], Korea [14], Spain [17] and Tunisia [18], have shown
that some adult specimens of Fasciola sp., which are mor-
phologically similar to F. gigantica [10], are characterized
by multiple sequence types (or “alleles”) of ITS-1 and/or
ITS-2, reflected in a mix between those of F. hepatica and
F. gigantica [11,12]. Some authors [19-21] have suggested
that such specimens (sometimes called ‘intermediate
forms’) represent hybrids of F. hepatica and F. gigantica.
In the present study, we undertook an independent,

genetic comparison of Fasciola sp. (i.e. ‘intermediate
form’) and F. gigantica with F. hepatica. To do this, we
characterized the mt genomes of individual specimens of
Fasciola sp. and F. gigantica whose identity was defined
based on their ITS-1 and/or ITS-2 sequences, and
assessed their relationships by comparison with F. hepat-
ica and various other trematodes using complete, inferred
mt amino acid sequence data sets.

Methods
Ethics statement
This study was approved by the Animal Ethics Committee
of Lanzhou Veterinary Research Institute, Chinese Acad-
emy of Agricultural Sciences (Permit code. LVRIAEC2012-
006). Adult specimens of Fasciola were collected from
bovids, in accordance with the Animal Ethics Procedures
and Guidelines of the People's Republic of China.

Parasites and isolation of total genomic DNA
Adult specimens of Fasciola sp. were collected from the
liver of a dairy cow (Bos taurus) in Heilongjiang province,
China. Adult specimens of F. gigantica were collected
from the liver of a buffalo (Bubalus bubalis) in Guangxi
province, China. The worms were washed extensively in
physiological saline, fixed in ethanol and then stored
at −20°C until use. Single specimens were identified as
Fasciola sp. or F. gigantica based on PCR-based sequen-
cing of the ITS-1 and ITS-2 rDNA regions [11,12].

Long-range PCR-based sequencing of mt DNA
To obtain some mt gene sequence data for primer design,
regions (400–500 bp) of the cox1 and nad4 genes were
PCR-amplified and sequenced using relatively conserved
primers JB3/JB4.5 and ALF/ALR [13,22], respectively.
Using BigDye terminator v.3.1 chemistry (Applied Bio-
systems, Weiterstadt, Germany), the amplicons were se-
quenced in both directions in a PRISM 3730 sequencer
(ABI, USA). After sequencing regions of the cox1 and
nad4 genes of both Fasciola sp. and F. gigantica, two
internal pairs of conserved primers were designed (Table 1).
These pairs were then used to long PCR-amplify the
complete mt genome [23] in two overlapping fragments
(cox1-nad4; ~9 kb and, nad4-cox1 = ~6 kb) from a pro-
portion of total genomic DNA (10–20 ng) from one indi-
vidual of Fasciola sp. and another of F. gigantica. The
cycling conditions used were 92°C for 2 min (initial de-
naturation), then 92°C for 10 s (denaturation), 58–63°C
for 30 s (annealing), and 60°C for 5 min (extension) for
5 cycles, followed by 92°C for 2 min, 92°C for 10 s, 58–63°C
for 30 s, and 66°C for 5 min for 20 cycles, and a final
extension at 66°C for 10 min. Each amplicon, which
represented a single band in a 0.8% (w/v) agarose gel,
following electrophoresis and ethidium-bromide staining
[23], was column-purified and then sequenced using a
primer-walking strategy [24].

Sequence analyses
Sequences were manually assembled and aligned against
each other, and then against the complete mt genome
sequences of 11 other trematodes (see section on Phylo-
genetic analysis) using the program Clustal X 1.83 [25]
and manual adjustment, in order to infer gene boundaries.
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Open-reading frames (ORFs) were established using the
program ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/
gorf.html), employing the trematode mt code, and sub-
sequently compared with those of F. hepatica [26]. Trans-
lation initiation and termination codons were identified
based on comparisons with those of F. hepatica [26]. The
secondary structures of 22 tRNA genes were predicted
using tRNAscan-SE [27] with manual adjustment [28],
and rRNA genes were predicted by comparison with those
of F. hepatica [26].

Sliding window analysis of nucleotide variation
To detect variable nucleotide sites, pairwise alignments
of the complete genomes, including tRNAs and all inter-
genic spacers, were performed using Clustal X 1.83. The
complete mt genome sequences of Fasciola sp. and F.
gigantica were aligned with that published previously for
F. hepatica (NC_002546) [26], and sliding window analysis
was conducted using DnaSP v.5 [29]. A sliding window of
300 bp (in 10 bp overlapping steps) was used to estimate
nucleotide diversity Pi (π) across the alignment. Nucleo-
tide diversity was plotted against mid-point positions of
each window, and gene boundaries were identified.

Phylogenetic analysis
The amino acid sequences conceptually translated from
individual genes of the mt genomes of each Fasciola sp.
and F. gigantica were concatenated. For comparative
purposes, amino acid sequences predicted from published
mt genomes of selected members of the subclass Digenea,
including F. hepatica (NC_002546) [26] [Fasciolidae];
Clonorchis sinensis (GeneBank accession no. FJ381664),
Opisthorchis felineus (EU921260) [30] and O. viverrini
(JF739555) [31] [family Opisthorchiidae]; Paragonimus wes-
termani (NC_002354) [Paragonimidae]; Trichobilharzia
regenti (NC_009680) [32], Orientobilharzia turkestanicum
(HQ283100) [33], Schistosoma mansoni (NC_002545) [34],
S. japonicum (HM120846) [35], S. mekongi (NC_002529)
[34], S. spindale (DQ157223) [36] and S. haematobium
(DQ157222) [35] [Schistosomatidae], were also included
in the analysis. A sequence representing Gyrodactylus
derjavinoides (accession no. NC_010976) was included
as an outgroup [37]. All amino acid sequences were
aligned using the program MUSCLE [38] and subjected
to phylogenetic analysis using Bayesian inference (BI), as
described previously [39,40]. Phylograms were displayed
using the program Tree View v.1.65 [41]. In addition, all
publicly available sequences of NADH dehydrogenase
subunit 1 gene (nad1) of Fasciola sp.. F. gigantica and F.
hepatica were aligned (over a consensus length of 359 bp)
using MUSCLE, the alignment was modified manually,
and then subjected to phylogenetic analysis by BI, apply-
ing the General Time Reversible (GTR) model. Nodal
support values for the final phylogram were determined
from the final 75% of trees obtained using a sample fre-
quency of 100. The analysis was performed until the
potential scale reduction factor approached 1 and the
average standard deviation of split frequencies was less
than 0.01. An nad1 sequence of Fascioloides magna was
used as an outgroup in phylogenetic analysis.

Results
Identity of the two liver flukes, and features of the
mt genomes
The ITS-1 and ITS-2 sequences (GenBank accession no.
KF543341) of the specimen of Fasciola sp. from Heilongjiang
province were the same as that of an ‘intermediate form’ of
Fasciola from China (AJ628428, AJ557570 and AJ557571)
reported previously [11,12], which is characterized by
polymorphic positions at 10 positions in ITS-1 and ITS-2
(Additional file 1: Figure S1; Table 2). Based on these key
polymorphic positions (cf. [11,12]), this specimen of Fas-
ciola sp. from China was inferred to be a hybrid between F.
gigantica and F. hepatica. The ITS-1 and ITS-2 sequences
of the F. gigantica sample (accession no. KF543340) from
Guangxi province were consistent with that of the same
species from Niger (AM900371) and did not have any
polymorphic positions (Table 2).
The complete mt genome sequences representing Fas-

ciola sp. (GenBank accession no. KF543343) and F. gigan-
tica (accession no. KF543342) were 14,453 bp and 14,478 bp
in size, respectively. Each mt genome contains 12 protein-
coding genes (cox1-3, nad1-6, nad4L, cytb and atp6), 22
transfer RNA genes and two ribosomal RNA genes (rrnS
and rrnL), but lack an atp8 gene (Figure 1). The mt gen-
ome arrangement of the two flukes is the same as that
of F. hepatica [26], but as expected, distinct from Schis-
tosoma spp. [36]. All genes are transcribed in the same
direction and have a high A +T content (62.7%). The AT-
rich regions of both mt genomes are located between
tRNA-Glu and tRNA-Gly, and tRNA-Gly and cox3.

Annotation
For the two liver flukes, the protein-coding genes were in
the following order: nad5 > cox1 > nad4 > cytb > nad1 >
nad2 > cox3 > cox2 > atp6 > nad6 > nad3 > nad4L, and the
lengths of the all protein-coding genes are the same for
Fasciola sp. and F. gigantica (Table 3). The inferred nu-
cleotide and amino acid sequences of each of the 12 mt
proteins of two liver flukes were compared. A total of
3,356 amino acids are encoded in the both mt genomes.
All protein-coding genes have ATG, TTG or GTG as their
initiation codon (Table 3). All protein-coding genes have
TAG as their termination codon, except for cox3 and
nad3, which have TAA in Fasciola sp. (Table 3). No ab-
breviated stop codons, such as TA or T, were detected.
Twenty-two tRNA genes were predicted from the mt
genomes of the two liver flukes, and varied from 55 to
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Table 2 Comparison of nucleotides at variable positions in ITS-1 and ITS-2 rDNA sequences of Fasciola from different
geographical locations

Species Locations Variable positions in ITS-1 and ITS-2 sequences* Accession nos.

18 108 202 280 300 791 815 854 860 911

F. hepatica China C A C T C T T C C T JF708026

France C A C T C T T C C T JF708034

Iran C A C T C T T C C T JF432072

Niger C A C T C T T C C T AM850107

Spain C A C T C T T C C T JF708036

F. gigantica Burkina Faso T T T A T C C T T - AJ853848

China T T T A T C C T T - JF496709

Niger T T T A T C C T T - AM900371

Present study T T T A T C C T T - KF543340

Fasciola sp. China C/T A/T C/T T/A C/T T/C T/C C/T C/T T/- AJ628428, AJ557570, AJ557571

China, Japan C A C T C T T C C T AB385611, AB010978

Present study C/T A/T C/T T/A C/T T/C T/C C/T C/T T KF543341
*Sequence positions were determined by comparison with that of a previous study [11]. Sequences include ITS-1 (polymorphic positions 18, 108, 202, 280, 300),
5.8S rDNA and ITS-2 (polymorphic positions 791, 815, 854, 860, 911).
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69 bp in size. Of all tRNA genes, 20 can be folded into
the conventional four-arm cloverleaf structures. The
tRNA-tRNA-Ser(UCN) and tRNA-Ser(AGN) show unortho-
dox structures; their D-arms are unpaired and replaced by
the loops of 8–11 bp.
Figure 1 Structure of the mitochondrial genomes of Fasciola
sp. and Fasciola gigantica. Genes are designated according to
standard nomenclature [26], except for the 22 tRNA genes, which
are designated using one-letter amino acid codes, with numerals
differentiating each of the two leucine- and serine-specifying tRNAs
(L1 and L2 for codon families CUN and UUR, respectively; S1 and S2
for codon families AGN and UCN, respectively). Large non-coding
region (NS); small non-coding region (NL).
The two ribosomal RNA genes (rrnL and rrnS) of
Fasciola sp. and F. gigantica were inferred based on
comparisons with sequences from those of F. hepatica.
The rrnL of Fasciola sp. and F. gigantica is located be-
tween tRNA-Thr and tRNA-Cys, and rrnS is located
between tRNA-Cys and cox2. The length of rrnL is
987 bp for both Fasciola sp. and F. gigantica. The size
of the rrnS genes is 769 bp and 771 bp for Fasciola sp.
and F. gigantica, respectively. The A +T contents of rrnL
and rrnS are ~ 62% and ~ 61% for Fasciola sp. and F.
gigantica, respectively.
Two AT-rich non-coding regions (NCR) in the mt ge-

nomes Fasciola sp. and F. gigantica were inferred. In both
mt genomes, the long NCR (841 bp) is located between
the tRNA-Gly and cox3 (Figure 1), has an A +T content
of ~53% and contains eight perfect, 86 bp tandem repeats
(TR1 to TR8). The short NCR is 174–176 bp in length, is
located between tRNA-Glu and tRNA-Gly (Figure 1) and
has an A +T content of ~ 72%.

Comparative mt genomic analyses of Fasciola sp. and
F. gigantica with F. hepatica
The complete mt genome sequences representing Fasciola
sp. and F. gigantica are 9 bp shorter and 16 bp longer
than F. hepatica (14,462 bp in length) [26], respectively.
A comparison of the nucleotide sequences of each mt
gene, and the amino acid sequences, conceptually trans-
lated from all mt protein-encoding genes of the three
flukes, is given in Table 4. Across the entire mt genome,
the sequence difference was 2.6% (380 nucleotide substitu-
tions) between Fasciola sp. and F. gigantica, 11.8% (1712
nucleotide substitutions) between Fasciola sp. and F.
hepatica, and 11.8% (1714 nucleotide substitutions)



Table 3 The organization of the mt genomes of Fasciola sp., Fasciola gigantica and F. hepatica

Genes Positions and nt sequence lengths (bp) Ini/Ter codons

Fasciola sp. Fasciola gigantica Fasciola hepatica Fasciola sp. Fasciola gigantica Fasciola hepatica

cox3 1-642 1-642 1-642 ATG/TAA ATG/TAG ATG/TAG

tRNA-His 650 -713 (64) 650-713 (64) 650-713 (64)

cytb 715-1827 715-1827 (62) 715-1827 ATG/TAG ATG/TAG ATG/TAG

nad4L 1836-2108 1836-2108 1836-2108 GTG/TAG GTG/TAG GTG/TAG

nad4 2069-3337 2069-3337 2069-3340 GTG/TAG GTG/TAG GTG/TAA

tRNA-Gln 3339-3404 (66) 3339-3404 (66) 3342-3404 (63)

tRNA-Phe 3420-3484 (65) 3417-3481 (65) 3417-3482 (66)

tRNA-Met 3491-3556 (66) 3488-3553 (66) 3494-3561 (68)

atp6 3557-4075 3554-4072 3562-4080 ATG/TAG ATG/TAG ATG/TAG

nad2 4088-4954 4085-4951 4093-4959 ATG/TAG ATG/TAG ATG/TAG

tRNA-Val 4959-5021 (63) 4957-5020 (64) 4965-5027 (63)

tRNA-Ala 5035-5099 (65) 5035-5099 (65) 5042-5104 (63)

tRNA-Asp 5103-5167 (65) 5103-5167 (65) 5107-5172 (66)

nad1 5171-6073 5171-6073 5176-6078 GTG/TAG GTG/TAG GTG/TAG

tRNA-Asn 6079-6146 (68) 6084-6153 (70) 6089-6158 (70)

tRNA-Pro 6152-6220 (69) 6163-6230 (68) 6168-6234 (67)

tRNA-Ile 6221-6282 (62) 6231-6292 (62) 6235-6296 (62)

tRNA-Lys 6287-6352 (66) 6297-6363 (67) 6301-6367 (67)

nad3 6353-6709 6364-6720 6368-6724 ATG/TAG ATG/TAG ATG/TAG

tRNA-SerUCN 6714-6768 (55) 6725-6780 (56) 6731-6788 (58)

tRNA-Trp 6771-6833 (63) 6790-6852 (63) 6796-6858 (63)

cox1 6837-8378 6865-8397 6871-8403 GTG/TAG GTG/TAG ATG/TAG

tRNA-Thr 8391-8458 (68) 8419-8486 (68) 8420-8488 (69)

rrnL 8460-9445 8488-9473 8489-9475

tRNA-Cys 9446-9510 (65) 9474-9538 (65) 9476-9538 (63)

rrnS 9511-10279 9539-10309 9539-10304

cox2 10280-10882 10310-10912 10305-10907 ATG/TAA ATG/TAG ATG/TAG

nad6 10929-11381 10959-11411 10950-11402 ATG/TAG ATG/TAG ATG/TAG

tRNA-Tyr 11389-11445 (57) 11419-11475 (57) 11411-11467 (67)

tRNA-LeuCUN 11456-11520 (65) 11486-11550 (65) 11478-11543 (66)

tRNA-SerAGN 11521-11579 (59) 11551-11607 (57) 11542-11603 (62)

tRNA-LeuUUR 11588-11651 (64) 11616-11678 (63) 11609-11673 (64)

tRNA-Arg 11653-11718 (66) 11680-11745 (66) 11673-11738 (66)

nad5 11720-13282 11747-13309 11737-13305 TTG/TAG TTG/TAG GTG/TAG

tRNA-Glu 13305-13372 (68) 13332-13399 (68) 13327-13395 (69)

Short non-coding region 13373-13548 (176) 13400-13573 (174) 13396-13582 (187)

tRNA-Gly 13549-13612 (64) 13574-13637 (64) 13583-13645 (63)

Long non-coding region 13613-14453 (841) 13638-14478 (841) 13646-14462 (817)
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between F. gigantica and F. hepatica. The difference
across both nucleotide and amino acid sequences of
the 12 protein-coding was 11.6% (1167 nucleotide sub-
stitutions) and 9.54% (320 amino acid substitutions)
between the Fasciola sp. and F. hepatica; 11.6% (1167
nucleotide substitutions) and 9.83% (330 amino acid
substitutions) between the F. gigantica and F. hepatica;
and 2.8% (281 nucleotide substitutions) and 2.1% (71
amino acid substitutions) between the Fasciola sp. and
F. gigantica, respectively.



Table 4 Nucleotide (nt) and/or predicted amino acid (aa) sequence differences in each mt gene among Fasciola sp. (F),
Fasciola gigantica (Fg) and F. hepatica (Fh) upon pairwise comparison

Gene/region Nt sequence length Nt difference (%) Number of aa aa difference (%)

F Fg Fh F/Fg F/Fh Fg/Fh F Fg Fh F /Fg F/Fh Fg/Fh

atp6 519 519 519 2.89 15.22 13.87 172 172 172 1.74 15.12 13.95

nad1 903 903 903 3.10 8.86 8.42 300 300 300 2.67 7.67 8.0

nad2 867 867 867 3.69 11.42 11.65 288 288 288 1.74 11.81 11.81

nad3 357 357 357 5.60 10.64 10.64 118 118 118 0.85 7.63 7.63

nad4 1269 1269 1272 3.86 13.99 13.68 422 422 423 3.08 11.58 11.11

nad4L 273 273 273 1.83 8.79 8.42 90 90 90 2.22 5.56 5.56

nad5 1563 1563 1569 1.86 13.58 14.02 520 520 522 1.35 12.45 12.45

nad6 453 453 453 3.97 13.91 16.34 150 150 150 7.33 8.00 14.67

cox1 1542 1542 1533 2.02 9.39 9.13 513 513 510 1.37 6.08 5.49

cox2 603 603 603 2.16 11.11 11.61 200 200 200 0.50 7.00 7.50

cox3 642 642 642 2.80 13.86 13.40 213 213 213 2.82 14.55 14.55

cytb 1113 1113 1113 2.07 8.36 8.36 370 370 370 1.89 6.22 7.03

rrnS 769 771 766 1.30 11.31 11.41 - - -

rrnL 986 986 987 1.01 9.93 10.13 - - -

22 tRNAs 1413 1414 1420 2.26 10.28 10.63
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Nucleotide variability in the mt genome among Fasciola
sp., F. gigantica and F. hepatica
Sliding window analysis across the mt genomes of Fasciola
sp., F. gigantica and F. hepatica provided an estimation
of nucleotide diversity Pi (π) for individual mt genes
(Figure 2). By computing the number of variable positions
per unit length of gene, the sliding window indicated
that the highest and lowest levels of sequence variabil-
ity were within the genes nad6 and cytb, respectively.
Conserved regions were identified within nad1 and cox1
genes. In this study, the cytb and nad1 genes are the most
conserved protein-coding genes, and nad6, nad5 and
nad4 are the least conserved.
Figure 2 Sliding window analysis of complete mt genome seque
The black line indicates nucleotide diversity in a window of 300 bp
are indicated.
Phylogenetic analysis
Phylogenetic analysis of the concatenated amino acid
sequence data for all 12 mt proteins (Figure 3) showed
that the Fasciolidae clustered to the exclusion of represen-
tatives of the families Paragonimidae (P. westermani) and
Opisthorchiidae (O. viverrini, O. felineus and C. sinensis);
the Schistosomatidae clustered separately with strong
nodal support (posterior probability (pp) = 1.0). Within
the Fasciolidae, Fasciola sp. and F. gigantica clustered
together with strong support (pp = 1.0), to the exclusion of
F. hepatica, with the former two taxa being more closely
related than either was to F. hepatica. In addition, phylo-
genetic analysis using the nad1 data supports clustering of
nces of Fasciola sp., Fasciola gigantica and F. hepatica.
(10 bp-steps). Gene regions (grey) and boundaries



Figure 3 Genetic relationships of Fasciola sp. with Fasciola gigantica and F. hepatica, and other trematodes. Phylogenetic analysis of the
concatenated amino acid sequence data representing 12 protein-coding genes was conducted using Bayesian inference (BI), using Gyrodactylus
derjavinoides (NC_010976) as an outgroup.
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the Fasciola sp. with aspermic F. gigantica x F. hepatica
hybrids characterised previously [42] (Additional file 2:
Figure S2).

Discussion
The present comparative, genetic investigation of repre-
sentative specimens of Fasciola sp. (i.e. the ‘intermediate
form’), F. gigantica and F. hepatica using whole mt
genomic and protein sequence data sets showed that
Fasciola sp. and F. gigantica were more closely related
than either was to F. hepatica. This finding was also
supported by an analysis of nad1 sequence data (cf.
Additional file 2: Figure S2). Although this evidence might
suggest that Fasciola sp. is a population variant of F.
gigantica, previous studies [19-21] have proposed that
Fasciola sp. is a hybrid of F. gigantica and F. hepatica.
The combined use of mtDNA (if indeed maternally
inherited in fasciolids) and nuclear DNA markers [43]
should assist in exploring the “hybridization/speciation”
hypotheses [44]. Clearly, there is consistent evidence from
various studies [11,12,14] of mixed ITS-1 and ITS-2
sequence types, representing both F. gigantica and F.
hepatica among the multiple rDNA copies, within indi-
vidual specimens of Fasciola sp. (i.e., the ‘intermediate
form’). Although the number or proportion(s) of different
sequence types within individual adults of Fasciola sp. has
not yet been estimated using a mutation scanning- or
cloning-based sequencing [45], the polymorphic positions
in the sequences determined by direct sequencing [11,14]
indicate a clear pattern of introgression between the F.
gigantica and F. hepatica. Although mt genomic (11.8%)
and inferred protein (9.83%) sequence differences between
these two species is substantial, the explanation that
Fasciola sp. represents a hybrid between these two recog-
nized species seems plausible, given that the karyotypes
of both diploid F. hepatica and F. gigantica are the same
(2n = 20) [46,47] and that the magnitude of sequence
variation (1.7%) in ITS-2 (a species marker) between F.
gigantica and F. hepatica is comparable with the highest
level (1.3-1.6%) in this rDNA region between some
schistosome species for which hybrids (i.e. S. haemato-
bium× S. bovis; S. haematobium × S. guineenis; S. haema-
tobium × S. intercalatum) have been reported [48-50]. While
hybridization seems possible, another explanation might
be ITS rDNA "lineage sorting and retention of ancestral
polymorphism" [51,52], but this is perhaps less likely,
given a clear pattern of mixing of ITS sequences seen in
Fasciola sp. (cf. Additional file 1: Figure S1).
In addition, polyploidy or diploidy in aspermic Fasciola

[20] needs to be considered, and warrants future investiga-
tion. Perhaps the aspermic Fasciola specimens described
in the literature [53] were infertile hybrids of F. gigantica
and F. hepatica (in situations where both species occur in
sympatry). Questions that might be addressed directly
in relation to Fasciola sp. are: Are eggs from Fasciola sp.
fertilized and viable? If miracidia develop and emerge
from these eggs, are they infective to snails? If they do in-
fect snails, do the ensuing adult worms (in the definitive
host) contain sperm and are these worms fertile, and what
is their ploidy? These questions should be addressed, and
could be complemented by detailed light and transmission
electron microscopic investigations of a relatively large
number of adult specimens of Fasciola sp., F. gigantica
and F. hepatica (preferably from different countries),
which have been unequivocally and individually identified
based on their ITS-1 and ITS-2 sequences. Such a study
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should pay particular attention to the morphology of the
reproductive organs, sperm and oocytes, and the karyo-
types of worms, and establish whether or not Fasciola sp.
from China is polyploid and/or aspermic [20].
Moreover, although challenging, laborious and time-

consuming, it would be highly informative to conduct
hybridization studies in vivo, whereby individual miracidia
from eggs from adults of each Fasciola sp., F. gigantica
and F. hepatica would be used to infect (separately) their
lymnaeid snail hosts, to raise clonal populations of cer-
cariae and metacercariae of these three taxa, so that mixed
infections (in different combinations and with mono-
specific controls) could be established in, for example,
sheep or goats, to attempt to cross-hybridize the three
taxa in a pairwise manner. Using such an experimental
design, eggs and adult worms could then be examined
in detail at both the electron microscopic, karyotypic and
molecular levels. Importantly, in these experiments, ITS-1
and/or ITS-2 could be used to establish the genotypes of
subsamples of individuals, and mt markers derived from
mt genomes determined here and of F. hepatica could be
used to determine haplotypes and mtDNA inheritance if
the cross-hybridization studies were successful. Therefore,
the present markers could be employed, in combination,
to establish the biological relationship of the three taxa
through in vivo experiments, but also in the field in sym-
patric and allopatric populations, if they occur. Combined
with the use of markers in nuclear and mt genomes, ad-
vanced genomic sequencing, optical mapping and micro-
imaging techniques might assist studies of Fasciola sp. in
China and other countries.
Conclusion
The findings of this study provide robust genetic evidence
that Fasciola sp. is more closely related to F. gigantica
than to F. hepatica. The mtDNA datasets reported in
the present study should provide useful novel markers
for further studies of the taxonomy and systematics of
Fasciola from different hosts and geographical regions.
Additional files

Additional file 1: Figure S1. Polymorphic positions in the internal
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from the mitochondrial nad1 sequence data by Bayesian inference (BI).
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of 100.
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