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Abstract

Background: In northern Europe, the tick-borne encephalitis virus (TBEV) of the European subtype is usually
transmitted to humans by the common tick Ixodes ricinus. The aims of the present study are (i) to obtain up-to-date
information on the TBEV prevalence in host-seeking I. ricinus in southern and central Sweden; (ii) to compile and
review all relevant published records on the prevalence of TBEV in ticks in northern Europe; and (iii) to analyse and
try to explain how the TBE virus can be maintained in natural foci despite an apparently low TBEV infection
prevalence in the vector population.

Methods: To estimate the mean minimum infection rate (MIR) of TBEV in I. ricinus in northern Europe (i.e. Denmark,
Norway, Sweden and Finland) we reviewed all published TBEV prevalence data for host-seeking I. ricinus collected
during 1958–2011. Moreover, we collected 2,074 nymphs and 906 adults of I. ricinus from 29 localities in Sweden
during 2008. These ticks were screened for TBEV by RT-PCR.

Results: The MIR for TBEV in nymphal and adult I. ricinus was 0.28% for northern Europe and 0.23% for southern
Sweden. The infection prevalence of TBEV was significantly lower in nymphs (0.10%) than in adult ticks (0.55%).
At a well-known TBEV-endemic locality, Torö island south-east of Stockholm, the TBEV prevalence (MIR) was 0.51%
in nymphs and 4.48% in adults of I. ricinus.

Conclusions: If the ratio of nymphs to adult ticks in the TBEV-analysed sample differs from that in the I. ricinus
population in the field, the MIR obtained will not necessarily reflect the TBEV prevalence in the field. The relatively
low TBEV prevalence in the potential vector population recorded in most studies may partly be due to: (i) inclusion
of uninfected ticks from the ‘uninfected areas’ surrounding the TBEV endemic foci; (ii) inclusion of an
unrepresentative, too large proportion of immature ticks, compared to adult ticks, in the analysed tick pools; and
(iii) shortcomings in the laboratory techniques used to detect the virus that may be present in a very low
concentration or undetectable state in ticks which have not recently fed.
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Background
The common tick Ixodes ricinus is the most important
arthropod vector of pathogens of human diseases in
Europe [1,2]. One of these pathogens potentially causing
human disease is the tick-borne encephalitis virus
(TBEV), a member of the tick-borne group within the
genus Flavivirus [3], family Flaviviridae [4]. Tick-borne
encephalitis (TBE) is a potentially fatal disease syndrome
of humans and some other mammals [5]. TBE is en-
demic in central, eastern, and northern Europe east-
wards through Russian Siberia and China [6-8]. During
the last two decades, 1990–2009, an annual mean inci-
dence of 2,815 cases of human TBE was recorded for
Europe, while a corresponding annual mean incidence of
5,682 human TBE cases was reported from Russia [7].
Currently, the TBEV complex is considered to encom-

pass three virus subtypes; the European (TBEV-Eu), the
Far-Eastern (TBEV-Fe), and the Siberian TBEV (TBEV-
Sib) [4,5,9]. TBEV-Eu is mainly vectored by I. ricinus while
I. persulcatus is the primary vector of the Siberian and Far
Eastern subtypes [5]. The European subtype is present in
certain foci in Sweden, Norway, Denmark, Finland, Russia,
the Baltic countries and southwards through several east,
central and south European countries [7]. The Far-Eastern
subtype, in contrast to the Siberian subtype, has not yet
been found in Northern Europe. However, it is present in
populations of I. persulcatus in the Baltic area [10] and
western Russia not far from the Finnish border. Its geo-
graphical range extends eastwards to China and Japan
[9,11]. The Siberian subtype is found in Siberia, eastern
Europe and western Russia [9,10,12], but also in Finland
[13]. All three subtypes are known to co-circulate in areas
where the geographical ranges of I. ricinus and I. persulca-
tus overlap [14,15]. The European subtype is the only sub-
type so far found in ticks in Sweden [16-18], Norway [19]
and Denmark [20]. In Finland, both the European and Si-
berian viruses have been detected in I. persulcatus. Only
the former virus subtype has been recorded from I. ricinus
in Finland [13,21,22].
More than 70% of TBEV infections in humans are with-

out symptoms [5]. Virulence and disease symptoms exhibit
characteristic differences related to virus subtype. The overt
disease caused by TBEV-Eu may range from a relatively
mild influenza-like infection to a severe, life-threatening
disease with paralytic long-lasting sequelae. The mortality
rate caused by infections with TBEV-Eu is about 1–2%
while that of the Siberian subtype rarely exceeds 8% [5].
The Far-Eastern subtype often causes a monophasic disease
with a high rate of severe neurologic sequelae and a mortal-
ity rate that sometimes exceeds 20% [5,6,23-25].
In Sweden the first human TBE case was described in

1954 [26]. Four years later the virus was isolated from I.
ricinus ticks and from a patient. Since then, the annual in-
cidence of human TBE has increased from 60–80 cases/
year before the 1990s to more than 100 cases/year since
2000, thereafter increasing even further to more than 150
cases/year since 2006 with a significant increasing trend
during 2000–2012 [27]. This rise in TBE incidence in
Sweden is attributed to a combination of biotic and clima-
tological factors, particularly high abundance of roe deer
and other cervids in southern Sweden since the mid-
1980s and a warmer climate with a prolonged vegetation
period [27,28]. Based on data for the year 2009 for the
Scandinavian countries, Sweden has the highest TBE inci-
dence (2.3 per 100 000), followed by Finland (0.5 per 100
000), Norway (0.2 per 100 000), and Denmark (0.02 per
100 000) [7]. The only regional estimates of TBEV preva-
lence in I. ricinus published so far refer to southwestern
Sweden. They range from 0.10% to 0.42% [29].
Despite the great public health importance of TBE,

some aspects of the ecology of TBEV have not been ad-
equately investigated. One characteristic of the ecology
of the TBE virus is its irregular distribution over a large
geographical range with a patchy occurrence in re-
stricted foci of limited size [30-33]. This is in contrast to
several other Ixodes-transmitted pathogens, such as
Anaplasma phagocytophilum [34,35] and some genospe-
cies in the Borrelia burgdorferi sensu lato complex, the
endemic regions of which are extensive and sometimes
even include whole countries [36,37]. Another peculiar-
ity of TBEV, which has puzzled scientists for a long time,
is the low prevalence of the virus, usually <1%, in the I.
ricinus population. This phenomenon also differs from
the usually significantly higher prevalence of most of the
bacteria vectored by I. ricinus [34,35,37,38]. Thus, the
question arises how the virus can be maintained in a
small focus for many years despite such apparently low
infection prevalence in I. ricinus.
Here we present TBEV prevalence data based on virus

screening of I. ricinus collected at 29 localities in the
main TBEV-endemic regions of southern Sweden during
2008. We also provide a summary of all relevant, pub-
lished TBEV-prevalence data for I. ricinus collected in
Sweden and its three neighbouring countries Denmark,
Norway and Finland.

Methods
Tick collection
Between May-September 2008, host-seeking (that usually
do not contain any visible blood in the gut) I. ricinus
were collected at 29 localities in southern and central
Sweden (Figure 1, Additional file 1: Table S1) as previ-
ously described [39]. In short, a total of 2,074 nymphs
and 906 adult ticks (481 females and 425 males) were
collected by a person pulling a 1 × 1 (1 m2) white flannel
cloth placed horizontally on the ground vegetation in
deciduous or mixed deciduous/coniferous woodland bio-
topes [40]. At Norbo Finnmark, 12 adult I. ricinus, four



Figure 1 Map of southern and central Sweden. The numbers refer to localities where nymphs and adults of Ixodes ricinus ticks were collected.
These ticks were subsequently analysed for TBEV infection. The name of each numbered locality and its GPS coordinates can be found in Table 1
and Additional file 1: Table S1, respectively.
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of which were fully engorged, were removed from a pet
dog (Canis lupus domesticus) (Table 1). All ticks were
identified as I. ricinus based on morphological criteria
according to [41,42]. The words “tick” and “ticks”, when
used in this article, denote I. ricinus.

RNA extraction and detection of TBEV
RNA was extracted, amplified and screened for TBEV
in nymphs and adults of I. ricinus using a Real-Time
Reverse Transcription Polymerase Chain Reaction (RT-
PCR) targeting a certain region in the 3′-terminal of
the TBEV genome modified after Schwaiger and Cassinotti
[49] as previously described for the detection of TBEV in
nymphs [50] and adult [29] Ixodes ticks, respectively. Each
RNA extraction was made from a pool of ~20 nymphs, or
a single adult tick, except for adult ticks collected at
Gotska Sandön and Särö Västerskog, which were pooled
as shown with the letter P in Table 1.

Statistical analyses
The prevalence of TBEV infection in I. ricinus ticks of a
certain stage collected at a certain locality was estimated
using the Minimum Infection Rate (MIR), i.e. the mini-
mum infected proportion expressed as a percentage:

MIR ¼ p=Nð Þ � 100%

where:
p = the number of positive pools
N = the total number of ticks tested



Table 1 Summary of published and unpublished data on I. ricinus ticks collected in Sweden, Norway, Finland and Denmark analysed for TBE virus infection

Number of collected ticks Number of TBEV-positive Prevalence
estimate (%)

Country Collection
year

Locality Nymphs Males Females Total Pools Positive
pools

Positive
nymphs

Positive
adults

MIR
nymphs

MIR
adults

MIR
all

Method Reference

Sweden 1958 96 km NE of Stockholm
(9 sites)

35 898 933 24 4 1 3 2.86 0.33 0.42 MBI* [43]

Sweden 2003 Torö 106 9 115 1 1 – – – – 0.87 RT-PCR [17]

Sweden 2003 Combined central Sweden
(3 sites)

167 23 190 1 1 – – – – 0.53 RT-PCR [17]

Sweden 2006 3 sites south of Vänern
(T1-T3)

4380 220 220 4820 263 11 9 2 0.21 0.45 0.23 RT-PCR [29]

Sweden 2004 South-western Sweden (T4) 2740 70 2810 144 7 6 1 0.22 1.43 0.25 RT-PCR [29]

Sweden 2008 Hudiksvall (1) 30 6 5 41 14 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Stenö/Källskär (2) 300 90 92 482 202 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Gävle (3) 4 1 0 5 2 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Trödje (4) 3 2 2 7 4 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Skutskär (5) 29 11 15 55 27 1 0 1 0 3.85 1.82 RT-PCR This study

Sweden 2008 Älvkarleby (6) 10 6 13 29 20 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Borlänge (7) 7 4 4 15 9 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Vikmanshyttan (8) 15 2 4 21 7 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Östhammar (9*) 94 10 15 119 31 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Norbo Finnmark (10) 11 11 12 34 24 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Väddö (11*) 32 10 6 48 18 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Skebobruk (12*) 40 13 19 72 34 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Morga (13*) 300 31 55 386 114 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Rimbo (14*) 8 2 4 14 7 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Kapellskär (15*) 373 59 70 502 151 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Kolarvik (16*) 158 57 49 264 115 1 1 0 0.63 0 0.38 RT-PCR This study

Sweden 2008 Västerås (17*) 137 11 24 172 47 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Strängnäs (18*) 37 27 22 86 51 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Eskilstuna (19*) 27 4 7 38 13 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Karlstad (20) 9 5 3 17 9 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Värmdö (21*) 46 3 6 55 16 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Askersund (22) 36 0 5 41 9 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Herrhamra (23*) 196 31 36 263 99 4 1 3 0.51 4.48 1.52 RT-PCR This study
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Table 1 Summary of published and unpublished data on I. ricinus ticks collected in Sweden, Norway, Finland and Denmark analysed for TBE virus infection
(Continued)

Sweden 2008 Kapellängen, GS (24) (P) 24 21 2 47 25 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Gamla gården, GS (25) (P) 5 2 2 9 4 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Jönköping (26) 30 2 1 33 5 1 0 1 0 33.33 3.03 RT-PCR This study

Sweden 2008 Västervik (27) 14 4 5 23 10 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Änggårdsbergen (28) 31 0 1 32 3 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Särö Västerskog (29) (P) 68 0 2 70 8 0 0 0 0 0 0 RT-PCR This study

Sweden 2008 Combined central Sweden,
12 sites*

1448 258 313 2019 258 5 2 3 0.14 0.53 0.25 RT-PCR This study

Sweden 2008 Combined Sweden, 29 sites 2074 425 481 2980 1074 7 2 5 0.10 0.55 0.23 RT-PCR This study

Sweden 1958–2008 Combined Sweden,
4 studies, 45 sites

9396 2337 11733 1510 30 18 11 0.19 0.47 0.26 */PCR [17,29,43], this study

Finland 1957–1960,
1964

Archipelago of southern-
western Finland

4932 391 389 8131 249 18 – – – – 0.22 MBI** [44]

Finland 1957-1960,
1964

Southern Finland 124 9 0 133 7 0 – – – – 0 MBI** [44]

Finland 1957–1960,
1964

South-eastern Finland 1308 39 84 1643 51 1 – – – – 0.06 MBI** [44]

Finland 1996–1997 Isosaari (Mjölö) island, Helsinki 69 70 139 20 1 – – – – 0.72 RT-PCR [45]

Finland 1996–1997 Åland islands 203 247 450 48 1 – – – – 0.22 RT-PCR [45]

Finland 1996–1997 Helsinki city parks 74 123 726 130 0 – – – – 0 RT-PCR [45]

Finland 2004 Kokkola (Karleby) archipelago
(10 sites)

72 539 570 1181 122 13 – – – – 1.10 RT-PCR [13]

Finland 2003 Kumlinge – – – 454 46 4 – – – – 0.88 RT-PCR [21]

Finland 2005 Isosaari (Mjölö) island, Helsinki – – – 96 11 1 – – – – 1.04 RT-PCR [21]

Finland 2007 Turku (Åbo) archipelago – – – 1039 315 1 – – – – 0.10 RT-PCR [21]

Finland 2005 Lappeenranta (Villmanstrand) – – – 292 29 2 – – – – 0.68 RT-PCR [21]

Finland 2008 Närpiö (Närpes) – – – 36 – 0 – – – – 0 RT-PCR [21]

Finland 1957–2008 Combined Finland,
4 studies, ≥ 27 sites

14320 2490 42 – – – – 0.29 **/PCR [13,21,44,45]

Norway 2003 Vest-Agder and Hordaland
county

360 1 – – – – 0.28 RT-PCR [19]

Norway 2004 Vest-Agder and Hordaland
county

450 1 – – – – 0.22 RT-PCR [19]

Norway 2009 Risør, Dalen (S1) 900 – – 900 90 1 1 – 0.11 – 0.11 RT-PCR [46]

Norway 2009 Arendal (S2–S3) 1350 – – 1350 135 8 8 – 0.59 – 0.59 RT-PCR [46]

Norway 2009 Mandal (S4–S5) 1520 – – 1520 152 9 9 – 0.59 – 0.59 RT-PCR [46]
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Table 1 Summary of published and unpublished data on I. ricinus ticks collected in Sweden, Norway, Finland and Denmark analysed for TBE virus infection
(Continued)

Norway 2009 Lyngdal (S6–S7) 1860 – – 1860 186 6 6 – 0.32 – 0.32 RT-PCR [46]

Norway 2003–2009 Combined Norway,
2 studies, 9 sites

6440 ≥ 563 26 – – – – 0.40 RT-PCR [19,46]

Denmark 1999 Bornholm (7 sites) 3843 215 4058 2 – – – – 0.05 RT-PCR [47]

Denmark 2002–2003 Northern Zealand 50 25 30 105 3 1 1 – 2.00 – 0.95 RT-PCR [48]

Denmark 2002–2003 3 different sites 62 62 9 0 – – – – RT-PCR [48]

Denmark 2011 Tokkekøb (3 sites, Jun.) 854 22 20 896 24 3 2 1 0.23 2.38 0.33 RT-PCR [20]

Denmark 2011 Tokkekøb (3 sites, Sept.) 700 15 15 730 8 5 5 0 0.71 – 0.68 RT-PCR [20]

Denmark 2011 Grib Forest 183 9 6 198 13 0 0 0 – – – RT-PCR [20]

Denmark 2011 Bornholm (3 sites) 738 37 41 816 13 0 0 0 – – – RT-PCR [20]

Denmark 1999–2011 Combined Denmark,
3 studies , ≥ 18 sites

6865 ≥ 70 11 – – – – 0.16 RT-PCR [20,47,48]

All four
countries

1957–2011 All sites (≥ 99)
included in references

39358 3171 109 0.28 [13,17,19-21,29,43-48],
this study

Numbers within parenthesis for the present study correspond to sampling localities in Figure 1.
MIR, Minimum Infection Rate (%). P, adult ticks were pooled.
MBI*, Mouse brain inoculation and tissue cultures followed by neutralization tests and complement fixation tests [43].
MBI**, Mouse brain inoculation followed by haemagglutination and haemagglutination-inhibition tests [44].
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The MIR is considered acceptable for the present type
of data on arboviruses occurring in their vector popula-
tions at low prevalences [51-53]. This method assumes
that only one infected tick is present in each positive
pool [51]. The MIR also permits comparison of preva-
lence estimates from different investigations in which
different tick collection strategies were used, and where
the number of positive pools and the total number of
ticks analysed are known. Fisher’s exact test was used to
test if there is a significant difference, based on a two-
tailed hypothesis, between two MIR estimates.

Gathering of TBEV prevalence data from previous studies
TBEV prevalence data were included in our review if the
study reported at least the total number of ticks and/or
tick stage(s) collected, and the total number of TBEV
positive pools and/or individual ticks. We included only
publications presenting TBEV-analyses of ticks collected
in Denmark, Finland, Norway or Sweden.

Results
TBEV in nymphs or adult ticks in Sweden
A total of 2,074 nymphs and 906 adults of I. ricinus were
collected from 29 study localities in Sweden during 2008
(Figure 1). Among 108 pools of nymphs tested two pools
were TBEV-positive, as indicated by RT-PCR (Table 1):
One pool originated from Kolarvik and the other from
Herrhamra. Five of 906 adult ticks tested individually were
TBEV-positive by RT-PCR (Figure 1, Table 1): One tick
originated from Jönköping, three ticks from Herrhamra
on the island of Torö, and one from Skutskär. The MIR
calculated was 0.10% for the nymphs and 0.55% for the
adult females (Fisher’s test: P = 0.030). Four of 7 TBEV-
positive ticks originated from the same small island, Torö,
which is a well-known TBEV-endemic focus. At Torö, we
detected the TBEV infection in both nymphs (MIR =
0.51%) and adults of both sexes (MIR = 4.48%) of I. ricinus
(Fisher’s test: P = 0.0521).
Based on all nymphs and adults of I. ricinus from the 29

localities the TBEV prevalence, calculated as a MIR, was
0.23% (7 positive pools; 1,007 negative pools; N = 2,980
ticks analysed). For ticks collected in the northern part of
southern Sweden (Eskilstuna, Herrhamra, Kapellskär,
Kolarvik, Morga, Rimbo, Skebobruk, Strängnäs, Väddö,
Värmdö, Västerås, Östhammar) (Figure 1, Table 1), the
MIR was 0.25%. This infection prevalence comes from 5
positive pools (2 nymphal pools and 3 adult ticks; 84 nega-
tive nymphal pools and 568 negative specimens) out of
2,019 ticks tested (1,448 nymphs and 571 adults).

TBEV in ticks from the four countries
The overall mean MIR estimate for TBEV in I. ricinus
for the four neighbouring countries, Denmark, Sweden
Norway and Finland, was 0.28% (109 TBEV-positive
pools of 39,358 ticks tested, Table 1), which corresponds
to approximately one TBEV-positive tick in each sample
of 360 ticks. However, it should be noted that this is an
overall mean MIR for the four countries and is based on
both nymphs and adult ticks. The reason for combining
these life stages is that in several of the publications ana-
lysed information about the tick stage(s) analysed was
not stated. In the total data set (Table 1), the nymphal to
adult ratio is approximately 5:1. This is within the range
of the ratio of nymphs to adults that can be found in re-
search on population ecology of I. ricinus [40,54-56].

Discussion
TBEV prevalence in Sweden and neighbouring Nordic
countries
The overall mean TBEV prevalence for I. ricinus in the
four Scandinavian countries was 0.28%. This corre-
sponds to almost one TBEV-positive specimen in each
sample of 360 ticks collected. It should be emphasised
that the latter percentage, 0.28%, for Scandinavia refers
to a mixture of pools containing both nymphs and adult
ticks. It is well known that the infection prevalence of
adult female ticks is usually significantly higher than that
of nymphs [57]. This is most likely mainly due to the
fact that, during their development from larva to adult
tick, the questing adult tick female has usually blood-fed
twice, i.e. on two different, potentially TBEV-infected
host individuals. In contrast, the questing nymphs have
fed only once [58,59]. This is also indicated in the
present study by the data from Herrhamra where the
MIR was 0.51% for nymphs and 4.48% for adults. Thus,
if we had analysed relatively more adult ticks from
Herrhamra it is likely that the overall TBEV infection
prevalence estimate would have appeared even higher.
The estimated mean TBEV prevalence is similar to those
estimated for another I. ricinus-transmitted pathogen, B.
miyamotoi, in Sweden [60] and Estonia [50] but lower
than those usually recorded for other pathogens vectored
by I. ricinus, such as B. afzelii, B. garinii and B. valaisiana
[37,60], and A. phagocytophilum [34,35,39,61].
The estimated infection prevalence increased when the

TBEV analysis was restricted to ticks collected only from
one locality, Herrhamra on the island of Torö. This is a
well-known TBEV-enzootic area, where many people have
contracted neuroinvasive TBE. The island seems to be an
example of such a focus, as described by Dobler and co-
workers [33] in which the TBEV occurs permanently
within a restricted geographical area. Consequently, if a
larger number of ticks had been collected outside of the
TBEV focus and had been included in the virological ana-
lysis the TBEV prevalence estimate would have been re-
duced. Furthermore, another obvious problem with the
use of the MIR estimate on pooled samples occurs when
ticks are collected in a habitat where the infection rate is
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relatively high. Here, several virus-infected tick specimens
could be present in one pool; yet, such a positive pool
would be considered to contain only one infected tick,
thereby reducing the prevalence estimate to fall below the
actual prevalence [51-53].

Maintenance of TBEV in nature
The TBE virus is maintained and transmitted in natural
foci mainly in five ways: (i) by ticks becoming infected
when feeding on viraemic hosts whereby infective ticks,
in a subsequent stage, may transmit the virus to suscep-
tible, new hosts; (ii) by transovarial transmission in ticks;
(iii) by transstadial transmission in ticks; (iv) by sexual
transmission from a male tick to a female tick; and (v)
by non-viraemic transmission from infective tick(s) co-
feeding adjacent to susceptible ticks on a non-infected
and/or non-viraemic host [62-65].
Transmission of the TBEV can take place when tick lar-

vae or nymphs feed on (I) viraemic Apodemus mice or
Myodes voles. Apodemus mice are regarded as the optimal
transmission hosts for this mode of TBEV transfer, since
they do not rapidly become resistant to the feeding ticks
[66]. This is in contrast to bank voles, which rapidly be-
come resistant to the feeding ticks [67]. Furthermore, it is
generally accepted that any viraemia in rodents, infective
to feeding ticks, will only last for a few days. Therefore,
this mode of TBEV transmission is not considered suffi-
ciently effective to solely maintain the virus in the I. rici-
nus populations [65,68,69]. Still, rodents can act as TBEV
reservoirs since TBEV can be detected in infected rodents
for periods of several months, including during the winter
period [70,71].
Even ticks act as reservoirs for the TBEV due to their

capacity of transovarial and transstadial transmission.
Once infected, the tick will usually remain infected
throughout its life [65]. However, transovarial transmis-
sion only occurs at a low frequency and is, therefore, on
its own considered not sufficiently effective to maintain
TBEV in the vector population [72]. Sexual transmission
occurs when TBEV-infected tick males infect females by
transferring infectious saliva and/or seminal fluid during
copulation [73]. It is not known if transovarial and sexual
transmission are necessary for the long-term persistence
of the virus in the ecosystem. Possibly, they may have
evolved to function as auxiliary modes of transmission by
which the TBEV can ‘survive’ in the ecosystem during pe-
riods when the availability of vertebrate virus transmission
hosts and vertebrate virus reservoirs are unavailable for
the questing ticks to feed on. Non-viraemic transmission
is generally regarded as the main mode of transmission by
which TBEV is transmitted to infectible ticks and main-
tained in nature. Non-viraemic transmission may occur
when one or more susceptible ticks are feeding in close
proximity to an infective tick [62,65,68,74]. In this way,
transmission of TBEV takes place when infective ticks,
typically nymphs, are feeding on the host. TBE virions will
be transferred with the saliva, which is injected by the
blood-feeding, virus-infective nymphs into the feeding
site. Here, virions may be phagocytosed by leukocytes.
Some of these virus-infected blood cells may then be
ingested by susceptible ticks, typically larvae, which in this
manner become infected [62]. It should be noted that for
virus transmission to occur among co-feeding ticks it is
not necessary that a viraemia is present in the host [63].
However, synchronous questing activity of infective ticks
and susceptible ticks is necessary for the TBE virus to be
transmitted in this way [75]. Non-viraemic transmission
supported by a low degree of transovarial transmission is
considered sufficient to maintain the TBEV at the preva-
lence levels at which it generally occurs in I. ricinus [76].
There is some evidence that goats are not competent

hosts either for viraemic or non-viraemic transmission
of TBEV among co-feeding ticks [77]. However, to our
knowledge, there exists no experimental evidence that
cervids are incompetent hosts for non-viraemic trans-
mission of TBEV among co-feeding ticks. Although the
TBEV viraemia in deer may be of a short duration and
of insufficient magnitude in cervids we should not yet
reject the possibility that co-feeding transmission via
non-viraemic cervids might take place. In TBE-endemic
areas both domesticated and wild ungulates, especially
roe deer, usually have antibodies to TBEV [78] and the
seroprevalence in TBEV foci can be high in such mam-
mals [77]. Labuda and co-workers demonstrated that
natural hosts, which have neutralizing antibodies to the
TBEV and apparently are immune to TBEV (i.e., without
any viraemia) still can support transmission of this virus
from infective to uninfected ticks feeding close together
on the same host [63]. All stages of I. ricinus preferen-
tially attach to the neck and head region of roe deer and
both larvae and nymphs occur at the highest densities
on the head of this important tick maintenance host
[79]. These facts support the idea that the roe deer is
one of the most important host species for adult I. rici-
nus ticks. These facts also support the notion that roe
deer possibly can support the non-viraemic transmission
of TBEV to uninfected ticks. Indeed, roe deer abundance
may be a useful indicator of the risk for people in
TBEV-endemic areas to contract a TBE virus infection.
Along these lines, Zeman and Januska [80] showed that
the risk of TBE was associated with the abundance of
roe deer and mice (Apodemus spp.).

Is the TBEV prevalence in the tick population
unexpectedly low?
Two important questions are: (I) Is the infection preva-
lence of TBEV in the I. ricinus populations exceptionally
low? (II) How can the virus persist in nature despite
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such ‘low’ infection prevalence? Prevalence rates of
TBEV in I. ricinus populations in endemic areas usually
range from 0.1–5% [7,10,57,81] and the prevalence usu-
ally fluctuates from year to year and among regions [57].
It is likely that both viraemic and non-viraemic trans-
mission of TBEV to uninfected ticks occur more fre-
quently during years of peak abundance of small
mammals [27]. So these fluctuations in TBEV infection
prevalence are presumably to some degree due to the
varying densities of reservoir-competent vs. reservoir-
incompetent tick hosts. Both TBEV and B. miyamotoi
seem to have geographical distributional ranges com-
posed of a patchwork of relatively small enzootic foci.
Here, both pathogens seem to be present at low preva-
lences in their invertebrate reservoir and vector, i.e. I.
ricinus. Both pathogens rely, to a small extent, on trans-
ovarial transmission. It might be a trait, which has
evolved in TBEV and in B. miyamotoi, to enable these
human pathogens to ‘survive’ independent from verte-
brate transmission hosts during periods when the avail-
ability of such tick hosts, i.e. small mammals, is low or
non-existent.
One reason for the low apparent prevalence recorded

in many investigations may be due to inclusion of ticks
from non-endemic areas adjacent to the relatively con-
fined TBEV-infected foci [33]. If the limits of such a
focus are known and ticks are collected only from within
the borders of this TBEV focus, the virological analysis
of these ticks is likely to give a higher TBEV prevalence
estimate than if ticks from outside the TBE focus were
included in the analysis.
It has been known for many years that TBEV infection

rates of blood-fed ticks, collected from humans or other
hosts, are usually higher than those of unfed, questing
ticks collected from the vegetation in the same area
[81,82]. In a series of experiments, it was shown that
TBEV-infected ticks become more active in their host-
searching behaviour compared to that of uninfected
ticks [83,84]. It was also suggested that TBEV might
occur in undetectable concentrations in infected ticks in
nature, and that it is not until the tick is feeding, that
virus quantities can increase 100-fold [83] so that TBEV
becomes detectable [84]. It may be that the virus occurs
in an undetectable, seemingly ‘latent’ state, in the host-
seeking TBEV-infected tick. Components in the blood
and/or the increased temperature might be triggering
immature virions to become mature virions. Another
possibility is that the amount of virions in the non-
blood-fed tick is below the detection limit of the meth-
odology ordinarily used. Different methods for detecting
viruses and microorganisms can have different sensitiv-
ities [85,86]. Thus, it has been emphasized that if the
sensitivity of the PCR-based detection method used is
not optimal, it is likely that the infection prevalence will
be underestimated [57]. The PCR method that we used,
which is a modification of the method described by
Schwaiger and Cassinotti [49], has a detection limit of
1–10 copies per reaction. Therefore, the TBEV preva-
lences of the ticks collected in Sweden and analysed by
us, are most likely not underestimated.
The observed, relatively low TBEV prevalence in I. rici-

nus in nature is likely explained by a combination of such
factors as just mentioned. Future studies should aim to
explain in more detail the relative importance of the dif-
ferent environmental, pathogen-, tick-, and vertebrate-
related factors, which are necessary for an area to be a
long-term TBEV enzootic focus.

Conclusions
If the ratio of nymphs to adult ticks in the TBEV-analysed
sample differs from that in the I. ricinus population in the
field, the MIR obtained will not necessarily reflect the
TBEV prevalence in the field. The relatively low TBEV
prevalence in the potential vector population recorded in
most studies may partly be due to: (i) inclusion of unin-
fected ticks from the ‘uninfected areas’ surrounding the
TBEV endemic foci; (ii) inclusion of an unrepresentative,
too large proportion of immature ticks, compared to adult
ticks, in the analysed tick pools; and (iii) shortcomings in
the laboratory techniques used to detect the virus that
may be present in a very low concentration or undetect-
able state in ticks which have not recently fed.
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