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Abstract

Background: The digenean species of £chinostoma (Echinostomatidae) with 37 collar spines that comprise the so-
called ‘revolutum’ species complex, qualify as cryptic due to the interspecific homogeneity of characters used to
differentiate species. Only five species were considered valid in the most recent revision of the group but recent
molecular studies have demonstrated a higher diversity within the group. In a study of the digeneans parasitising
molluscs in central and northern Europe we found that Radix auricularia, R. peregra and Stagnicola palustris were
infected with larval stages of two cryptic species of the ‘revolutum’ complex, one resembling E. revolutum and one
undescribed species, Echinostoma sp. IG. This paper provides morphological and molecular evidence for their
delimitation.

Methods: Totals of 2,030 R. auricularia, 357 R. peregra and 577 S. palustris were collected in seven reservoirs of the
River Ruhr catchment area in Germany and a total of 573 R. peregra was collected in five lakes in Iceland. Cercariae
were examined and identified live and fixed in molecular grade ethanol for DNA isolation and in hot/cold 4%
formaldehyde solution for obtaining measurements from fixed materials. Partial fragments of the mitochondrial
gene nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) were amplified for 14 isolates.

Results: Detailed examination of cercarial morphology allowed us to differentiate the cercariae of the two
Echinostoma spp. of the ‘revolutum’ species complex. A total of 14 partial nad1 sequences was generated and
aligned with selected published sequences for eight species of the ‘revolutum’ species complex. Both NJ and BI
analyses resulted in consensus trees with similar topologies in which the isolates from Europe formed strongly
supported reciprocally monophyletic lineages. The analyses also provided evidence that North American isolates
identified as E. revolutum represent another cryptic species of the ‘revolutum’ species complex.

Conclusion: Our findings highlight the need for further analyses of patterns of interspecific variation based on
molecular and morphological evidence to enhance the re-evaluation of the species and advance our
understanding of the relationships within the ‘revolutum’ group of Echinostoma.
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Background

The digenean species of Echinostoma Rudolphi, 1809
(Echinostomatidae) with 37 collar spines that comprise
the so-called Echinostoma ‘revolutum’ complex, qualify
as cryptic (sensu Bickford et al. [1]; see also Pérez-Ponce
de Ledn and Nadler [2] for a recent review) due to the
interspecific homogeneity of characters used to differen-
tiate species. Only five species, the Eurasian Echinostoma
revolutum (Frolich, 1802), E. echinatum (Zeder, 1803)
and E. jurini (Skvortsov, 1924), the North American E.
trivolvis (Cort, 1914) and the African E. caproni Richard,
1964, were considered valid in the most recent revision
of the group using for species delimitation a single
morphological feature of the larval stages (the number
of pores of the para-oesophageal gland-cells in the
cercaria), the specificity towards the first intermediate
host (at the familial level), the ability to infect avian or
mammalian hosts (or both) and geographical range on a
global scale (continents) [3-5] (but see Kostadinova and
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Gibson [6] for a critical review). It is worth noting that
E. echinatum has not been formally described and justi-
fied in a taxonomic publication and is not recognised as
valid [see 6 for details]. However, recent molecular stu-
dies have demonstrated a higher diversity within the
‘revolutum’ species complex. Thus one African species,
Echinostoma deserticum Kechemir et al., 2002, and a yet
unidentified species from New Zealand were distin-
guished based on molecular data [7] (see also [8]), and
E. trivolvis was found to represent a species complex [9].
Additional data on the geographical distribution of the
Echinostoma spp. have also been obtained. E. revolutum
was recorded in Australia [7] and North America
[10,11], Echinostoma paraensei Lie & Basch, 1967 in
Australia and South America [7], and E. cf. robustum in
North and South America [11].

The pioneer molecular studies, predominantly based on
laboratory strains, have revealed that the mitochondrial
nadl gene provides a better resolution for investiga-

Table 1 List of species/isolates of the ‘revolutum’ species complex used in this study, their hosts, localities and

GenBank accession numbers

Species

Host

Echinostoma sp. IG
Echinostoma sp. IG
Echinostoma sp. 1G
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma caproni
Echinostoma caproni
Echinostoma caproni

E. deserticum”
Echinostoma cf. friedi
Echinostoma friedi
Echinostoma paraensei
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum
Echinostoma revolutum

Echinostoma revolutum

Radix peregra (isolate RPI1)

Radix auricularia (isolate RAG1)
Radix auricularia (isolate RAG2)
Radix peregra (isolate RPI2)

Radix peregra (isolate RPI3)

Radix peregra (isolate RPI4)
Stagnicola palustris (isolate SPG1)
Radix auricularia (isolate RAG3)
Radix auricularia (isolate RAG4)
Radix peregra (isolate RPGT1)
Radix peregra (isolate RPG2)
Radix peregra (isolate RPG3)
Radix peregra (isolate RPG4)
Radix peregra (isolate RPG5)

na

na

Rattus norvegicus

na

Planorbis sp.

Mesocricetus auratus (exp.)

na

Radix peregra/Columba livia (exp.)
Lymnaea elodes/Gallus gallus (exp.)
Lymnaea elodes

Lymnaea elodes

Lymnaea elodes

Locality Accession no.  Reference

Nordic House (Iceland) KC618448 Present study
Hengsteysee (Germany) KC618449 Present study
Hengsteysee (Germany) KC618450 Present study

Lake Myvatn (Iceland) KC618451 Present study

Lake Myvatn (Iceland) KC618452 Present study

Lake Myvatn (Iceland) KC618453 Present study
Hengsteysee (Germany) KC618454 Present study
Hennetalsperre (Germany)  KC618455 Present study
Hennetalsperre (Germany)  KC618461 Present study
Hennetalsperre (Germany)  KC618456 Present study
Hennetalsperre (Germany)  KC618457 Present study
Hennetalsperre (Germany)  KC618458 Present study
Hennetalsperre (Germany)  KC618460 Present study
Hennetalsperre (Germany)  KC618459 Present study
Cameroon AF025838 Morgan & Blair [7,13]
Madagascar, Egypt AF025837 Morgan & Blair [7,13]
Cairo (Egypt) AJ564378 Marcilla et al. (unpublished)
Niger AF025836 Morgan & Blair [7,13]
Wales (UK) AY 168937 Kostadinova et al. [14]
Pons, Valencia (Spain) AJ564379 Marcilla et al. (unpublished)
Brazil AF025834 Morgan & Blair [7,13]
Bulgaria AY 168933 Kostadinova et al. [14]
Shock Lake, Indiana (USA)  GQ463082 Detwiler et al. [11]
Pond A, Indiana (USA) GQ463088 Detwiler et al. [11]
Pond A, Indiana (USA) GQ463090 Detwiler et al. [11]
Pond A, Indiana (USA) GQ463086 Detwiler et al. [11]
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Table 1 List of species/isolates of the ‘revolutum’ species complex used in this study, their hosts, localities and

GenBank accession numbers (Continued)

Echinostoma revolutum Lymnaea elodes

Echinostoma revolutum Ondatra zibethicus
Echinostoma revolutum na

Echinostoma robustum™ Lymnaea elodes
Echinostoma robustum™ Biomphalaria glabrata/G. gallus (exp.)
Echinostoma robustum™" Lymnaea elodes
Echinostoma trivolvis Ondatra zibethicus
Echinostoma trivolvis Ondatra zibethicus
Echinostoma trivolvis Ondatra zibethicus
Echinostoma trivolvis Ondatra zibethicus
Echinostoma trivolvis Ondatra zibethicus
Echinoparyphium recurvatum  Radix peregra

Echinoparyphium aconiatum  Lymnaea stagnalis

Shock Lake, Indiana (USA)  GQ463084 Detwiler et al. [11]
Virginia (USA) JQ670862 Detwiler et al. [11]
"Germany, Europe” AF025832 Morgan & Blair [7,13]
Minnesota (USA) GQ463054 Detwiler et al. [11]
Brazil GQ463055 Detwiler et al. [11]
Pond A, Indiana (USA) GQ463053 Detwiler et al. [11]
Virginia (USA) JQ670860 Detwiler et al. [9]
Virginia (USA) JQ670852 Detwiler et al. [9]
Virginia (USA) JQ670854 Detwiler et al. [9]
Virginia (USA) JQ670858 Detwiler et al. [9]
Virginia (USA) JQ670856 Detwiler et al. [9]
Wales (UK) AY168944 Kostadinova et al. [14]
Finland AY168945 Kostadinova et al. [14]

“ Syn. Echinostoma sp. | Africa of Morgan and Blair [17,13]; ** sensu Detwiler et al. [11].

ting relationships within the problematic Echinostoma
‘revolutum’ species complex in comparison with the
nuclear rRNA spacers and the mitochondrial coxl gene
[12,13]. The subsequent DNA-based studies [7,9-11,14] have
provided a framework for investigating genetic variation in
natural Echinostoma spp. populations and revealed novel
data on the cryptic variation, identification and geograph-
ical distribution of the species of the ‘revolutum’ complex.

However, in contrast with the wealth of sequences gath-
ered recently from North America, which have revealed
high diversity (six cryptic lineages) within the ‘revolutum’
complex of Echinostoma [9,11], data from European natural
populations are virtually lacking. Thus, of the eight species
described and/or recorded from Europe, ie. E. revolutum,
E. paraulum Dietz, 1909, E. jurini (Skvortsov, 1924), E.
miyagawai Ishii, 1932, E. robustum Yamaguti, 1935, E.
bolschewense (Kotova, 1939), E. nordiana (Baschkirova,
1941), E. friedi Toledo et al., 2000 [3,5,15-22], sequence

data are available only for E. revolutum [7,12-14] and E.
friedi (GenBank AJ564379).

In a study of the digeneans parasitising molluscs in
central and northern Europe we found that Radix
auricularia (Linnaeus, 1758), Radix peregra (Miller,
1774) and Stagnicola palustris (Miller, 1774) were
infected with larval stages of two species of the
Echinostoma ‘revolutum’ complex of cryptic species, one
resembling E. revolutum sensu stricto (s.s.) and one
undescribed species (see also [23]). Here we describe the
cercariae of these two species and provide morphological
and molecular evidence for their delimitation. Further,
we extend the approaches of Morgan and Blair [7,13],
Kostadinova et al. [14] and Detwiler et al. [11] to the
relationships within the ‘revolutum’ species complex
inferred from the nadl gene with the newly-generated
sequence data from natural infections in snails in
Europe. Phylogenetic analyses revealed the presence of

Table 2 Prevalence of Echinostoma spp. from natural infections in Radix spp. and Stagnicola palustris in Germany and

Iceland
Species Host Locality Prevalence (%)
Echinostoma revolutum Radix peregra Lake Myvatn (Iceland) 2.31
Radix auricularia Hennetalsperre (Germany) 1.92 - 10.00
Radix peregra Hennetalsperre (Germany) 37.50°
Stagnicola palustris Hengsteysee (Germany) 0.74
Echinostoma sp. IG Radix peregra Nordic House (Iceland) 0.94

Radix auricularia
Radix auricularia

Radix auricularia

Baldeneysee (Germany)
Hengsteysee (Germany)

Hengsteysee (Germany)

1.32 (2009)°
2.00 - 2.90 (2009)°
1.56 (2011)°

2 Sample size small (n = 16); ® Year indicated for different surveys of the same snail host.

Values are calculated for homogenous distinct samples only.
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Figure 1 Echinostoma sp. IG, drawings of live cercaria. A. Body,
ventral view. B. Tail, lateral view (note that only one of the two

v ventro-lateral fin-folds is illustrated). C. Head collar. D. Schematic
illustration of the para-oesophageal gland-cells. Abbreviations: d,
dorsal fin-fold; v, ventral fin-fold. Scale-bars: A, B, 100 um; C, 50 pum.

additional cryptic lineages of the Echinostoma ‘revolutunt’
species complex.

000 0 0. 0005 %

(o]

B | 3 Methods

Sample collection

Totals of 2,030 R. auricularia, 357 R. peregra and 577
S. palustris were collected during 2009-2012 in seven
reservoirs of the River Ruhr catchment area (North
Rhine-Westphalia, Germany): Baldeneysee (51°24'20.08"N,
7°2'22.47"E); Harkortsee (51°23'40.56"N, 7°24'8.27"E);
Hengsteysee (51°24'52.17"N, 7°27'42.55"E); Hennetalsperre
(51°19'50.97"N, 8°15'46.82"E); Kemnader See (51°25'19.05"N,
7°15'43.07"E); Sorpetalperre (51°20° 15.01"N, 7°56'46.18"E);
and Versetalsperre (51°10'55.71"N, 7°40'57.12"E). Seven
distinct samples of R. peregra (a total of 573 snails) were
collected in five localities in Iceland: Lakes Family Park
(64°08'15"N, 21°52'03"W) and Nordic House (64°08'19"N,
21°56'45"W) in Reykjavik; Opnur (63°58'43"N, 21°10'37"W));
Raudavatn (64°05'35"N, 21°47'14"W); and Helgavogur,
Lake Myvatn (65°38'04"N, 16°5528"W) in May and
August 2012. Snails were collected randomly with a
strainer or picked by hand from stones and floating vege-
tation along the shore at several sampling sites at each
reservoir. In the laboratory, snails were labelled and placed
individually into beakers with a small amount of lake
water, and kept under a light source for up to 5 days
to stimulate emergence of cercariae. Thereafter, snails
were measured, dissected and examined for prepatent
infections.
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Morphological data

Cercariae were examined and identified live using the
data from the keys of Faltynkova et al. [24,25] and other
relevant primary sources [3,18-22]. Digital photographs
of live cercariae (and rediae) were taken with a digital
camera of an Olympus BX51 microscope. Vital stains
(Neutral Red and Nile Blue sulphate) were used for visu-
alisation of the para-oesophageal gland-cells of the
cercariae. Measurements (in micrometres) were taken
from the digital images with the aid of QuickPHOTO
CAMERA 2.3 image analysis software or the program
Image] [26]. Upon preliminary identification, two sam-
ples of cercariae (rediae) per isolate were fixed: (i) in
molecular grade ethanol for DNA isolation and sequen-
cing; and (ii) in hot/cold 4% formaldehyde solution for
obtaining measurements from fixed materials. Snails
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Figure 2 Echinostoma sp. IG, microphotographs of live cercaria. A. Body, ventral view. B. Dorsal view showing para-oesophageal gland-cells
and outlets (staining with Neutral Red) C. Tail, lateral view. D. Head collar, ventral view showing angle and lateral spines. E. Head collar, dorsal
view, showing dorsal collar spines. Scale-bars: A, C, 100 um; B, D, E, 50 um.

were identified using Gloer [27]. Although R. peregra
and R. ovata (Draparnaud, 1805) have recently been
treated as junior synonyms of R. balthica (Linnaeus,
1758) we used the name R peregra following the
molecular studies of Bargues et al [28] and Hunova
et al. [29] which provide sequences for snails sampled in
both central Europe and Iceland.

Molecular data
Total genomic DNA was isolated from ethanol-fixed sin-
gle rediae and/or 10-50 pooled cercariae obtained from

a single snail individual by placing the samples in 200 pL
of a 5% suspension of deionised water and Chelex®
containing 0.1 mg/mL proteinase K, followed by incuba-
tion at 56°C for 3 h, boiling at 90°C for 8 min, and cen-
trifugation at 14,000 g for 10 min. Polymerase chain
reaction (PCR) amplifications of partial fragments of the
mitochondrial gene nicotinamide adenine dinucleotide
dehydrogenase subunit 1 (nadl) were performed in
25 ul reactions using Ready-To-Go-PCR Beads (GE
Healthcare, UK) containing ~2.5 units of puReTaq DNA
polymerase, 10 mM Tris—HCl (pH 9.0), 50 mM KCl,
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Figure 3 Echinostoma revolutum, drawings of live cercaria. A.
Body, ventral view. B. Tail, lateral view (note that only one of the
two ventro-lateral fin-folds is illustrated). C. Head collar. D. Schematic
illustration of the para-oesophageal gland-cells. Abbreviations: d,
dorsal fin-fold; v, ventral fin-fold; vl, ventro-lateral fin-fold. Scale-bars:
A, B, 100 um; C, 50 um.

1.5 mM MgCl,, 200 mM of each dNTP and stabilisers
including BSA, 10 mM of each PCR primer, and 50 ng
of template DNA. The following PCR primers were used:
forward NDJ11 (equivalent to JB11 in [13]) 5-AGA TTC
GTA AGG GGC CTA ATA-3' and reverse NDJ2a: 5'-
CTT CAG CCT CAG CAT AAT-3' [14]. The thermo-
cycling profile comprised initial denaturation at 95°C for
5 min, followed by 35 cycles with 30 s denaturation at
94°C, 20 s primer annealing at 48°C, and 45 s at 72°C for
primer extension, with a final extension step of 4 min at
72°C.

PCR amplicons were purified using Qiagen QIAquick™
PCR Purification Kit (Qiagen Ltd, UK) and sequenced
directly for both strands using the PCR primers. Sequen-
cing was performed on an ABI Prism 3130xl automated
sequencer using ABI Big Dye chemistry (ABI Perkin-
Elmer, UK) according to the manufacturer’s protocol.
Contiguous sequences were assembled and edited using
MEGA v5 [30] and submitted to GenBank (accession
numbers shown in Table 1).

Newly-generated and published nadl sequences for
Echinostoma spp. (see Table 1 for details) were aligned
using Clustal W implemented in MEGA v5 with refer-
ence to the amino acid translation, using the echino-
derm and flatworm mitochondrial code [31]. Species
boundaries were assessed via neighbour-joining (NJ)
analyses of Kimura-2-parameter distances using MEGA
v5 (nodal support estimated using 1,000 bootstrap
resamplings) and Bayesian inference (BI) analysis using
MrBayes 3.2 [32,33]. The best-fitting model of nucleo-
tide substitution estimated prior to BI analysis using
jModelTest 2.1 [34] was the Hasegawa-Kishino-Yano
model including estimates of invariant sites and among-
site rate heterogeneity (HKY + I + G).

BI log-likelihoods were estimated with default prior
probabilities and likelihood model settings (nst = 2; rates =
invgamma; ngammacat = 4) over 10° generations via 4 sim-
ultaneous Markov Chain Monte Carlo chains (nchains = 4)
with a sampling frequency of 100. The first 25% of the
samples were discarded (sump burnin =2500) as deter-
mined by the stationarity of InL assessed with Tracer v. 1.4
[35]; the remaining trees were used to construct the 50%
majority-rule consensus tree and to estimate the nodal
support as posterior probability values [36]. Genetic
distances (uncorrected p-distance) were calculated with
MEGA v5.
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Figure 4 Echinostoma revolutum, microphotographs of live cercaria. A. Body, ventral view. B. Ventral view showing outlets of para-
oesophageal gland-cells (staining with Neutral Red). C. Tail, lateral view. D. Head collar, ventral view showing angle and lateral spines. E. Head
collar, dorsal view showing dorsal collar spines. Scale-bars: A, C, 100 um; B, D, E, 50 um.

Results

Morphological identification of infections in natural snail
populations

We found larval stages of Echinostoma spp. in the snail
populations sampled in three of the seven reservoirs in
the River Ruhr drainage in Germany and in two of the
five lakes in Iceland (see Table 2 for details on hosts and
localities). Three lymnaeid snail species acted as first
intermediate hosts of Echinostoma spp. of the ‘revolutum’
species complex in the areas studied: R peregra in the
lakes in Iceland and R. auricularia, R. peregra and S.
palustris in the reservoirs in Germany. Prevalences were

usually low (typically 1-3%) but occasionally higher values
were registered (Table 2).

Detailed examination of cercarial morphology allowed
us to identify two types of echinostomatid cercariae
among the isolates sampled in Iceland and Germany
(Figures 1, 2, 3, 4, 5). Both types belong to the ‘revolutum’
species complex of Echinostoma which is characterised by
the following features of the cercariae: (i) 37 collar spines
with an arrangement 5-6-15-6-5 (5 angle and 6 lateral
spines on each side and 15 dorsal spines in a double row;
Figures 1C, 2D,E, 3C, 4D,E); (ii) tail with a tip forming a
highly contractile attenuated process and seven prominent
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Figure 5 Cercariae fixed in 4% formaldehyde solution. A.
Echinostoma sp. IG. B. Echinostoma revolutum. scale-bar: 100 pum.

tegumental fin-folds (2 dorsal, 3 ventral and 2 ventro-
lateral; Figures 1B, 2C, 3B, 4C); and (iii) a flame-cell for-
mula 2[(3+ 3+ 3) + (3 + 3 + 3)] = 36.

Eleven isolates (three ex R. peregra from Iceland, plus
two ex R. auricularia, five ex R peregra and one ex S.
palustris from Germany) were identified as E. revolutum
based on cercarial morphology and especially the presence
of 12 small para-oesophageal gland-cells with long
ducts, located between pharynx and ventral sucker [24]
(Figures 2B, 4B). However, seven isolates of cercariae, one
ex R. peregra from Iceland and six ex R. auricularia from
Germany, further referred to as Echinostoma sp. 1G (indi-
cating the origin of the isolates i.e. Iceland and Germany)
exhibited slight differences from the isolates identified as
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E. revolutum as follows: (i) collar spines with blunt
(Figures 1C, 2D,E) vs sharp (Figures 3C, 4D,E) tips; (ii)
para-oesophageal gland-cell outlets opening at the margin
of the oral sucker only (one dorsal pair, four dorsolateral
pairs, and one ventro-lateral pair; see Figures 1D, 2B) vs
openings present on the ventral surface of the body (one
pair at the level of pharynx; the remaining i.e. one dorsal
pair, one dorsolateral pair, and three ventro-lateral pairs
opening at the margin of the oral sucker, see Figures 3D,
4B); and (iii) distal dorsal tail fin-fold large vs less promin-
ent (length 40-60% of tail length vs 20-38%; width ¢.70%
of tail width vs 20-30%; compare Figures 1B, 2C and 3B,
4C; Table 3). Comparison of the metrical data obtained
for live cercariae revealed that Echinostoma sp. 1G had a
shorter tail, with distinctly larger distal dorsal fin-fold and
shorter distal ventral fin-fold (Table 3). Furthermore,
although it was difficult to observe the fin-folds in fixed
material thus rendering differentiation difficult, the cer-
cariae of Echinostoma sp. 1G were characterised by a
distinctly more elongate, narrower body and a shorter tail
(Figure 5; Table 3); this represents another distinguishing
feature for the two European species studied by us.

Molecular analysis

A total of 14 partial nadl sequences was generated (11
for E. revolutum and 3 for Echinostoma sp. 1G; Table 1).
These sequences were aligned with selected published
sequences representing the data available for eight spe-
cies of the ‘revolutum’ species complex of Echinostoma
generated from both laboratory strains [13] and natural
isolates [9,11,14]; two otherwise unpublished sequences
were also retrieved from GenBank (see Table 1 for
details). The aligned dataset included 39 sequences and
was comprised of 472 nt positions after trimming the
ends to match the shortest aligned sequences. Sequences
for Echinoparyphium spp. of Kostadinova et al. [14]
were used as outgroups (Table 1).

Both NJ and BI analyses resulted in consensus trees
with similar topologies (see Figure 6 for a phylogeny
inferred from genetic distances and BI). The newly-
generated sequences for E. revolutum formed a strongly
supported clade which included a sequence for E. revo-
lutum (s.s.) of Kostadinova et al. [14] (see also [6]). On the
other hand, the sequences for the isolates identified as
Echinostoma sp. 1G formed a strongly supported recipro-
cally monophyletic lineage, basal to Echinostoma spp.,
which also incorporated the sequence for an isolate from
Wales (UK) provisionally identified as Echinostoma cf.
friedi by Kostadinova et al. [14]. The isolates comprising
this lineage also exhibited the highest levels of divergence
from the isolates of Echinostoma spp. analysed (p-distance
range 17.2-21.6%; divergence from E. friedi (AJ564379)
(p-distance range 18.9-19.1%).
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Table 3 Comparative metrical data (in pm) for live and fixed cercariae of Echinostoma sp. IG and E. revolutum from
natural infections in Radix spp. and Stagnicola palustris in Germany and Iceland

Species Echinostoma sp. 1G E. revolutum

Live material Fixed material Live material Fixed material

Range Range Mean Range Range Mean
Body length 260 —362 228 =292 254 303 —427 159 —234 188
Body width (max.) 184 —249 90-97 94 193 - 251 107 - 125 112
Oral sucker length 45-63 36-46 42 5671 38-52 45
Oral sucker width 50-66 37-45 42 53-68 37-49 42
Ventral sucker length 54-72 43 -54 48 63 —83 47 - 66 55
Ventral sucker width 57-81 44 - 47 46 58-83 48 - 60 54
Pharynx length 25-29 16-25 20 27-36 20-24 21
Pharynx width 22-26 12-19 15 25-29 13-14 13
Oesophagus length 56 -89 61-96 78 54-103 30-55 40
Tail length 334 —-353 296 —-378 344 364 —-417 316 —405 367
Tail width (at base) 44 -49 30-34 32 39-52 20-36 27
Tail-tip length 67 —83 - - 35-93 - -
Proximal dorsal fin-fold length 49 -63 50 - 41-153 - -
Proximal dorsal fin-fold width 14-15 - - 5-13 8-11 9
Distal dorsal fin-fold length 147 =212 106 — 154 120 72-159 - -
Distal dorsal fin-fold width 30-35 14 -21 16 7-16 - -
Proximal ventral fin-fold length 47 -90 73 - 51-116 85 -
Proximal ventral fin-fold width 12-15 - - 4-6 5 -
Distal ventral fin-fold length 44 - 64 41 - 74 =202 99 -157 125
Distal ventral fin-fold length 6-18 8 - 7-14 - -

Unexpectedly, the European isolates of E. revolutum  Discussion

and those obtained from natural infections in Lymnaea
elodes and Ondatra zibethicus (L.) in North America by
Detwiler et al. [11] formed two strongly supported sister
lineages. This solution (both NJ and BI analyses) was
consistent with the distinctly higher inter-lineage diver-
gence (p-distance; 4.9-6.8%) compared with intra-lineage
divergence (p-distance range, European isolates: 0-2.1%,
North American isolates: 0.4—1.1%). These data indicate
that the North American isolates represent another cryp-
tic species of the ‘revolutum’ species complex.

Another unexpected result was that the sequence for
Echinostoma revolutum of Morgan and Blair [7,13]
(AF025832; isolate from Europe) exhibited a strong asso-
ciation with the sequence for Echinostoma friedi of
Marcilla et al. (unpublished, GenBank AJ564379) based
on an isolate of this species recently described by these
authors [22] from Spain (p-distance 0.8%; divergence
from nearest neighbours, i.e Echinostoma robustum
sensu Detwiler et al. [11], of 4.9-9.1%. The clade
comprising the former two European isolates and those
of E. robustum from North America exhibited a complex
structure suggesting the existence of at least three
species (subclade support indicated in Figure 6).

The combined morphological and DNA-based approaches
in this first intensive screening of Radix spp. for infections
with Echinostoma spp. allowed us to delineate two cryptic
species of the ‘revolutum’ complex in central and northern
Europe. Furthermore, comparative sequence analyses
depicted three additional cryptic lineages in North
America.

Both distance- and model-based phylogenies provided
high support for reciprocal monophyly of Echinostoma
sp. IG. The isolates of this lineage, that evidently repre-
sents a new species, awaiting further formal description
after a discovery of the adult parasite stage, were found
to be clearly distinguishable among the European iso-
lates by using both morphological and molecular evi-
dence. Although the identification of the European
isolates of Echinostoma spp. followed the standard taxo-
nomic practice, the detection of the new cryptic species
required substantial taxonomic expertise. This involved
detailed knowledge on the variation of the features used
for species delimitation based on thorough morpho-
logical examination of a large number of cercariae from
each isolate. The corroboration of our hypothesis for the
distinct species status of the two species of Echinostoma



Georgieva et al. Parasites & Vectors 2013, 6:64 Page 10 of 12
http://www.parasitesandvectors.com/content/6/1/64

. RPI3
RPG2

RPG5
RPI4
SPG1
RPIZ Echinostoma revolutum s.s.
RPG4 Europe
RPG1
RAG3

99/0.97
RPG3

snttesssreters e st n R RN,
e .
Ssssessssessssssssssssssntsnns

RAG4

g
3.

. o
e 6 o S SIISIIISIIIIIIIIIIIIIIIIIIINIIN e a

GQ463082 E. revolutum D

100/0.99
GQ463088 E. revolutum D

sof— GQ463090 E. revolutumD  j5p
GQ463086 E. revolutum D
GQ463084 E. revolutum D

sresssarsnsansane,
Paeessssssnsnsenes”

JQ670862 E. revolutum D

— feasssssssssssrsssensasessrnsasannsnsane’®

AF025836 E. deserticum M&B
i;eqassosa E. robustum D
% GQ463055 E. robustum D
_— 99/0.99 GQ463053 E. robustum D
100/0.99 [ AF025832 E. revolutum M&B
AJ564379 E. friedi M
7 . trivolvis D
‘W'I_JQG 0860 E. trivolvis
95/1 JQ670852 E. trivolvis D

92| [ JQ670854 E. trivolvis D
82| r JQ670858 E. trivolvis D

JQ670856 E. trivolvis D
08/ AF025834 E. paraensei M&B
AF025838 E. caproni M&B

10001 |

£| AF025837 E. caproni M&B
AJ564378 E. caproni M

R TR
. .

G .
100/1 I Echinostoma sp. IG %
RAG2 Europe
ﬂ RPI1
AY 168937 Echinostoma cf. friedi K

—I AY168944 E. recurvatum

fesssnens

AY168945 E. aconiatum

0.02

Figure 6 Neighbour-joining (NJ) phylogram reconstructed using the newly-generated and retrieved from GenBank nad1 sequences
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parasitising snail populations in Germany and Iceland surface. On the other hand, we detected only 12 small
on the basis of molecular data thus may appear secondary.  para-oesophageal gland-cells in the cercariae of E. revo-

However, the distinguishing features are difficult to de-  lutum ex Radix spp.; Faltynkova et al. [24] also provided
tect and/or subject to variation (reviewed in Kostadinova  this number for E. revolutum ex L. stagnalis. It is worth
and Gibson [6]). For example, Kanev [3] described 16 noting that recent field studies indicate that E. revolutum
ducts and pores of para-oesophageal gland-cells in the most commonly occurs in L. stagnalis in Europe [23,24],
cercariae of E. revolutum ex Lymnaea stagnalis; of these, infections with this species have occasionally been repor-
12 were located on the oral sucker and four on the ventral  ted in the past from R. awuricularia, R. peregra and R.
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ovata (Draparnaud, 1805) [22,37-45]. Further molecular
study would reveal whether Echinostoma spp. of the
‘revolutum’ species complex parasitising L. stagnalis and
Radix spp. are conspecific or represent as yet undisco-
vered cryptic species. We believe that ‘reciprocal illumi-
nation’ sensu Hennig [46] of morphological characters
upon a molecular-based species delimitation has a strong
potential for delineating species boundaries within the
‘revolutum’ complex of cryptic species.

Echinostoma sp. 1G was found to be conspecific with
an isolate from Wales (UK) provisionally identified as
Echinostoma cf. friedi by Kostadinova et al. [14]. The
lineage comprising this and the newly-sequenced isolates
occupied a basal position (as in Kostadinova et al. [14])
and this is in sharp contrast with the phylogenetic solu-
tion based on nadl gene of Detwiler et al. [11]. These
authors wrote that “A comparison of samples identified
as E. robustum (U58102) and E. friedi (AY168937) re-
veals that they are found within the same monophyletic
clade and thus do not qualify as distinct species accor-
ding to a phylogenetic definition. Additionally, they are
genetically similar (0.009 genetic divergence, ND1 ...”
and concluded that “the sample tentatively identified as
E. friedi in Kostadinova et al. (2003) is genetically very
similar to E. robustum”. Our results clearly indicate that
the sequence for E. friedi from its type-locality in Spain
(AJ564379; Marcilla et al. unpublished sequence in
GenBank) and for the European isolate labelled as E.
revolutum (AF025832) of Morgan and Blair [7,12,13]
represent conspecific isolates; the genetic divergence
between these two isolates was 0.8%, ie. substantially
lower than that (ie. 18.9-19.1%) between the lineage
containing E. cf. friedi (AY168937) of Kostadinova et al.
[14] and the European isolate labelled as E. revolutum
(nadl sequence AF025832; ITS sequence U58102) by
Morgan and Blair [7,12,13]. We believe, therefore, that
Detwiler et al. [11] have in fact used the otherwise
unpublished sequence for E. friedi of Marcilla et al.
(AJ564379) but have mislabelled it (as AY168937).

Kostadinova et al. [14] indicated a tentative affiliation
to E. robustum of the isolates of the ‘Australian-German’
clade of Echinostoma spp. of Morgan and Blair [7], but
suggested that this specific identification is pending a
redescription of both larval and adult stages. The
present results indicate that suggesting synonymy for
the European isolate studied by Morgan and Blair
[7,12,13] and E. friedi should await examination of a
larger number of molecularly characterised natural
isolates of the European species of the ‘revolutum’ com-
plex since our knowledge on cryptic diversity in this
group is still limited. This suggestion is supported by the
discovery of two genetically distinct, geographically sepa-
rated lineages of E. revolutum: E. revolutum s.s. from
Europe and E. revolutum of Detwiter et al. [11] from
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North America, thus demonstrating that the suggestion
for the cosmopolitan distribution of this species [11] ap-
pears to be a result of cryptic variation. Indeed, these
authors noted that their results of network analyses indi-
cate gene flow and population expansion within North
America but not on a global scale. The taxonomy of the
North American species can be further scrutinised using
the morphological data available for cercariae and/or
experimentally developed adults [11,47].

Conclusion

The results of our study suggest that further analyses of
patterns of interspecific variation based on a combin-
ation of molecular and well-documented morphological
data would enhance the re-evaluation of the species and
advance our understanding of the relationships within
the ‘revolutum’ group of Echinostoma.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

CS, MS and KS obtained the samples. CS, AF, MS and SG undertook the
morphological study. SG carried out the sequencing and phylogenetic
analysis. CS, SG, AF and MS prepared the first draft of the MS. KS, BS and AK
conceived and coordinated the study and helped to draft the MS. All
authors read and approved the final manuscript.

Acknowledgements

We thank Blanka Skorfkové for her kind help with the figures and Jana
Kdchling, Verena Altmann, Jessica Schwelm and Dr Ana Pérez-del-Olmo, for
their assistance in sampling. This study was supported by the Czech Science
Foundation (AF, AK, MS, SG, grant P505/10/1562); the ‘Sichere Ruhr’ project
as part of the Bundesministerium fir Bildung und Forschung (BMBF)
program ‘Sustainable Water Management’ (BS, grant 02WRS1283); and the
Research Fund of the University of Iceland (KS). CS benefited from a
Deutsche Bundesstiftung Umwelt (DBU) PhD fellowship.

Author details

'Institute of Parasitology, Biology Centre of the Academy of Sciences of the
Czech Republic, Brani$ovska 31, Ceské Budgjovice 370 05, Czech Republic.
’Department of Aquatic Ecology and Centre for Water and Environmental
Research (ZWU), University of Duisburg-Essen, Universitétsstral3e 5, Essen
D-45141, Germany. >Laboratory of Parasitology, Institute for Experimental
Pathology, University of Iceland, Reykjavik, Keldur 112, Iceland. “Institute of
Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2
Gagarin Street, Sofia 1113, Bulgaria.

Received: 31 January 2013 Accepted: 5 March 2013
Published: 13 March 2013

References

1. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das
I: Cryptic species as a window on diversity and conservation. Trends Ecol
Evol 2007, 22:148-155.

2. Pérez-Ponce de Ledn G, Nadler SA: Critical Comment: What we don't
recognize can hurt us: A plea for awareness about cryptic species.

J Parasitol 2010, 96:453-464.

3. Kanev I Life-cycle, delimitation and redescription of Echinostoma
revolutum (Frélich, 1802) (Trematoda: Echinostomatidae). Syst Parasitol
1994, 28:125-144.

4. Kanev |, Dimitrov V, Radev V, Fried B: Redescription of Echinostoma
trivolvis (Cort, 1914) with a discussion of its identity. Syst Parasitol
1995, 32:61-70.



Georgieva et al. Parasites & Vectors 2013, 6:64
http://www.parasitesandvectors.com/content/6/1/64

15.
16.
17.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Kanev |, Fried B, Dimitrov V, Radev V: Redescription of Echinostoma
jurini (Skvortzov, 1924) with a discussion of its identity and
characteristics. Ann Naturhist Mus Wien 1995, 97B:37-53.

Kostadinova A, Gibson DI: The systematics of the echinostomes. In
Echinostomes as Experimental Models for Biological Research. Edited by
Fried B, Graczyk TK. Dordrecht: Kluwer Academic Publishers; 2000:31-57.
Morgan JAT, Blair D: Mitochondrial ND1 gene sequences used to identify
echinostome isolates from Australia and New Zealand. Int J Parasitol
1998, 28:493-502.

Kechemir N, Jourdane J, Mas-Coma S: Life cycle of a new African
echinostome species reproducing by parthenogenesis. J Nat Hist 2002,
36:1777-1784.

Detwiler JT, Zajac AM, Minchella DJ, Belden LK: Revealing cryptic parasite
diversity in a definitive host: echinostomes in muskrats. J Parasitol 2012,
98:1148-1155.

Sorensen RE, Curtis J, Minchella DJ: Intraspecific variation in the rDNA its loci of
37-collar-spined echinostomes from North America: implications for
sequence-based diagnoses and phylogenetics. J Parasitol 1998, 84:992-997.
Detwiler JT, Bos DH, Minchella DJ: Revealing the secret lives of cryptic
species: Examining the phylogenetic relationships of echinostome
parasites in North America. Mol Phylogenet Evol 2010, 55:611-620.
Morgan JAT, Blair D: Nuclear rDNA ITS sequence variation in the
trematode genus Echinostoma: an aid to establishing relationships
within the 37-collar-spine group. Parasitology 1995, 111:609-615.

Morgan JAT, Blair D: Relative merits of nuclear ribosomal internal
transcribed spacers and mitochondrial CO1 and ND1 genes for
distinguishing among Echinostoma species (Trematoda). Parasitology
1998, 116:289-297.

Kostadinova A, Herniou EA, Barrett J, Littlewood DTJ: Phylogenetic
relationships of Echinostoma Rudolphi, 1809 (Digenea:
Echinostomatidae) and related genera re-assessed via DNA and
morphological analyses. Syst Parasitol 2003, 54:159-176.

Dietz E: Die Echinostomiden der Vogel. Zool Anz 1909, 34:180-192.

Dietz E: Die Echinostomiden der Vogel. Zool Jahrb 1910, 12:5256-5512.
Iskova NI: Trematoda, Part 4. Echinostomatata. Fauna Ukrainy. Vol. 34. Kiev:
Naukova Dumka; 1985 (In Russian).

Nasincové V: Contribution to the distribution and the life history of
Echinostoma revolutum in Central Europe. Vst Ceskoslov Spole¢ Zool 1986,
50:70-80.

Nasincové V: The life cycle of Echinostoma bolschewense (Kotova, 1939)
(Trematoda: Echinostomatidae). Folia Parasitol 1991, 38:143-154.
Kostadinova A, Gibson DI, Biserkov V, Chipev N: Re-validation of Echinostoma
miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of
experimental completion of its life-cycle. Syst Parasitol 2000, 45:81-108.
Kostadinova A, Gibson DI, Biserkov V, Ivanova R: A quantitative approach
to the evaluation of the morphological variability of two echinostomes,
Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frélich, 1802) from
Europe. Syst Parasitol 2000, 45:1-15.

Toledo R, Mufioz-Antoli C, Esteban JG: The life-cycle of Echinostoma friedi
n. sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the
relationships within the ‘revolutum’ group based on cercarial chaetotaxy.
Syst Parasitol 2000, 45:199-217.

Soldanova M, Selbach C, Sures B, Kostadinova A, Pérez-del-Olmo A: Larval
trematode communities in Radix auricularia and Lymnaea stagnalis in a
reservoir system of the Ruhr River. Parasit Vectors 2010, 3:56.

Faltynkové A, Nasincova V, Kablaskové L: Larval trematodes (Digenea) of
the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in
Central Europe: a survey of species and key to their identification.
Parasite 2007, 14:39-51.

Faltynkova A, Nasincova V, Kablaskova L: Larval trematodes (Digenea) of
planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of
species and key to their identification. Syst Parasitol 2008, 69:155-178.
Abramoff MD, Magalhaes PJ, Ram SJ: Image processing with ImagelJ.
Biophotonics Internat 2004, 11:36-42.

Gloer P: Die Stlswassergastropoden Nord- und Mitteleuropas. 2, neubearbeitete
Auflage. Hackenheim: ConchBooks; 2002.

Bargues MD, Vigo M, Hordk P, Dvordak J, Patzner RA, Pointier JP, Jackiewicz
M, Meier-Brook C, Mas-Coma S: European Lymnaeidae (Mollusca:
Gastropoda), intermediate hosts of trematodiases, based on nuclear
ribosomal DNA ITS2 sequences. Infect Genet Evol 2001, 1:85-107.

Page 12 of 12

29. Hurlova K, Kasny M, Hampl V, Leontovy¢ R, Kubéna A, Mikes L, Hordk P:
Radix spp.: Identification of trematode intermediate hosts in the Czech
Republic. Acta Parasitol 2012, 57:273-284.

30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5:
Molecular evolutionary genetics analysis using maximum likelihood,
evolutionary distance, and maximum parsimony methods. Mol Biol Evol
2011, 28:2731-2739.

31, Telford MJ, Herniou EA, Russell RB, Littlewood DTJ: Changes in
mitochondrial genetic codes as phylogenetic characters: Two examples
from the flatworms. Proc Nat Acad Sci USA 2000, 97:11359-11364.

32. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic
trees. Bioinformatics 2001, 17:754-755.

33, Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 2003, 19:1572-1574.

34. Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008,
25:1253-1256.

35. Rambaut A, Drummond AJ: Tracer vi.4. 2007. Available from http://beast.bio.
ed.ac.uk/Tracer.

36. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian inference of
phylogeny and its impact on evolutionary biology. Science 2001,
294:2310-2314.

37. Golikova MN: An ecological and parasitological study of the biocoenoses
of some lakes in the Kaliningrad region. IV. The trematode fauna of
invertebrates. Vestn Lenin Univ Biol 1960, 15:80-94 (In Russian).

38. Zdérskd Z: Larvalni stadia motolic z vodnich plzd na dzemi CSSR.
Ceskoslov Parasitol 1963, 10:207-262 (In Czech).

39. Nezvalova J: Prispévek k poznani cerkarii jizni Moravy. Folia Fac Sci Nat
Univ Purkynianae Brunensis Biol 1970, 515:217-252 (In Czech).

40.  Ballsek J, Vojtek J: Prispévek k poznani nasich cerkarii. Folia Fac Sci Nat
Univ Purkynianae Brunensis Biol 1973, 40:3-43 (In Czech).

41, Stenko RP: On the trematode fauna of some Crimean freshwater
molluscs and its changes induced by anthropogenic factors. Vestn Zool
1976, 5:90-91 (In Russian).

42, Stenko RP: On studying fauna of trematoda larvae of fresh-water
Crimean mollusks. Vestn Zool 1976, 5:42-46 (In Russian).

43, Kanev |, Vassilev |, Bayssade-Dufour C, Albaret J-L, Cassone J: Chétotaxie
cercarienne d’Echinostoma revolutum (Froelich, 1802) et E. echinatum
(Zeder, 1803) (Trematoda, Echinostomatidae). Ann Parasit Hum Comp
1987, 62:222-234.

44, Vayrynen T, Siddall R, Valtonen ET, Taskinen J: Patterns of trematode
parasitism in lymnaeid snails from northern and central Finland. Ann
Zool Fenn 2000, 37:189-199.

45, Faltynkova A: Larval trematodes (Digenea) in molluscs from small water
bodies near Ceské Bud&jovice, Czech Republic. Acta Parasitol 2005, 50:49-55.

46. Hennig W: Phylogenetic systematics. Urbana: University of lllinois Press; 1966.

47.  Detwiler JT, Minchella DJ: Intermediate host availability masks the
strength of experimentally-derived colonisation patterns in echinostome
trematodes. Int J Parasitol 2009, 39:585-590.

doi:10.1186/1756-3305-6-64

Cite this article as: Georgieva et al: New cryptic species of the
‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed
by molecular and morphological data. Parasites & Vectors 2013 6:64.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVied Central

& J



http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Sample collection
	Morphological data
	Molecular data

	Results
	Morphological identification of infections in natural snail populations
	Molecular analysis

	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

