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Abstract

Background: Global climate change can seriously impact on the epidemiological dynamics of vector-borne
diseases. In this study we investigated how future climatic changes could affect the climatic niche of Ixodes ricinus
(Acari, Ixodida), among the most important vectors of pathogens of medical and veterinary concern in Europe.

Methods: Species Distribution Modelling (SDM) was used to reconstruct the climatic niche of I. ricinus, and to
project it into the future conditions for 2050 and 2080, under two scenarios: a continuous human demographic
growth and a severe increase of gas emissions (scenario A2), and a scenario that proposes lower human
demographic growth than A2, and a more sustainable gas emissions (scenario B2). Models were reconstructed
using the algorithm of “maximum entropy”, as implemented in the software MAXENT 3.3.3e; 4,544 occurrence
points and 15 bioclimatic variables were used.

Results: In both scenarios an increase of climatic niche of about two times greater than the current area was
predicted as well as a higher climatic suitability under the scenario B2 than A2. Such an increase occurred both in a
latitudinal and longitudinal way, including northern Eurasian regions (e.g. Sweden and Russia), that were previously
unsuitable for the species.

Conclusions: Our models are congruent with the predictions of range expansion already observed in I. ricinus at
a regional scale and provide a qualitative and quantitative assessment of the future climatically suitable areas for
I. ricinus at a continental scale. Although the use of SDM at a higher resolution should be integrated by a more
refined analysis of further abiotic and biotic data, the results presented here suggest that under future climatic
scenarios most of the current distribution area of I. ricinus could remain suitable and significantly increase at a
continental geographic scale. Therefore disease outbreaks of pathogens transmitted by this tick species could
emerge in previous non-endemic geographic areas. Further studies will implement and refine present data
toward a better understanding of the risk represented by I. ricinus to human health.
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Background
Global climate change can seriously impact on the epi-
demiological dynamics of vector-borne diseases [1-5].
However, because of the influence of several biotic and
abiotic factors on hosts, arthropods and pathogens they
vector, future spatial and temporal distribution of vector-
borne diseases is still difficult to predict [4,6]. Under the
above circumstances, predicting how climatic changes will
affect geographic distribution of the vector is an obligate
step. Indeed, vectors play a key role in infectious disease
areas where they may transmit pathogens to a variety of
animal hosts, often representing the bridge between
zoonotic reservoirs and humans [3,7,8]. Likewise, since
pathogens may disperse through arthropods into previously
non-endemic areas, climate-induced changes in vector
distribution ultimately affect the epidemiology of vector-
borne diseases [3,9]. In addition, a distributional shift of
vectors may also lead to spatial overlap of different vector
species [10], thus changing the impact of pathogen trans-
mission, interfering with their epidemic cycles [4] or as a
consequence of vector interspecific competition [11-13].
In the last few years, Species Distribution Modelling

(SDM) has greatly contributed to understanding the effect
of climatic changes on vector distribution, combining
known occurrence points of a species with a set of cli-
matic variables [14,15]. Indeed, such an approach allows
developing the potential geographic distribution under
current and future climatic conditions [16-19]. SDM has
been used in several studies on arthropod vectors [20-25],
allowing to infer future range expansion, such as in the
case of sand fly species Lutzomyia anthophora and
L. diabolica in North America [22], or a potential distri-
butional shift and/or a reduction of geographic range, as
suggested for the malaria vectors in Africa [21].
In this study we investigated how future climatic

changes could affect the climatic niche of the tick Ixodes
ricinus (Acari, Ixodidae). This species is regarded as the
most important vector occurring in Eurasian regions since
it is a multi-competent vector of bacteria (i.e. Borrelia
burgdorferi s.l., Babesia spp., Anaplasma and Erlichia spp.)
and viruses (i.e. Flavivirus spp.), to humans and animals
[26-30]. The above tick species is regarded as a major
vector responsible for many zoonotic diseases, such as
Lyme disease, babesiosis, anaplasmosis, erlichiosis and
Tick-Borne Encephalitis (TBE) [31]. Ixodes ricinus has
been recorded in Europe, Russia, up to the Caspian Sea
on the east, and North Africa [32]. Along the western
boundary of Russia and the neighboring countries, its
range overlaps with the range of I. persulcatus tick, dis-
tributed in Eastern Europe and across Asia [30,33,34].
Recently, a latitudinal and altitudinal shift has been
reported in I. ricinus distribution in European regions,
and temperature rise was suggested to be among the fac-
tors responsible for this phenomenon [35-40]. In spite of
the epidemiological implications that vector distribution
changes might have on vectored pathogens, no studies
have investigated the impact of future climatic changes on
the geographic distribution of this tick species at a contin-
ental geographic scale.
By using SDM we aimed to reconstruct the climatic

niche of I. ricinus and projected it into the future condi-
tions for 2050 and 2080, under two possible scenarios: i) a
continuous human demographic growth and a severe in-
crease of gas emissions (A2 scenario), ii) a lower human
demographic growth than A2, and a more sustainable gas
emissions (scenario B2) [41].

Methods
To reconstruct the current and future climatic niche of
I. ricinus, the algorithm of “maximum entropy” has been
used, as implemented in the software MAXENT 3.3.3e.
This technique, using presence-only points in conjunction
with environmental variables, estimates the potential distri-
bution of the species finding the probability distribution
that approximates the distribution of maximum entropy
[42]. This approach is largely used to reconstruct SDM
because its performances are highly competitive with the
other modeling methods. Indeed it showed the better cali-
bration when compared to 16 other algorithms, including
several traditional tools using presence-absence data,
such as general linear models (GLM) and general additive
models (GAM) [18,43-46]. To model the current and fu-
ture climatic niche of I. ricinus, we used 4,544 occurrence
points (Figure 1) obtained from the digital dataset avail-
able at https://sites.google.com/site/palticks/home/down-
load [47]. The dataset includes occurrence points obtained
by a systematic search of the published, peer-reviewed
literature since, approximately, 1970 to 2010; records of
ticks available in some curated collections were also in-
cluded. It covers most of the I. ricinus range and does
not include records considered as potentially incorrect,
based on the known distribution of I. ricinus [47]. Environ-
mental data were downloaded from WorldClim database
(www.worldclim.org) with a resolution of 2.5 arc-minutes
(~ 5 km). Nineteen bioclimatic variables derived from
monthly temperature and rainfall values were downloaded,
that represent annual trends, seasonality and extreme or
limiting environmental factors. The runs have been made
using 75% of the occurrence points to construct the model
(training data) and the remaining 25% to test it. The
default parameters of MAXENT have been used with
the exception of the Regularization parameter β. This
parameter acts as a multiplier for the default values and it
regulates the smoothness and regularity of the model
[44,48]. Recently, Warren & Seifert [48] have highlighted
the importance to test different values of this parameter to
improve the MAXENT’s performance. We developed ten
models using different values of β (1, 3, 5, 7, 9, 11, 13, 15,
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Figure 1 Occurrence points. Map shows the 4,544 records of I. ricinus used to develop the Species Distribution Modelling.
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17 and 19) and then we chose the model that outperformed
all the others using the sample sized corrected Akaike
Information Criterion (AICc) score, as implemented in
the software ENMTOOLS. The model built with the value
of β equal to 1 gained the lowest score for the AICc, thus
outperforming all the remaining nine models tested,
therefore it has been used to reconstruct the final models.
To evaluate the accuracy of the developed models we used
the area under the curve (AUC) of the receiver operating
characteristic (ROC) as suggested by Peterson et al. [49].
Explorative analyses have been done using all 19 variables,
then the environmental variables outside the range present
in the training data have been excluded. The final models
have been reconstructed using 15 variables (Additional
file 1). Ten replicates were run using the cross-validation
form of replication. This approach randomly split the data
into equal-size groups (“folds”) and creates models leaving
out each fold in turn and using them for evaluation [50].
The model developed for the present-day conditions has
been projected onto the future climatic conditions. Two
scenarios proposed by the Special Report of Emission
Scenarios (SRES) of the Inter-governmental Panel on
Climate Change (IPCC) [51], have been considered, namely:
scenario A2 (that proposes a continuous human demo-
graphic growth and a severe increase of gas emissions)
and scenario B2 (that proposes lower human demographic
growth than A2, and a more sustainable gas emissions)
[17,41]. Potential climatic niche under these scenarios
has been predicted for 2050 and 2080 using the Canadian
Center for Climate Modeling and Analysis CCCAM-
CGCM3.1-T47 model [52].
All SDM predictions were visualized in Quantum-GIS

1.8.0 (http://download.qgis.org). To estimate the future
increase of the niche area respect to current model, pres-
ence/absence maps using the minimum training presence
threshold were constructed [53]. Then future increase of
the niche area respect to current model was calculated
using the software ImageJ (http://rsb.info.nih.gov/ij/).

Results
The averaged climatic niche of the species for current
conditions is shown in Figure 2a. The averaged value of
AUC for this model was 0.860 (± 0.004), indicating an
optimal performance of the models. Among the 15
variables used BIO6 (Min Temperature in the coldest
period) and BIO17 (Precipitation of the driest quarter) give
the highest percent contribution to construct the model
(Additional file 1), according to the biology of I. ricinus,
that lives in biotopes that offer moderate temperatures
and high relative humidity [54]. The climatically suitable
area predicted by our model under current conditions en-
compasses the known geographic distribution of I. ricinus
and that previously inferred for this species using both
climatic features and vegetation index [55], supporting
the validity of our reconstruction.
In Figure 2b-e the models predicted under future climatic

conditions are shown. In both scenarios an increase of a
climatically suitable area of about two times greater than
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Figure 2 Geographic distribution predicted by species distribution modelling for Ixodes ricinus. (a) Current conditions; (b-c) 2050, scenario
A2 and B2, respectively; (d-e) 2080, scenario A2 and B2, respectively.
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the current area was predicted (Additional file 2). Such an
increase occurred both in a latitudinal and longitudinal
way, including northern Eurasian regions (e.g. Sweden and
Russia), that were previously unsuitable for the species.
Notably, climatically suitable conditions appeared also
in the easternmost Asian region, such as Central China,
South Korea, Japan and Kamchatka Peninsula. While the
two scenarios showed no difference about the extension
of the predicted suitable area, they instead showed some
difference in its climatic suitability. Indeed, under the
scenario B2 most of the predicted area showed a higher
climatic suitability than A2 in both 2050 and 2080. Fur-
thermore, under the scenario B2 an increase of climatic
suitability for I. ricinus has been predicted between 2050
and 2080 in several areas (i.e. Ireland and Eastern Europe)
(Figure 2c,e).

Discussion
The increase in temperature, which has been predicted
to occur in the future years [41], could drastically affect
the ecology and geographic distribution of I. ricinus in
Eurasian regions. Climatic changes have been shown to
affect seasonal activity and feeding behavior of I. ricinus,
at different life stages [3,32,40]. Furthermore, because of
the I. ricnus vulnerability to drought [54], global warming
may affect negatively the species in southernmost part of
its range of distribution. On the other hand, higher
temperature could lead to milder winter and extended
spring and autumn seasons than those actually charac-
terizing northern regions, making these areas climatic-
ally suitable for the species. Evidence that this latter
phenomenon is in progress in Europe has been already
recorded for I. ricinus, in which an expansion of the
northern distribution limits in Sweden and Norway has
been reported since the 1980s [35,38-40,56]. Likewise, a
shift of the limit to higher altitudes northward in Czech
Republic and Switzerland respectively, has been shown
[36,37]. Our results by using SDM are congruent with the
predictions of range expansion and provide a qualitative
and quantitative assessment of the future areas climatic-
ally suitable for I. ricinus at a continental scale.
While interpreting inferred expansion of climatic niche

in the context of possible changes in geographic distribu-
tion of I. ricinus [15-18] the following two issues should
be considered. First, the climatic features are only one of
the ecological features that affect the geographic distribu-
tion of tick species [57,58]. However, I. ricinus, as all other
ixodid ticks, spend most of their life off the host, so that
climate is an essential determinant of their occurrence
[59,60]. At a smaller geographic scale, other abiotic factors
should be considered to assess the effective occurrence of
I. ricinus, such as landscape physical features, or landscape
use [15] and biotic factors (competition, hosts abundance
etc.) [15,61,62]. The integration of these factors could
show discontinuity in areas that our model predicted
as large continuous areas of climate suitability. With
respect to biotic factors, the hosts are key components
for the ecological niche of ticks [7,63,64]. Ixodes
ricinus is able to exploit a large variety of terrestrial
vertebrates [7,63-65], so that host occurrence should
not be a limiting factor to their persistence under climatic
change scenarios [66]. Its wide ecological plasticity with
respect to host choice, for example, was a key factor in
allowing I. ricinus to survive during the last glacial phases
without significant range reduction across the European
continent [67].
Secondly, it should be considered that in order to

have an effective range expansion, the new climatically
suitable areas should be reached by the species. Host
movements largely determine tick dispersal during in-
festation [65,68-72]. Among the several hosts exploited
by I. ricinus, some of them, such as birds and cervids,
are characterized by high dispersal ability. Host mediated
dispersal of ticks also across long distances and more
distant geographic areas have been demonstrated in several
studies both for I. ricinus [72-74] and for other tick species
[40,67,75-77]. Following the above considerations, although
the use of SDM models at a higher resolution should be
integrated by a more refined analysis of further abiotic
and biotic data, the general significance of results presented
here suggest that under future climatic scenarios, most
of the current distribution area of I. ricinus could remain
suitable and significantly increase at a continental geo-
graphic scale.
Our results suggest also that the more favourable

climatic conditions for I. ricinus will occur under the
scenario B2 (i.e., lower human demographic growth, and a
more sustainable gas emissions than A2). Interestingly,
reduced demographic growth and gas emissions are
objectives of several international policies [78]. In this
context it is further advisable to investigate the factors
that could affect the epidemiological dynamics in which
this tick is involved. For example, future inferred expan-
sion eastward of the climatic niche of I. ricinus could
increase the overlapping areas with the Eurasian tick
I. persulcatus [79], increasing or decreasing pathogen
transmission due to vector interspecific competition
[11-13], or to interferences among pathogen epidemic cy-
cles [4]. This may be the case for Borrelia spp. in which a
relationship has been established between bacterial com-
plexes and tick species. Indeed, while the Eurasian type
of B. garinii and B. afzelii are carried by both I. ricinus
and I. persulcatus in North Asian regions, B. burgdorferi
s.s. seems to be vectored exclusively by I. ricinus, and
the Asian type of B. garinii by I. persulcatus [80]. The
expansion of the areas of co-presence of the two tick spe-
cies could enhance the diffusion of the types for which
both of them are competent.
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Conclusions
In the epidemiological systems involving I. ricinus as a
vector, climatic changes have been shown to have several
effects. First, the seasonal activity of ticks could undergo
some changes [40,81]. Indeed, previous studies conducted
on I. ricinus showed that this species could prolong
its questing season, usually spanning from March to
November, until January as a response of milder winters
due to the temperature increase [3,81-84]. As a conse-
quence, more abundant populations of ticks could survive
the winter, thus a higher probability of tick bites, and
in turn of disease transmission, could be expected [82].
Second, different life stages could become active and
search for a host simultaneously [32,40]. Larvae and
nymphs could parasitize the same host individual at
the same time, favoring the trans-stadial transmission of
pathogens by co-feeding and enhancing the efficiency of
disease transmission [40,85]. In addition, our results sug-
gest a potential significant increase of climatic niche of
I. ricinus in the future years under both scenarios. There-
fore disease outbreaks of pathogens transmitted by this
tick species could emerge in previous non-endemic geo-
graphic areas. Further studies will implement and refine
present data toward a better understanding of the risk rep-
resented by I. ricinus for human health.
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