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Prostaglandin E2 in tick saliva regulates
macrophage cell migration and cytokine profile
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Abstract

Background: Ticks are obligate hematophagous ectoparasites that suppress the host’s immune and inflammatory
responses by secreting immuno-modulatory and anti-inflammatory molecules in their saliva. In previous studies we
have shown that tick salivary gland extract (SGE) and saliva from Dermacentor variabilis have distinct effects on
platelet-derived growth factor (PDGF)-stimulated IC-21 macrophage and NIH3T3-L1 fibroblast migration. Since tick
saliva contains a high concentration of prostaglandin E2 (PGE2), a potent modulator of inflammation, we used a
PGE2 receptor antagonist to evaluate the role of PGE2 in the different migratory responses induced by saliva and its
impact on macrophage cytokine profile.

Methods: Adult ticks were fed on female New Zealand white rabbits for 5-8 days. Female ticks were stimulated
with dopamine/theophylline to induce salivation and saliva was pooled. Competitive enzyme immunoassays (EIA)
were used to measure saliva PGE2 content and the changes in macrophage intracellular cyclic adenosine
monophosphate (cAMP) levels. The effects of tick saliva on macrophage and fibroblast migration were assessed in
the absence and presence of the PGE2 receptor antagonist, AH 6809, using blind well chamber assays. A cytokine
antibody array was used to examine the effects of tick saliva on macrophage cytokine secretion. Statistical
significance was determined by one-way ANOVA; Student Newman-Kuels post-test was used for multiple
comparisons.

Results: The saliva-induced increase in PDGF-stimulated macrophage migration was reversed by AH 6809. The
inhibition of PDGF-stimulated fibroblast migration by saliva was also antagonist-sensitive. Tick saliva induced
macrophages to secrete copious amounts of PGE2, and conditioned medium from these cells caused an AH
6809-sensitive inhibition of stimulated fibroblast migration, showing that macrophages can regulate fibroblast
activity. We show that tick saliva decreased the secretion of the pro-inflammatory cytokines regulated and normal
T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I
(sTNFRI) through a PGE2-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide
(LPS) stimulated macrophages.

Conclusions: Our data show that ticks utilize salivary PGE2 to subvert the ability of macrophages to secrete
pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing.
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Background
Ixodid ticks such as Dermacentor variabilis are obligate
blood-sucking ectoparasites that physically attach to
their host for several days to feed until repletion. The
cutting action of the chelicerae, insertion of hypostome,
and the rupturing of blood vessels [1-3] all result in lo-
calized damage to the host’s epidermis and dermis. This
mechanical damage to the host’s skin should elicit the
host’s immune, inflammatory, hemostatic, and wound
healing responses resulting in removal or rejection of
the tick; but this is not the case. Instead, ticks use a
cocktail of bioactive molecules in their saliva to evade
these host responses [4-12].
Tick saliva has been shown to regulate the migratory

activities of different cell types by modulating cell sig-
naling [13-15] and the activity of chemokine binding
proteins [16-21]. Tick salivary constituent(s) have sup-
pressive effects on innate immunity by regulating
neutrophil recruitment [22], adherence [23], phagocyt-
osis [24], and apoptosis [25] and natural killer cell
activity [26,27]. In antigen-presenting cells, saliva re-
duces macrophage cytokine production [28,29], co-
stimulatory molecule expression [28,30], phagocytosis
[14], and nitric oxide production [26] and inhibits den-
dritic cell differentiation, maturation, and cytokine pro-
duction [31-33]. Tick saliva also contains molecules
that control host angiogenesis and wound healing to
aid feeding [34-38].
Prostaglandins are among the most abundant bioactive

molecules in tick saliva reviewed in [39]. Prostaglandin
E2 (PGE2), which increases vasodilation [40] and de-
creases inflammation by regulating cytokine production
[41-45], is found in high concentration in tick saliva
[39,46-50]. The exact role(s) of prostaglandins in tick
saliva have not all been identified but it has been shown
that salivary PGE2 inhibits dendritic cell differentiation,
maturation, and cytokine production [31,32] and T
lymphocyte proliferation [47].
We have previously demonstrated that tick salivary

gland extract (SGE) and saliva have distinct effects
on platelet-derived growth factor (PDGF)-stimulated
fibroblast [15] and macrophage [14] migration. PGE2
has been shown to regulate the migratory activities
of these cells [51-54]. Therefore, in this study we use
IC-21 macrophages and NIH3T3-L1 fibroblasts to de-
termine if the PGE2 found in D. variabilis saliva can
mimic this regulation and is responsible for the differ-
ent migratory responses induced by saliva previously
noted by using the PGE2 receptor antagonist AH 6809.
Since the cytokines secreted by macrophages regulate
the inflammatory and cellular immune responses dur-
ing wound healing, we also used this approach in
evaluating the effects of salivary PGE2 on macrophage
cytokine secretion.
Methods
Cell culture
Depending on the life stage, D. variabilis can feed on a
variety of hosts ranging from small rodents to larger
mammals such as humans. For this study, IC-21 murine
peritoneal macrophages were used because they are a
continuous monoclonal murine macrophage-like cell
line very similar to macrophages in morphology [55],
phagocytic and cytolytic activities [56], expression of
platelet-activating factor receptors [57], and can be acti-
vated by lipopolysaccharide (LPS) via Toll-like receptor
4 (TLR4) [55]. Macrophages were maintained in 25 cm2

flasks or 100 mm dishes in RPMI 1640 (MediaTech,
Herndon, VA) supplemented with 10% fetal bovine
serum (FBS), 100 U/ml penicillin and 100 μg/ml strepto-
mycin. They were subcultured weekly using Ca2+/Mg2+

free Hanks balanced salt solution (HBSS) (Mediatech,
Herndon, VA) and seeded at a density of 5 × 104 or 6 ×
104 cells/ml. NIH3T3-L1 murine dermal fibroblasts, a
common fibroblast model, were grown in 25 or 75 cm2

flasks in Dulbecco’s modified Eagle’s medium nutrient
mixture F-12 (DMEM/F12) (MediaTech, Herndon, VA)
supplemented with 10% FBS, 100 U/ml penicillin and
100 μg/ml streptomycin, and were subcultured weekly
using Ca2+/Mg2+ free HBSS and 0.025% trypsin/0.02%
EDTA (Mediatech, Herndon, VA) then seeded at a dens-
ity of 5 × 104 cells/ml.

Collection of tick saliva
Adult male and female ticks were purchased from Etco
Services, Inc (Henderson, NC) and maintained in 96%
humidity with a saturated K2SO4 solution at room
temperature. Ixodid tick feeding occurs in two phases:
slow feeding and rapid feeding [3]. In adult ixodid fe-
males, slow feeding lasts 6 or more days with a 10-fold
weight gain, and it is during this time salivary constitu-
ents important to the tick’s ability to survive on the host
are more likely to be present in high concentration in
the saliva [58]. The rapid feeding phase is 12–24 hours
before engorgement is reached in which body weight in-
creases another 10-fold [59]. Therefore, ticks were fed
on adult female New Zealand white rabbits (Harlan La-
boratories, Prattville, AL) for 5–8 days (slow feeding
stage) following protocols approved by The University of
Memphis Institutional Animal Care and Use Committee.
Partially engorged females (70–350 mg) were removed
and attached to a microscope slide with double-sided ad-
hesive tape. Female ticks were injected with 10 μl of
MOPS buffered tick saline (pH 7.0) containing 10 mM
dopamine / 10 mM theophylline with 3% dimethyl sulf-
oxide (DMSO) [60]. Ticks that did not salivate 5 min
post-injection were not used. Ticks salivating were
injected a total of 3 times in 5 min intervals and saliva
was collected in a 25 μl non-heparinized soda lime glass
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micropipette, kept on ice, and pooled. Total protein
concentration of saliva was determined using a Bio-Rad
Protein Assay based on the method of Bradford (Bio
Rad Laboratories, Hercules, CA) and stored at −20°C
until used. Since the majority of the tick salivary compo-
nents identified are proteins [9], we reported saliva used
in μg protein/ ml.

PGE2 measurement
To determine the amount of PGE2 in D. variabilis saliva
and how saliva affects the amount of PGE2 secreted by
macrophages, a competitive PGE2 Enzyme Immunoassay
(EIA) Express kit (Cayman Chemical, Ann Arbor, MI)
was used. Macrophages were cultured at a density of 5 ×
104 cells/well in 24-well plates for 5 days and changed to
medium containing 2% FBS 24 h prior to the experi-
ment. Cells were treated with vehicle phosphate buffered
saline (PBS) or saliva (1.2 or 3.6 μg protein/ml) for 18 h
[61]. The conditioned medium was collected then stored
at −80°C and PGE2 content was measured according to
manufacturer’s instructions. Absorbance was read at
405 nm using a Bio-Tek Elx808 Ultra Microplate Reader.
A standard curve linearized using a logit transformation
and a linear regression fit was used to determine PGE2
concentrations.

Cell migration assay
The effects of salivary PGE2 on macrophage and fibro-
blast migration were assessed using blind well chemo-
taxis chamber assays (Neuro Probe, Gaithersburg, MD).
Macrophages grown to confluence in 100 mm dishes
were incubated for 15 min with Ca2+/Mg2+ free HBSS.
Cells were removed from the surface by pipetting and
then resuspended in serum-free medium, counted, and
diluted to a concentration of 1 × 105 cells/ml. Confluent
fibroblasts were removed from flasks by incubation for
15 min with Ca2+/Mg2+ free HBSS and trypsinization for
5 min. Cells were also resuspended in serum-free
medium, counted, and diluted to a concentration of 1 ×
105 cells/ml. The lower chamber of the blind well
(Neuro Probe, Gaithersburg, MD) was loaded with either
serum-free medium or medium with 100 ng/ml platelet-
derived growth factor (isoform PDGF-BB homodimer)
(ProSpec-Tany TechnoGene Ltd, East Brunswick, NJ) as
the chemoattractant. An 8 μm uncoated polycarbonate
filter (Neuro Probe, Gaithersburg, MD) was placed be-
tween the lower and upper chambers of each blind
well. The upper chamber was loaded with 100 μl of
the macrophage suspension pretreated for 30 min with
vehicle (DMSO), saliva (2.4 μg protein/ml), or PGE2
(1 μM; Cayman Chemical, Ann Arbor, MI) in the
absence or presence of the E and D prostanoid (EP and
DP) receptor antagonist AH 6809 (10 μM; Cayman Chem-
ical, Ann Arbor, MI). For the fibroblast suspensions,
30 min pretreatments consisted of vehicle (DMSO), saliva
(2.4 μg protein/ml), PGE2 (1 μM), or conditioned medium
(CM) from macrophages treated with saliva (2.4 μg pro-
tein/ml) for 18 h (to allow PGE2 to accumulate) in the ab-
sence or presence of AH 6809. The blind wells were
incubated for 4 h at 37°C in humidified air with 5% CO2.
After the incubation period, the non-invading cells were
removed from the upper surface of the filters with a
cotton-tip applicator. The filters were placed upside-down
on a microscope slide and the cells were fixed with 100%
methanol, stained with 0.4% crystal violet in 4% ethanol,
and counted in five random high-power (40x) fields using
a Nikon Labophot light microscope (Nikon, Melville, NY).
Data were reported as the percentage of control cells mi-
grating in 4 h.

Cytokine array
To evaluate the effects of PGE2 in the saliva-induced
changes on macrophage cytokine secretion we used the
RayBio® Mouse Cytokine Antibody Array (Catalog #
AAM-CYT-1-8) RayBiotech, Inc., Norcross, GA), which
simultaneously detects 22 cytokines. Macrophages were
cultured at a density of 5 × 104 cells/ml in 6-well plates
and grown to confluence. Twenty-four hours prior to
the experiment, cells were changed to medium
containing 2% FBS. Cells were treated with vehicle
(DMSO), saliva (2.4 μg protein/ml), 10 μM AH 6809,
saliva + AH 6809, 0.76 μg/ml lipopolysaccharide (LPS)
(InvivoGen, San Diego, CA), or saliva + LPS for 18 h
[61]. LPS is a Gram-negative bacteria toxin which acti-
vates macrophages through Toll-like receptor 4 (TLR4).
The conditioned medium was collected, and the cyto-
kine content for each sample was determined according
to manufacturer’s instructions. Arrays were developed
with kit detection buffer and exposed to Classic Blue
Autoradiography Film X (Molecular Technologies, St.
Louis, MO) for 0.5, 2.5, 1, and 5 min. The intensities of
signals for each cytokine were quantified by densitometry
using ImageJ version 1.46 Windows (National Institutes
of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/). The
vehicle-treated array was used as the reference array to
which the signals of the other arrays were normalized.
Data were reported as relative expression levels for each
exposure time.

Mouse interleukin-1 beta (IL-1β) enzyme-linked
immunosorbent assay (ELISA)
To evaluate the effects of saliva on IL-1β secretion, we
used a RayBio® Mouse IL-1β ELISA Kit (Catalog # ELM-
IL1beta-001 RayBiotech, Inc, Norcross, GA). Macro-
phages were cultured at a density of 5 × 104 cells/well in
24-well plates and grown until confluent. The cells were
changed to medium containing 2% FBS 24 h prior to
the experiment. Macrophages were treated with vehicle

http://rsb.info.nih.gov/ij/


Figure 1 Tick saliva causes PGE2 secretion by macrophages.
Cells were treated with vehicle (PBS) or saliva for 18 h. Increasing the
dose of saliva resulted in a higher level of macrophage PGE2
secretion reaching significance (p < 0.05) at 3.6 μg protein/ml,
(*) p < 0.01 when compared to vehicle control. The PGE2
concentration of the pooled saliva used for all experiments was
352 ± 9 ng/ml, which was diluted to deliver 3.6 μg protein/ml. If still
present in the sample, the PGE2 from the pooled saliva would only
account for approximately 1.2% of the total PGE2. Data are means ±
SEM, n = 3 assayed in duplicate.
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(PBS) or saliva (1.2 or 3.6 μg protein/ml) and then stim-
ulated for 18 h with 0.76 μg/ml LPS [61]. The cells were
then pulsed with 5 mM adenosine triphosphate (ATP)
(activator of purinergic receptor P2X7) for 20 min and
cultured for an additional 3 h. The conditioned medium
was collected then stored at −80°C and IL-1β content
was measured according to manufacturer’s instructions.
Absorbance was read at 450 nm using a Bio-Tek Elx808
Ultra Microplate Reader; data were normalized to the
absorbance in controls and reported as the fold change
in IL-1β secretion.

Cyclic adenosine monophosphate (cAMP) measurement
A cAMP competitive EIA assay kit (Cayman Chemical,
Ann Arbor, MI) was utilized to determine intracellular
cAMP concentrations. Macrophages were cultured at a
density of 5 × 104 cells/well in 24-well plates for 5 days.
Cells were washed with serum-free medium and then
cultured in RPMI with 0.5 mM 3-Isobutyl-1-methylxan-
thine (IBMX) (Sigma-Aldrich, St. Louis, MO) for
30 min. Macrophages were then pre-treated with AH
6809 for 15 min and challenged with vehicle (DMSO),
saliva (1.2 and 3.6 μg protein/ml), or 3 μM PGE2 for
7.5 min. Cells were lysed in 0.1 M HCL at room
temperature for 20 min and dissociated by pipetting,
and samples were collected and centrifuged at 1000 xg
for 10 min at room temperature. Cyclic AMP determin-
ation was performed according to manufacturer’s
instructions. Absorbance was read at 405 nm using a
Bio-Tek Elx808 Ultra Microplate Reader, and a standard
curve was linearized using a logit transformation and a
linear regression fit was used to determine cAMP
concentrations.

Statistical analysis
PGE2 and cAMP data are means ± standard errors of
means (SEM) of 3 experiments assayed in duplicate
performed over several passages of cells. Cell migration
data are a percentage of control values ± SEM of 3 ex-
periments. Data for the cytokine array are presented as
means ± SEM normalized to the vehicle treated array
and reported as relative expression levels determined by
densitometry for 2 exposure times. Statistical signifi-
cance was determined by one-way ANOVA; Student
Newman-Kuels post test was used for multiple compari-
sons employing Graph Pad Prism version 3.02 Windows
(Graph Pad Software, San Diego CA, www.graphpad.
com). Differences in means were considered significant
at p ≤ 0.05.

Results
Tick saliva increases macrophage PGE2 secretion
PGE2 is one of the most important prostanoids that
plays a role in both anti- and pro-inflammatory
responses. We used a PGE2 EIA assay to measure the ef-
fects of tick saliva on macrophage PGE2 secretion. Cells
were treated for 18 h with vehicle (PBS) or saliva (1.2 or
3.6 μg protein/ml). Increasing the dose of saliva induced
a significantly higher level of macrophage PGE2 secre-
tion. Saliva (3.6 μg protein/ml) increased macrophage se-
cretion of PGE2 from 0.1 ± 0.04 to 29 ± 4 ng/ml
(Figure 1). Since PGE2 is found in the saliva of many tick
species [31,32,39,46-50], we determined that the total
PGE2 concentration of the pooled D. variabilis saliva
used in these experiments was 352 ± 9 ng/ml (Figure 1).
We used 12 μl/ml of the pooled saliva to deliver 3.6 μg
protein/ml. Therefore, if the PGE2 from the tick saliva is
still present in our sample after 18 h, it only accounts
for approximately 1.2% of the total PGE2 in the sample.

Salivary PGE2 regulates macrophage and fibroblast
migration
To determine the role of PGE2 in the effects of saliva on
macrophage migration, we utilized blind well chemotaxis
chamber assays. Cells were pretreated with vehicle
(DMSO), saliva (2.4 μg protein/ml), or 1 μM PGE2 in
the absence or presence of 10 μM AH 6809 for 30 min
then loaded into the upper chamber. The lower chamber
was loaded with medium for basal migration or medium

http://www.graphpad.com/
http://www.graphpad.com/
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containing 100 ng/ml PDGF for stimulated migration.
PDGF increased the total number of cells migrating by
264 ± 33%, an effect enhanced by saliva consistent with
previous observations in our laboratory [14] (Figure 2A).
The saliva-induced increase in PDGF-stimulated macro-
phage migration was similar to the increase induced by
PGE2 (Figure 2A). The PGE2 receptor antagonist AH
6809 significantly reduced the stimulatory effects of sal-
iva by 53 ± 30% (Figure 2A). This reduction was similar
to the effects observed in cells treated with PGE2 in the
presence of the receptor antagonist 58 ± 32% (Figure 2A)
which suggests the saliva-induced increase in macro-
phage migration was mediated by PGE2.
Fibroblast migration is inhibited by PGE2 [52-54], sal-

iva [13], and SGE [15]. Therefore, we treated fibroblasts
with saliva (2.4 μg protein/ml) in the presence or ab-
sence of 10 μM AH 6809 for 4 h to determine if the
PGE2 content in D. variabilis saliva is responsible for
this inhibition. We also treated these cells with condi-
tioned medium from macrophages treated with saliva
(2.4 μg protein/ml) for 18 h, since saliva induces macro-
phages to secrete substantial amounts of PGE2 (Figure 1).
The number of fibroblasts migrating in response to
PDGF 346 ± 40% was significantly reduced by saliva to
88 ± 11% and conditioned medium from saliva-treated
macrophages to 156 ± 31% (Figure 2B). The inhibitory
effects of saliva and macrophage conditioned medium
were similar to that of PGE2 and were antagonized by
AH 6809 (Figure 2B). This antagonism partially restored
the migration of the saliva-treated cells 55 ± 17% while
there was full restoration in the cells treated with condi-
tioned medium from saliva-treated macrophages 94 ±
21% when compared to the PDGF-stimulated cells
Figure 2 Saliva-induced effects on macrophage and fibroblast migrat
pretreated for 30 min with vehicle (DMSO), saliva (2.4 μg protein/ml), or PG
AH 6809 (10 μM), and then incubated for 4 h. PDGF increased the number
0.001 and (*) p < 0.01 when compared to PDGF treatment only. These effec
compared to saliva + AH 6809 and when PGE2 was compared to PGE2 + AH
saliva (2.4 μg protein/ml), PGE2 (1 μM), or conditioned medium from macro
AH 6809 (10 μM) using PDGF as the chemoattractant. After 4 h, saliva, PGE
fibroblast migration (CM), (**) p < 0.001 when compared to PDGF treatmen
however, the receptor antagonist fully restored the migration of cells treate
similar to that of PGE2 in the presence of AH 6809, (**) p < 0.001 when PGE
CM + AH 6809, (#) p < 0.05 when saliva was compared to saliva + AH 6809.
(Figure 2B). These effects indicate PGE2, at least in part,
was responsible for the inhibition (Figure 2B).

Tick saliva decreases macrophage cytokine secretion,
a response sensitive to the PGE2 receptor antagonist
AH 6809
Macrophages regulate the inflammatory and cellular im-
mune responses by producing cytokines which influence
the activity of lymphocytes. The pro-inflammatory cyto-
kines tumor necrosis factor alpha (TNF-α), interleukin 6
(IL-6), IL-1 beta (IL-1β), and PGE2 are mediators of the
inflammatory response [62]. In macrophages, PGE2 has
been shown to have inhibitory effects on TNF-α and IL-
12 production but enhances the production of IL-6
[41,42], which has both pro and anti-inflammatory ef-
fects. We used the RayBio® Mouse Cytokine Antibody
Array to simultaneously test the effects of saliva on LPS-
stimulated secretion of 22 cytokines and the role of
PGE2 in any saliva-induced changes in cytokine secre-
tion. Of the 22 cytokines tested, saliva only affected the
secretion of Rantes (CCL5), TNF-α, and the soluble form
of its receptor TNF Receptor I (sTNFRI). Saliva (2.4 μg
protein/ml) significantly inhibited the relative expression
levels of secreted pro-inflammatory cytokines CCL5 and
TNF-α along with sTNFRI (Figure 3A and B). Since the
cytokines secreted by macrophages are important to the
inflammatory and immune responses, we used LPS to
evaluate if saliva can decrease induced cytokine secre-
tion. Saliva did inhibit LPS-stimulated secretion of these
cytokines (Figure 4A and B). IL-1β is produced by acti-
vated macrophages, and this pro-inflammatory cytokine
is an important mediator of the inflammatory response.
However, using a mouse IL-1β ELISA Kit, we showed
ion are PGE2 receptor antagonist-sensitive. (A) Macrophages were
E2 (1 μM) in the absence or presence of the PGE2 receptor antagonist
of cells migrating, an effect enhanced by saliva and PGE2, (**) p <
ts were reversed by AH 6809, (**) p < 0.001 when saliva treatment was
6809. (B) Fibroblasts were pretreated for 30 min with vehicle (DMSO),
phages treated with saliva for 18 h in the absence or presence of the

2, and saliva-treated macrophage conditioned medium decreased
t only. The effects of saliva were partially reversed by AH 6809;
d with conditioned medium of saliva-treated macrophages (CM)

2 was compared to PGE2 + AH 6809 and when CM was compared to
Data are reported as the % control values and are means ± SEM, n = 3.



Figure 3 Saliva-induced decreases on CCL5, sTNFRI, and TNF-α secretion by macrophages are PGE2 receptor antagonist-sensitive. Cells
were treated with vehicle (DMSO), saliva (2.4 μg protein/ml), AH 6809 (10 μM), or saliva + AH 6809 for 18 h. (A) Saliva reduced the relative
expression levels of secreted CCL5, soluble TNF Receptor I (sTNFRI), and TNF-α which was reversed by AH 6809. (B) Image of blots exposed to
film for 2.5 min corresponding to the treatments in (A), cylinder = CCL5, oval = sTNFRI, and rectangle = TNF-α, (**) p < 0.001 when compared to
vehicle control and when saliva was compared to saliva + AH 6809. Data are means ± SEM normalized to the vehicle treated array reported as
relative expression levels determined by densitometry for 1 and 2.5 min exposure times.
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that saliva increased LPS-stimulated secretion of IL-1β
by approximately 1.5 fold when compared to the vehicle
control (Figure 5). Saliva had no significant effects on
IL-6 and IL-12p40p70 cytokines which also regulate in-
flammation (Figures 3 and 4). The inhibitory effects of
saliva on CCL5, sTNFRI, and TNF-α, were significantly
reversed by AH 6809 (Figure 3A and B) which impli-
cates the involvement of PGE2 in these effects.
Figure 4 Saliva reduces LPS-stimulated cytokine secretion by macrop
ml), LPS, or saliva + LPS for 18 h. (A) Saliva significantly reduced the relative
at 0.5 and 1 min exposure times when the cells were stimulated with LPS.
treatments in (A), cylinder = CCL5, oval = sTNFRI, and rectangle = TNF-α, (#)
compared to LPS + saliva. Data are means ± SEM normalized to the vehicle
densitometry for 0.5 and 1 min exposure times.
Tick saliva mimics PGE2-stimulated intracellular cAMP
production
When PGE2 binds to G protein-coupled receptors EP2/
EP4, the effects are mediated through increases in the
second messenger cAMP. In macrophages, activation
of PGE2 receptors are associated with increased migra-
tion [51] and inhibition of pro-inflammatory cytokines
[41,42,63,64]. Therefore, we used a cAMP EIA assay to
hages. Cells were treated with vehicle (DMSO), saliva (2.4 μg protein/
expression levels of CCL5, soluble TNF Receptor I (sTNFRI), and TNF-α
(B) Image of blots exposed to film for 1 min corresponding to the
p < 0.05 when compared to vehicle control and when LPS was
treated array reported as relative expression levels determined by



Figure 5 Tick saliva increases IL-1β secretion by macrophages.
IL-1β is a pro-inflammatory cytokine produced by activated
macrophages. Cells were treated with vehicle (PBS) or saliva (1.2 or
3.6 μg protein/ml) and then stimulated for 18 h with 0.76 μg/ml LPS.
The cells were then pulsed with 5 mM ATP for 20 min and cultured
for an additional 3 h. Surprisingly, saliva dose-dependently increased
IL-1β secretion but significance (p < 0.05) was achieved at 3.6 μg
protein/ml, (#) p < 0.05 when compared to vehicle. Data are
means ± SEM, n = 3 assayed in duplicate.

Figure 6 Tick saliva increases intracellular cAMP levels in
macrophages. Cells were pretreated with AH 6809 (10 μM) for
15 min and challenged with vehicle (DMSO), saliva (1.2 and 3.6 μg
protein/ml), or PGE2 (3 μM) for 7.5 min. Saliva increased macrophage
intracellular cAMP production and signifcance (p < 0.05) was
achieved at 3.6 μg protein/ml with stimulatory effects similar to that
of PGE2, (**) p < 0.001 when compared to vehicle control. The
stimulatory effects were reversed by AH 6809, (*) p < 0.01 when
PGE2 was compared to PGE2 + AH 6809 and when saliva was
compared to saliva + AH 6809. Data are means ± SEM, n = 3 assayed
in duplicate.
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examine how the saliva-induced effects on macrophage
migration and cytokine secretion correlate with changes
in intracellular cAMP levels. After 7.5 min, saliva (3.6 μg
protein/ml) and 3 μM PGE2 significantly increased
cAMP production 62 ± 9 and 87 ± 16 pmol/ml respect-
ively (Figure 6). The stimulatory effects of saliva and
PGE2 were both substantially reversed by the receptor
antagonist, which decreased cAMP concentrations to 45 ±
17 and 17 ± 2 pmol/ml respectively (Figure 6). This sug-
gests that the PGE2 in tick saliva binds receptors EP2/ EP4
and mediates its effects through increases in intracellular
cAMP production in the macrophages.

Discussion
To sustain physical attachment for several days, ixodid
ticks have evolved to produce saliva which contains bio-
logically active molecules that modulate their host’s im-
mune, inflammatory, hemostatic, and wound healing
responses. We have previously shown that tick salivary
constituent(s) have differential effects on the migratory
and signaling activities of fibroblasts and macrophages
[13-15]. Both cells are important in the wound healing
cascade; however, macrophages are also key regulators
of the inflammatory and immune responses. In wound
healing, they phagocytose apoptotic neutrophils which
limit their cytotoxic contents from spilling and dam-
aging surrounding tissue [65,66]. Macrophages (M2) also
trigger the proliferative phase of wound healing by
secreting cytokines and growth factors such as PDGF
which recruits fibroblasts to the site of injury [67]. The
cytokines they produce control the inflammatory and
cellular immune responses by influencing the activation
and function of T lymphocytes. The lipid modulators
they produce such as PGE2 also play a role in regulating
these responses. Here, we examined the role of PGE2 in
D. variabilis saliva on the regulation of macrophage and
fibroblast migration, along with macrophage cytokine se-
cretion by using the PGE2 receptor antagonist AH 6809.
It is well established that there is great similarity in the

salivary components among different tick species. One
consistency is the presence of prostaglandins [39,46-50],
and particularly PGE2 in saliva, which has been shown
to regulate dendritic cell differentiation, maturation, and
cytokine production [31,32] and inhibit T lymphocyte
proliferation [47]. Our results indicate that D. variabilis
saliva like other ixodid tick species contains a high con-
centration of PGE2 and stimulates PGE2 secretion by
macrophages. Therefore, ticks not only secrete compo-
nents in their saliva to regulate host responses but also
their salivary components induce cells to produce and
secrete immuno-modulatory, anti-hemostatic, and anti-
inflammatory effectors such as PGE2.
PGE2 has been shown to regulate the migratory activ-

ity of different cell types [51,54,68,69]. Therefore, it is
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logical that the PGE2 content in tick saliva is responsible
for our previous observation of the saliva-induced regu-
lation of macrophage [14] and fibroblast migration
[13,15]. We show that the increased macrophage migra-
tion and decreased fibroblast migration are both sensi-
tive to the PGE2 receptor antagonist AH 6809. These
data are consistent with the studies showing differing ef-
fects of PGE2 on macrophage [51] and fibroblast [52-54]
migration. In addition, fibroblasts treated with condi-
tioned medium from saliva-treated macrophages had
lower migratory rates, a response reversed by AH 6809.
AH 6809 fully restored the migratory activity of fibro-
blasts treated with conditioned medium from saliva-
treated macrophages, suggesting this response was medi-
ated by PGE2. However, AH 6809 partially restored the
migration of the cells treated with saliva only, meaning
the saliva-induced inhibition was also regulated by some
other salivary constituent(s). This is supported by our
previous studies which have shown saliva treatment re-
duced migration in fibroblasts and cancer cells, a re-
sponse that correlated with changes in downstream
effectors of growth factor receptor signaling [13,15]. Our
results demonstrating that saliva modulates migration in
these cells are further substantiated by studies which
identified changes in macrophage [70] and fibroblast
[15] numbers at the feeding lesion.
Whether or not PGE2 is a pro or anti-inflammatory

mediator is controversial [41,42,62,71,72]. Since it is im-
perative for ticks to control host responses, we believe
the PGE2 in saliva dampens host inflammation. From
our observation of 22 cytokines, we show saliva reduces
the LPS-stimulated secretion of pro-inflammatory cyto-
kines CCL5, TNF-α, and soluble TNF Receptor I
(sTNFRI). CCL5 recruits macrophages, dendritic cells,
basophils, eosinophils, mast cells, natural killer cells, and
T lymphocytes to sites of inflammation and infection
[73,74] where they either participate in resolving inflam-
mation or provide cues for activation of the adaptive im-
mune response. The decrease in CCL5 was reversed by
the PGE2 receptor antagonist consistent with a report
showing that tumor-secreted PGE2 inhibits CCL5 pro-
duction in macrophages [63]. However, this reduction in
CCL5 may be due to the chemokine binding protein,
Evasin-4, which interacts with CCL5 and CCL11 and has
been identified in tick SGE [19]. By decreasing CCL5,
ticks can prevent macrophages from recruiting other
leukocytes to the feeding lesion, therefore dampening
the host inflammatory and immune responses. Chiefly
produced by macrophages, TNF-α is a pleiotropic cyto-
kine that serves as a key mediator of inflammation. It in-
creases vascular permeability and cytokine production
eliciting the recruitment of macrophages and neutrophils
to sites of infection. In neutrophils, TNF-α has been
shown to induce proliferation and apoptosis [75]. It can
also induce blood clotting [76], therefore serving as a
mechanism of containment during an infection. Low
levels of TNF-α promote replacement or remodeling of
damaged tissue by triggering fibroblast growth [77]. This
cytokine can result in activation of an adaptive immune
response since it contributes to the proliferative re-
sponse in T lymphocytes [78]. However, the persistent
presence of TNF-α can contribute to chronic inflamma-
tory conditions as seen in rheumatoid arthritis (RA)
[79]. We show that saliva reduces the secretion of TNF-
α and its receptor in macrophages, and this effect was
sensitive to the PGE2 receptor antagonist. This is sup-
ported by evidence indicating that in macrophages PGE2
works in concert with IL-6 to inhibit TNF-α production
in a murine arthritis/lupus model [41]. Surprisingly, sal-
iva did not affect the secretion of IL-6 and IL-12p40p70
or the anti-inflammatory cytokine IL-10 (data not
shown). We expected saliva to impose some change on
IL-6 secretion because in RA it is considered pro-
inflammatory [41], and it is produced with TNF-α and
IL-1β in other stress conditions [80]. Furthermore, both
in vitro [81] and in vivo [80] studies have indicated the
anti-inflammatory effects of IL-6. Since we have previ-
ously shown saliva increases the gene expression of anti-
inflammatory cytokine IL-10 [14] which is indicative of
an immune response shifted toward a T helper 2 pheno-
type [82], we anticipated saliva would increase the secre-
tion of this cytokine but this effect was not observed
(data not shown). Saliva did not reduce the IL-12 sub-
unit IL-12p40p70 as we expected because PGE2 inhibits
IL-12 production in macrophages [42] and production
of this cytokine drives a pro-inflammatory response
characterized as a T helper 1 reaction [83]. However, we
are currently investigating the secretion of these cyto-
kines at earlier time points as in our gene expression
study in Kramer et al. [14]. In addition, we evaluated
how saliva influences the secretion of the pro-
inflammatory cytokine IL-1β. The production of this
cytokine is tightly regulated by a multi- protein complex
called an inflammasome. While saliva increases LPS-
stimulated secretion of IL-1β, we have shown that the
expression of the IL-1β receptor antagonist IL-1RN is
also up-regulated and may serve as a countermeasure to
any pro-inflammatory effects from this cytokine [14].
PGE2 modulates cellular activities via G protein-

coupled receptors EP1-4 whose effects are mediated
through calcium mobilization and cAMP production. In
fibroblasts, PGE2 activation of EP2 and EP4 receptors
leads to increases in cAMP production and inhibition
of migration [52-54], comparable to our observation
of saliva-induced decreases in fibroblast migration. We
also observed the saliva-induced increases in cAMP pro-
duction in macrophages correlated with the PGE2-medi-
ated changes on migration and cytokine secretion. Using
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RAW264.7 macrophages, Tajima et al., [51] showed that
PGE2 regulates LPS-stimulated migration through the
EP4 receptor supporting our rationale for the PGE2 con-
tent in tick saliva as the modulator of macrophage mi-
gration. In our study we used the PGE2 receptor
antagonist AH 6809 which binds EP2 but not EP4. How-
ever, we believe that the ability of AH 6809 to reverse
the stimulatory effects of PGE2 and saliva on macro-
phage migration suggests that in IC-21 macrophages
EP2 also plays a role. Also intracellular cAMP has been
shown to have a central role in resolving inflammation
[84,85]. The inhibitory effects of tumor-secreted PGE2
on macrophage CCL5 are mediated through cAMP [63]
further supporting the idea that inhibitory effects of sal-
iva on macrophage cytokine secretion are caused by
PGE2 and mediated through cAMP.
Conclusions
To facilitate the feeding process, ticks and other arthro-
pods have evolved a repository of pharmacologically ac-
tive molecules in their saliva to modulate the host’s
inflammatory and immune responses. To our knowledge
for the first time, our data illustrate that the saliva-
induced changes on macrophage and fibroblast migra-
tion and cytokine secretion in macrophages are sensitive
to a PGE2 receptor antagonist, suggesting these effects
are mediated at least in part by PGE2 signaling through
the second messenger cAMP. This indicates that the
PGE2 content in tick saliva has roles in altering the mi-
gratory activity and cytokine profile of cells involved in
inflammation and wound healing. These findings further
demonstrate the complex nature of tick saliva and high-
light the potential redundancy in the mechanisms uti-
lized to regulate host responses.
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