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Abstract

Background: Toxoplasma gondii is an obligate intracellular parasite that can pose a serious threat to human health
by causing toxoplasmosis. There are no drugs that target the chronic cyst stage of this infection; therefore,
development of an effective vaccine would be an important advance. Aspartic proteases play essential roles in the
T. gondii lifecycle. The parasite has four aspartic protease encoding genes, which are called toxomepsin 1, 2, 3 and
5 (TgASP1, 2, 3 and 5, respectively).

Methods: Bioinformatics approaches have enabled us to identify several promising linear-B cell epitopes and
potential Th-cell epitopes on TgASP1, thus supporting its potential as a DNA vaccine against toxoplasmosis. We
expressed TgASP1 in Escherichia coli and used the purified protein to immunize BALB/c mice. The antibodies
obtained were used to determine where TgASP1 was localized in the parasite. We also made a TgASP1 DNA
vaccine construct and evaluated it for the level of protection conferred to mice against infection with the virulent
RH strain of T. gondii.

Results: TgASP1 appears to be a membrane protein located primarily at the tip of the T. gondii tachyzoite.
Investigation of its potential as a DNA vaccine showed that it elicited strong humoral and cellular immune
responses in mice, and that these responses were mediated by Th-1 cells. Mice immunized with the vaccine had
greater levels of protection against mortality following challenge with T. gondii RH tachyzoites than did those
immunized with PBS or the empty vector control.

Conclusions: TgASP1 is a novel candidate DNA vaccine that merits further investigation.
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Background
Toxoplasma gondii, a coccidian apicomplexan, is an obli-
gate intracellular parasite of humans and other warm-
blooded animals [1,2]. T. gondii infection normally causes
mild symptoms or is asymptomatic in humans, but
toxoplasma encephalitis has emerged as one of the most
frequent opportunistic infections in HIV-infected patients
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[3]. In addition,T. gondii infection during pregnancy carries
a high risk of congenital toxoplasmosis in infants or acute
retinochoroiditis in pregnant women [4].
T. gondii expresses several proteases, including cysteine

proteases, aspartic proteases and serine proteases. The
parasite has five cysteine proteases, including one cathe-
psin B-like (TgCPB), one cathepsin L-like (TgCPL) and
three cathepsin C-like (TgCPC1, 2 and 3) proteins. T.
gondii also has four aspartic protease encoding genes that
are designated toxomepsin 1, 2, 3 and 5 (TgASP1, 2, 3 and
5, respectively) and two subtilases (TgSUB1 and TgSUB2).
T. gondii also possesses five genes encoding a family of
polytopic membrane rhomboid-like serine proteases,
which are known as TgROM 1 to 5 [5].
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Proteases play several key roles during T. gondii infec-
tion, including host cell invasion, nutrient acquisition,
avoidance of host protective immune responses, escape
from the parasitophorous vacuole (PV), parasite differen-
tiation, and regulation of pathogenesis [6-9]. As an obliga-
tory intracellular protozoan parasite, host cell invasion is a
prerequisite for establishing and maintaining a life-long
infection in its host. Several lines of evidence suggest that
proteases are important during invasion by apicomplexan
parasites, and proteases are considered critical for assem-
bly and trafficking of organellar-related proteins [5,10].
Proteases targeted to the Plasmodium food vacuole, a
unique organelle dedicated to hemoglobin degradation,
are critical to parasite survival in these apicomplexan par-
asites [11]. Cysteine proteases can modulate host immune
responses by altering the normal function of key receptors
or pathways in the mammalian immune system [12]. In
addition, a variety of data have been published suggesting
that proteases are involved in many other activities, in-
cluding for example, antigen presentation [13].
Aspartic proteases are common in eukaryotes where

they are known to play key roles in a wide range of bio-
logical functions. There are four aspartic protease genes in
the T. gondii genome that are expressed in tachyzoites.
TgASP3 and TgASP5 are localized to the Golgi compart-
ment, but TgASP1 is only found in T. gondii and the
related apicomplexan, Neospora caninum [14]. TgASP1 is
synthesized as a zymogen [15], and its role in the food
vacuole is related to hemoglobin degradation. TgASP1 re-
localizes to the nascent inner membrane complex (IMC)
of daughter cells before coalescing at the end of parasite
cell division [16].
Toxoplasmosis, caused by T. gondii, is a serious threat

to human health; however, there are no drug treatments
available that can cure it. Hence, other options for
controlling the disease are sought. DNA vaccines are an
option worth considering as they can induce continuous
and strong protective immune responses against this
ubiquitous parasite [17,18].
In this study, we constructed a TgASP1 gene vaccine to

evaluate protective immune responses against toxoplas-
mosis in laboratory mice. Here, we show that TgASP1 is a
novel vaccine candidate that can induce substantial
humoral and cellular immune responses against T. gondii
infections in mice.

Methods
Bioinformatics analysis of TgASP1
TgASP1 nucleotide (GenBank ID: AY580011.1) and amino
acid sequences (GenBank ID: AAS90335.1) were obtained
from GenBank (http://www.ncbi.nlm.nih.gov/genbank)
and were analyzed using DNAMAN software and BLAST
(protein-protein). GENSCAN was used to search for the
open reading frame (ORF) structure of the TgASP1 gene
(http://genes.mit.edu/GENSCAN.html), whilst the phys-
ical and chemical properties of the protein were analyzed
by ProtParam (http://web.expasy.org/protparam/). The
transmembrane structure and presence of signal peptides
were predicted by the TMHMM server (http://www.cbs.
dtu.dk/services/TMHMM-2.0/) and SignalP Server (http://
www.cbs.dtu.dk/services/SignalP/), respectively. B-cell epi-
topes were predicted using DNASTAR, Gene Runner and
DNAMAN software, while the 2D and 3D structures were
determined by SOPMA (http://npsa-pbil.ibcp.fr/cgi-bin/
npsa_automat.pl?page=/NPSA/npsa_sopma.html) and I-
TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/).

Parasites and mice
The T. gondii RH strain was maintained and passaged
in vitro in human malignant epithelial cells (HeLa cells),
which were cultured in a mixture of Dulbecco’s Modifi-
cation of Eagle’s Medium (DMEM, Gibco) and nutrient
supplement containing 10% heat-inactivated fetal bovine
serum (FBS, HyClone), 2 mM L-glutamine, penicillin
(100 U/ml) and streptomycin (100 μg/ml). Cell cultures
were maintained at 37°C in a 5% CO2 environment and
were changed every 2 to 3 d. The T. gondii RH strain
was harvested and purified as previously described
[19,20]. Briefly, tachyzoites were collected by washing in
cold phosphate buffered saline (PBS), centrifuged,
resuspended in cold PBS and syringed three times with a
27-gauge needle. The parasites were filtered through a
5.0 μm pore size filter (Millipore, USA), washed with
cold PBS and pelleted at 1500 rpm for 10 min. Genomic
DNA was extracted from tachyzoites prepared by this
method.
Six-week-old female BALB/c mice were purchased from

the Shandong University Laboratory Animal Center. All
mice were maintained under specific-pathogen-free (SPF)
conditions when the first immunizations were conducted.
All the animal experiments were approved by the Animal
Ethics Committee of Shandong University.

Expression plasmid construction
The TgASP1 gene was amplified from T. gondii genomic
DNA by polymerase chain reaction (PCR) using the fol-
lowing primer pairs. TgASP1 for construction of the
prokaryotic expression plasmid: 5′-cggGGTACCATGTC
T-CCGTCGTCGCG-3′ (forward) and 5′-cccAAGCTTT
CAGTTCTTGAGTCTG GCGA-3′ (reverse), which con-
tains KpnI and HindIII restriction sites (underlined), and
TgASP1 for construction of the eukaryotic expression
plasmid: 5′-ccgCTCGAGATGTCTCCGTCGTCGCG-3′
(forward), 5′- cggGGTACCTCAGTTCTTGAGTCTGGC
GA-3′ (reverse), which contains XhoI and KpnI restriction
sites (underlined). PCR products were cloned into the
pEASY-T1 simple vector (TransGen Biotech, China) to
generate a recombinant cloning plasmid. After sequencing,
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TgASP1 was subcloned into the prokaryotic expression
plasmid pET-30a(+) (Novagen, USA), and into the
eukaryotic expression plasmid pEGFP-C1 (Clontech,
USA) to produce pET-30a-TgASP1 and pEGFP-TgASP1
(pTgASP1), respectively.

Preparation of anti-rTgASP1 sera
The recombinant plasmid pET-30a-TgASP1 was trans-
formed into E.coli BL21 (DE3) cells and grown in Luria
Bertani medium (LB) with kanamycin (25 μg/ml). Recom-
binant TgASP1 (rTgASP1) protein was induced with 1 mM
isopropyl-β-D-thiogalactoside (IPTG) for 6 h at 25°C. The
cells were lysed with 50 mM Tris pH7.4, 150 mM NaCl,
1% Triton X-100, 2mM EDTA containing 1 mM of the
protease inhibitor PMSF (phenylmethanesulfonyl fluoride)
and then centrifuged at 4°C at 10,000 × g for 15 min,
after which the protein was purified by binding of its
carboxy terminal histidine (His) tag to Ni-NTA resin
(Sangon Biotech, China).
BALB/c mice were immunized subcutaneously with

100 μg of purified rTgASP1 in an equal volume of
Freund’s complete adjuvant (Sigma) for the first injec-
tion. The second and third injections consisted of 50 μg
of purified protein in Freund’s incomplete adjuvant
(Sigma). Antisera were collected from the mice two
weeks after their last immunizations. Immunoglobulin
G (IgG) was purified form the antisera using protein A
chromatography columns (GE Healthcare, USA), and
the IgG containing fractions were identified by SDS-
PAGE and western blotting as previously described [21].
Approximately 500 ng of rTgASP1 protein was used in
sodium dodecylsulfate-polyacrylamide gel electrophor-
esis (SDS-PAGE). After electrophoresis, the separated
protein bands were transferred onto polyvinylidene
difluoride (PVDF) membranes (Millipore, USA), which
were blocked with 5% (W/V) skimmed milk diluted in
PBS for 2 h, after which they were incubated with a
mouse anti-TgASP1 antibody (dilution 1:500) for 24 h at
4°C. After washing in PBS-T (PBS pH 7.4 containing
0.05% Tween 20), the membrane was incubated with
diluted goat anti-mouse IgG horseradish peroxidase
(HRP)-labeled secondary antibody (1:10,000; Sigma,
USA) for 1 h. Protein bands were detected with ECL
chemiluminescence reagents (Cowin Biotech, China).

Immunolocalization experiments
Indirect IFAs were performed on intracellular and extra-
cellular parasites as described previously [22,23]. Briefly,
each parasite type was grown overnight in HeLa cells and
then fixed on slides with 4% paraformaldehyde for 20 min,
washed with PBS, permeabilized with 0.2% Triton X-100
in PBS for 20 min, and then blocked in 10% FBS for
20 min. After washing, the cells and parasites were stained
with the primary antibody (anti-rTgASP1, 1:500, diluted in
PBS-FBS) for 1 h, washed with PBS, and then incubated
with the secondary antibody (Alexa Fluor 647-Labeled Goat
anti-mouse IgG, Beyotime, China) diluted in 1% PBS-FBS
(dilution 1:1000) for 1 h. After washing with PBS, the slides
were mounted in Antifade Mounting Medium (Beyotime,
China) and observed under a laser scanning confocal
microscope (Carl Zeiss LSM780, Germany).
TgASP1 expression in mammalian cells
HEK293 cells were transfected with pEGFP-TgASP1
using Lipofectamine 2000 reagent (Invitrogen, USA) as
previously described [24]. Before transfection, HEK293
cells were transferred into 6-well culture plates (Costar,
USA) and cultured until the density of the cells reached
approximately 80%. Liposomes (10 μl) were diluted in
240 μl of DMEM and then incubated at room tem-
perature for 5 min. The solution was gently mixed with
4 μg of plasmid DNA in 250 μl of DMEM and then in-
cubated at room temperature for 20 min. DNA-lipid
complexes were added to the cells that had been rinsed
in serum-free medium. After incubation for 6 h at 37°C
in 5% CO2, the medium was exchanged with that con-
taining 10% FBS. After 48 h, the transfected HEK293
cells were collected and observed under a fluorescence
microscope (Carl Zeiss). The cells were lysed with RIPA
buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% Triton
X-100, 1% Sodium deoxycholate, 0.1% SDS) containing
1 mM of PMSF and centrifuged at 12,000 × g for 10 min,
at 48 h after transfection. The products were visualized
by SDS-PAGE and western blotting. Approximately
500 ng of purified rTgASP1 protein was separated by
SDS-PAGE. The separated protein bands were trans-
ferred onto PVDF membranes. The procedures used
were the same as those described in the section “Prepa-
ration of anti-rTgASP1 sera”.
Experimental design
Thirty-nine mice were randomly divided into three
groups (13 per group) as described previously [25]. Mice
were injected intramuscularly in their hind legs four
times, at 2 weekly intervals. Group 1 (n = 13), were im-
munized with 100 μg of the pEGFP-TgASP1 plasmid
DNA resuspended in 100 μl of sterile PBS. Group 2
(n = 14) were immunized with 100 μg of the empty vec-
tor resuspended in 100 μl of sterile PBS (control group),
whereas group 3, which also served as a control group
(n = 13), received 100 μl of sterile PBS alone. Two weeks
after the final immunizations, 3 mice per group were
euthanized and their spleens were isolated. The re-
maining mice were challenged intraperitoneally with
100 μl phosphate-buffered saline (PBS) containing 1 ×
104 T. gondii tachyzoites and the survival time and con-
dition of each mouse was recorded.



Figure 1 Alignment of ASP1 protein sequences from toxoplasma strains. Red letters indicate amino acid differences, a blue letter shows a
missing amino acid, while * represents identical amino acids.

Figure 2 Prediction of transmembrane helices in TgASP1. The analysis indicates that TgASP1 has a transmembrane structure.
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Figure 3 Prediction of the signal peptide cleavage site locations in the TgASP1 protein. The analysis indicates that TgASP1 does not
contain a signal peptide.
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Serum samples and antibody assays
Serum samples were collected from all of the mice prior
to each immunization. The serum was tested for total
IgG, IgG1 and IgG2a. IgG antibody levels against T. gondii
were measured by enzyme-linked immunosorbent assay
(ELISA) [26,27]. In brief, microtiter plates (Costar, USA)
Figure 4 Prediction of B-cell epitopes in the TgASP1 protein based on
were coated overnight with rTgASP1 protein (10 pmol/
well) in 50 mM carbonate buffer (pH 9.6). Plates were
washed with PBS-T three times and were blocked with 1%
Bovine Serum Albumin (BSA) for 1 h at 37°C. After three
washes, the plates were incubated with mouse sera diluted
in PBS for 1h at 37°C. After three washes, goat anti-mouse
DNAStar analysis.



Table 1 Analysis of linear-B cell antigenic epitopes on
TgASP1

Order Position Sequences Score

1 13-26 VDSSSQDFGKRSSL 1.140

2 61-67 SSSHCAK 1.090

3 98-105 RRSLGKAV 1.211

4 222-231 IGWDKNTITV 1.169

5 276-294 YTEIYVGSPGQKVRVVVDT 1.193

6 316-331 TYNHGKSDTYHADGTP 1.136

7 398-407 PFMQAAVEQN 1.203

8 486-492 LDEVKRI 1.141

9 561-571 EGGRPTPQKNG 1.126

Figure 6 Western blot of native TgASP1.
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IgG, IgG1 or IgG2a secondary antibodies conjugated with
horseradish peroxidase (Sigma, USA) were added and the
plates were incubated at 37°C for 1 h. Immune complexes
were observed by incubation with orthophenylene-
diamine (Sigma, USA) and 0.15% H2O2 for 30 min. Reac-
tions were stopped by adding 2M H2SO4 and the results
were read with an ELISA reader (Bio-tekEL × 800, USA)
set at 490 nm. The results were expressed as the optical
density (OD) ratio between the OD of a sample divided by
the OD of the antibody-free control. All samples were run
in triplicate.

Cytokine assays
Cytokine levels were determined according to the
method described previously [28]. Spleens were isolated
from three mice per group 2 weeks after their last
immunizations. A single-cell suspension was prepared
by crushing the spleens through stainless steel meshes
followed by suspension in lysis buffer (0.83% NH4Cl,
0.01 M Tris–HCl, pH7.2). The cells were then suspended
in RPMI 1640 medium (Sigma, USA) supplemented with
10% FBS, 100 U/ml of penicillin and 100 μg/ml of
Figure 5 3D structure predictions for TgASP1. (A) 3-D structure of TgAS
selected. The model was viewed by VMD software and colored to illustrate
gray: coil); (B) The distribution of potential epitopes on TgASP1 is marked with
streptomycin. Cell densities were adjusted to 1 × 106 cells/
ml, after which they were dispensed into 96-well plates at
37°C in 5% CO2, and the cell-free supernatants were
harvested and assayed for interleukin-4 (IL-4) at 24 h,
interleukin-10 (IL-10) at 72 h, and gamma interferon
(IFN-γ) at 96 h using an ELISA kit (R&D Systems, USA).
Challenge infections
Two weeks after their last immunizations, the mice were
challenged intraperitoneally with 1 × 104 T. gondii tachy-
zoites and the survival rate and condition of the mice was
monitored daily. Toxoplasmosis signs, i.e., food and water
intake difficulties, lethargy and severe ascites, were used
to determine when the animals should be humanely
euthanized. Mice that showed signs of illness were eutha-
nized by containment in a chamber where a CO2 concen-
tration of 60% to 70% was administered over a 5-min
exposure time [29]; this was followed by cervical disloca-
tion if required.
P1. The 3D model with the highest score for the TgASP1 protein was
the secondary structure components (yellow: β-strands, purple: α-helix,
yellow balls.



Figure 7 Immunofluorescence staining of intracellular and extracellular parasites. Extracellular parasites were observed under a light
microscope (A), fluorescence microscope (B), and using merged channel fluorescence (C). Intracellular parasites were observed under a light
microscope (D), fluorescence microscope (E) and using merged channel fluorescence (F).
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Statistical analysis
Statistical analysis in all of the groups was performed
using SPSS software. The levels of antibody and cytokine
production among the different groups were analyzed
and determined by a one-way ANOVA. Survival time for
the mice was compared using the Kaplan-Meier method.
The difference was considered statistically significant if
the P value was less than 0.05.

Results
Bioinformatics analysis
TgASP1 comprises a 620 amino acid protein with a
molecular weight of 67.1367 kDa. The theoretical
isoelectric point and instability index were calculated
at 6.34, and 42.98, respectively, while the aliphatic
index and the grand average of hydropathicity
(GRAVY) were 84.29% and −0.072, respectively. A
protein sequence alignment of TgASP1 for four T.
gondii strains is shown in Figure 1. The alignment
shows that the ASP1 proteins from these strains share
98.3% similarity. ASP1 of the T. gondii RH strain
shares 98.8% sequence identity with T. gondii GT1,
98.5% with T. gondii ME49 and 98.7% with T. gondii
VEG. Transmembrane domain and signal peptide
cleavage site predictions for TgASP1 are shown in
Figures 2 and 3, respectively.



Figure 8 Expression of TgASP1 in HEK293 cells as detected by indirect fluorescent antibody testing and western blotting. (A1)
pTgASP1-transfected HEK293 cells; (A2) empty pEGFP vector-transfected HEK293 cells; (A3) non-transfected HEK293 cells; (B) M: protein marker;
lane 1 HEK293 cells transfected with pTgASP1; lane 2 HEK293 cells transfected with empty pEGFP vector.

Zhao et al. Parasites & Vectors 2013, 6:175 Page 8 of 13
http://www.parasitesandvectors.com/content/6/1/175
Secondary structure and linear-B cell epitope prediction
Epitopes are the foundations of protein antigenicity that
determine antigen specificity. Many types of epitope
prediction methods can provide clues about the hydro-
philicity, antibody accessibility, antigenicity, flexibility,
charge distribution and secondary structure of a protein.
Despite the lack of an infallible method to predict anti-
genic epitopes, several rules can be followed to establish
which peptide fragments of a protein are likely to be
antigenic. First, antigenic epitopes should be located in
solvent-accessible regions and contain both hydropho-
bic and hydrophilic residues. Second, peptides lying in
long loops connecting secondary structure motifs are
preferable, while peptides located in helical regions
should be avoided. Whenever possible, peptides that are
in the N- and C-terminal regions of a protein should be
chosen because they are usually solvent accessible and
unstructured.
Following the guidelines above, we analyzed TgASP1 to

identify liner-B cell epitopes using DNASTAR software
and chose peptides that had good hydrophilicity, high
accessibility, satisfactory flexibility and strong antigenicity
(Figure 4). The results showed the presence of several
peptides that had potential to be suitable epitopes in
TgASP1. To verify these results, we used DNAMAN
software to analyze the sequences and we selected nine
potential epitopes with the highest antigen index scores.
The details of this analysis are shown in Table 1.

Modeling the three-dimensional (3-D) structure of
TgASP1
Modeling the potentially antigenic regions of a protein as
a 3-D structure increases the accuracy of epitope predic-
tion, and assists with determining the epitope boundaries.
This process also aids identification of predicted conform-
ational epitopes. We used SOPMA and I-TASSER on-line
services to predict the 2-D and 3-D structures of TgASP1
(Figure 5). The results predicted that TgASP1 contains
14.6% alpha helix, 33.33% extended strand, 9.73% beta
turn and 42.58% random coil. These unconsolidated re-
gions that are composed of many β-turns and random
coils have potential for forming antigenic epitopes.

rTgASP1 antibody specificity
Western-blotted PVDF membranes were incubated
separately with mouse anti-TgASP1 antibody or pre-
immune sera. The results indicate that the mouse
anti-TgASP1 antibody recognized a protein of around
67 kDa, which is consistent with the predicted size of
the TgASP1 protein (Figure 6).



Figure 9 IgG antibody responses in pTgASP1-immunized mice. Sera were collected 1 d prior to each immunization and screened by ELISA.
Results are shown as the means of the OD 490 ± SD and statistical differences (P < 0.05) are indicated by * as compared with PBS or pEGFP.
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Localization of native TgASP1 protein in T. gondii
tachyzoites
Extracellular and intracellular parasites were analyzed
by IFAs. Extracellular parasites were blotted with the
mouse anti-rTgASP1 antibody and observed under a
light microscope (Figure 7A), a fluorescence micro-
scope (Figure 7B) and a merged channel (Figure 7C).
Intracellular parasites were analyzed by the same
method (Figure 7D,E and F). The results show that
TgASP1 is located mainly at the tip of the tachyzoite,
as opposed to being widely distributed in the cyto-
plasm or secreted from the parasite.
Identification of pTgASP1 expression products
In vitro expression of pTgASP1 was evaluated by IFA at
48h post-transfection. As shown in Figure 8 (A1 and
A2), green fluorescence was observed in HEK293 cells
transfected with pEGFP-TgASP1 or pEGFP, whereas no
fluorescence was observed in the non-transfected
HEK293 cells (A3). Western blotting revealed that the
rTgASP1 protein (~67 kDa in size including the 27 kDa
green fluorescent protein) was detected in HEK293
cells transfected with pTgASP1 (B), but not in cells
transfected with the empty pEGFP vector.
Antibody responses in immunized mice
As shown in Figure 9, statistically significant high levels
of IgG antibodies were observed in the pTgASP1-
vaccinated group, the levels of which gradually increased
with each successive immunization. The levels were
higher than those of the control groups that had been
immunized with PBS or pEGFP. A statistically significant
difference was found between the experimental group
and the control groups (P < 0.05). The result indicates
that the recombinant plasmid encoding TgASP1 induced
a strong IgG antibody response in the vaccinated mice,
with the OD values reaching high levels two weeks after
the third immunization.
The IgG1 and IgG2a subgroup antibody levels for all of

the groups in the second week after the final immuniza-
tions are shown in Figure 10. IgG1 levels were not signifi-
cantly different between the TgASP1-immunized and
control groups (PBS or pEGFP) (P > 0.05); however, mice
immunized with pTgASP1 generated higher levels of IgG2a
than those immunized with PBS or pEGFP (P < 0.05).
Cytokine production
Splenocyte supernatants harvested at different time
points were used to measure cytokine levels (IFN-γ, IL-4



Figure 10 Distribution of IgG1 and IgG2a subtypes in pTgASP1-immunized mice. Serum levels of IgG1 and IgG2a were analyzed by ELISA
two weeks after the final immunizations. Results are expressed as the means of the OD 490 ± SD and statistically significant differences (P < 0.05)
are indicated by an asterisk (*), as compared with control groups.
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and IL-10) in the different groups. As shown in Table 2,
mice vaccinated with pTgASP1 generated significantly
higher IFN-γ levels than mice vaccinated with PBS or
the empty vector (P < 0.05). In contrast, similarly low
levels of IL-4 and IL-10 were measured in the groups
and no statistically significant differences were found
among them (P > 0.05).

Protective efficacy of DNA vaccination against T. gondii in
mice
All mice were challenged intraperitoneally with the T.
gondii RH strain to evaluate the degree of immuno-
protection induced by the DNA vaccine. Mice were
checked daily until all of them required euthanasia. As
shown in Figure 11A, immunization with the DNA
Table 2 Cytokine production in cultures of splenocytesa

from immunized BALB/c mice

Group Cytokine production (pg/ml)b

IFN-γ IL-4 IL-10

PBS 48.03 ± 1.86 37.31 ± 1.76 40.97 ± 1.03

pEGFP 44.32 ± 4.43 36.58 ± 2.42 41.60 ± 2.01

PTgASP1 715.76 ± 23.37* 37.36 ± 1.09 38.53 ± 0.93
aSplenocytes from 3 mice per group on the 4th week after the
final immunization.
bValues for IFN-γ are for 96 h. Values for IL-10 are for 72 h. Values for IL-4 are
for 24 h.
*Compared with PBS-adjuvant or pEGFP controls, P < 0.05.
vaccine dramatically increased the survival time of the
vaccinated group in comparison to the control groups
that were vaccinated with PBS or pEGFP (P < 0.05). In
addition, as shown in Figure 11B, the infection onset
times in the immunized mice were later than mice in
the control groups.

Discussion
Bioinformatics can play a central role in the analysis and
interpretation of genomic and proteomic data. It uses
methods and technologies from mathematics, statistics,
computer sciences, physics, biology and medicine [30]. It
can be a powerful tool for predicting the structure and
function of a protein from its amino acid sequence by
means of its similarity to a sequence of known structure
or function. This method plays a major role in guiding
the experimental characterization of a genome [31], and,
because of its effectiveness and low cost, bioinformatics
has been widely used to predict antigenic epitopes on
proteins [32].
Bioinformatics analysis has allowed us to predict that

TgASP1 is a soluble transmembrane protein that is con-
served between different strains of T. gondii. The predic-
tion results suggest that TgASP1 has no signal peptide
sequence, which should improve the secretion efficiency
of anti-rTgASP1 antibodies [33]. We used several differ-
ent software packages and on-line services to predict the



Figure 11 Survival curve for pTgASP1-immunized BALB/c mice following challenge with T. gondii. (A) Three groups of mice were
challenged with 1 × 104 tachyzoites of the virulent RH strain of T. gondii two weeks after their last immunization. n = 10 per group. Survival was
monitored daily for 16 d after challenge. (B) The incidence of infection in the three groups of mice.
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protein sequence and 3D structure of TgASP1, and iden-
tified several promising linear-B cell epitopes and poten-
tial Th-cell epitopes. The data obtained indicate that
TgASP1 could hold promise as a protective antigen.
The result of the indirect immunolocalization experi-

ment suggests that TgASP1 is apically located in the
parasite, while the bioinformatics analysis suggests that
it is a membrane protein. However, TgASP1 does not ap-
pear to localize to regions in the parasite where the
secretory organs are located, such as the rhoptries,
micronemes and dense granules. Previous studies have
suggested that TgASP1 resides in a novel compartment
of the secretory system that potentially serves as a link
between the Golgi and the IMC [16].
The results of the immunization experiments show

that the pTgASP1 plasmid can induce strong humoral
and cellular immune responses. Importantly, signifi-
cantly higher levels of total IgG antibodies were ob-
served in the pTgASP1-immunized group than were
observed in the control groups immunized with PBS or
the pEGFP vector. In addition, pTgASP1 induces high
levels of IgG2a and IFN-γ, but low levels of IgG1, IL-4,
and IL-10. Th cells can be divided into two subpopula-
tions known as Th-1 and Th-2 cells. Th-1 cells help acti-
vate cytotoxic T cells (Tc cells), whereas Th-2 cells
perform as B cell helpers. IFN-γ production favors Th1-
type immune responses and Th1 cells secrete IFN-γ and
IL-2. IL-4 favors Th2 responses and Th2 cells secrete IL-
4 and IL-10 [34,35]. Therefore, our results indicate that
the cellular immune response induced by the pTgASP1
single-gene vaccine may be directed towards a Th1-type
response in BALB/c mice. However, there are many
factors that can influence the direction of differentiation
for Th cells. For example, IL-12 and IL-18 can also favor
Th1-type immune responses and Th-2 cells can also en-
hance the levels of IL-5, IL-6, IL-9 and IL-13 [36]. These
factors were not investigated in this study, however.
We recorded the survival time of all the mice in the

three groups after intraperitoneal challenge with 1 × 104

tachyzoites of the virulent RH strain of T. gondii.
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Compared with the control groups, the pTgASP1-
immunized mice showed greater protection from T.
gondii infection and longer survival rates than the con-
trol groups, which needed to be euthanized within 8
days of challenge with the parasites. However, the
surviving mice needed to be euthanised by the 15th day
post-challenge, indicating that the DNA vaccine did not
provide complete protection. Nevertheless, DNA vac-
cines should be explored further as a strategy for the
control of T. gondii infection.
Current research on vaccine antigens has focused

mainly on T. gondii-specific component antigens, which
include the surface antigen (SAG) [37], granule protein
(GRA) [38], rhoptry protein (ROP) [39], micronemal
protein (MIC) [40], apical membrane antigen (AMA)
[41], and rhomboid-like protease (ROM) [42]. Attention
has also been focused on obtaining epitope-based vac-
cines by means of cDNA library screening. In addition,
some viruses or bacteria have been used as carriers for
live vector vaccines. One example is the recombinant
MVA/ROP2 vaccinia virus, which carries the T. gondii
ROP2 gene that has been shown to induce strong im-
mune protection against T. gondii in mice [43]. Another
example is the GRA1 antigen that was used with the
Mycobacterium bovis Bacillus Calmette Guerin (BCG)
to build a recombinant BCG-GRA1 vaccine against T.
gondii infection [44]. While looking for potentially useful
candidate antigens, researchers have also tried to improve
the level of immune protection against T. gondii disease
through the use of vaccine adjuvants. Such adjuvants in-
clude Freund’s, cholera toxin, IL-12 [45], hyaluronidase
(HAase) [46] and CpG-oligodeoxynucleotides [47].

Conclusions
The starting point for this study was using bioinformat-
ics to analyze the TgASP1 protein to identify potential
antigenic epitopes. Several promising epitopes were
identified using this approach, indicating that in silico
approaches can be useful for epitope prediction. There-
after, we constructed a pTgASP1 single-gene vaccine to
evaluate the level of immunoprotection induced by it in
mice. The results of this study show that mice vacci-
nated with the pTgASP1 DNA vaccine survived longer
after infection with tachyzoites of the virulent RH strain
of T. gondii than did the controls. However, the vaccine
did not afford complete protection. Nevertheless, DNA
vaccines require further investigation as a strategy for
controlling T. gondii infection.
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