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Abstract

domiciliary SF density following the ITF.

Background: Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application
success for vector control has been associated with housing materials and architecture. Vector abundance is
correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have
been unaccounted for in most New World insecticide control trials for leishmaniasis vectors.

Methods: We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m™] based
ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis
transmission village in western Panama. During the study we followed sand fly (SF) abundance, keeping track of
rainfall and quantified housing quality using an index based on architecture and construction materials.

Results: We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses,
while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the
reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and
Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after
ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e,, those with
features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased

Conclusion: Our results suggest the potential of insecticide application to control SF density and leishmaniasis
transmission could depend on housing quality beyond insecticide efficiency.
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Background

Cutaneous Leishmaniasis (CL) is a major neglected trop-
ical disease worldwide [1,2]. In relative terms, CL in the
new world remains a poorly studied disease [2,3], as are
Sand Fly (SF) vectors of Leishmania spp parasites [4-6].
For example, studies on SF ecology and control are some-
what scarce [5-7] when compared with other vectors of
pathogens, especially mosquitoes [8-10]. Long-term stu-
dies looking at the population dynamics of SF vectors
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[11-18], and studies on insecticide based control of SF
abundance [7] are limited. Insecticide control trials for
New World sand flies have been carried out using organo-
phosphates: Malathion [19]; organochlorines: DDT [20,21]
and pyrethroids: cyfluthrin [22], cypermethrin [23,24],
deltamethrin [25-30], lambdacyhalothrin [31-33]. Methods
of insecticide application for SF control have included: fog-
ging [19,22,34], residual spraying [21,23-27,31-33], insecti-
cide diffusion devices [35], insecticide treated nets [28,29]
and curtains [30]. In general, these studies have shown that
insecticide application at the household level seems to be
the most effective SF control method [7], because it can
suppress both SF abundance [7] and CL transmission over
short [36] and long term [37] time scales. However, a key
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insight from the few long-term studies on SF population
dynamics is that vector abundance is extremely sensitive
to environmental changes, with different species having a
distinctive sensitivity to particular meteorological compo-
nents [12,15,17]. Nevertheless, most insecticide control tri-
als have ignored the importance of weather variability
when evaluating the efficacy of insecticides on SF abun-
dance [20-35].

CL has also been recognized as a disease of pover-
ty [38,39]. For example, our work has shown that in
Central America CL primarily affects socially excluded
populations, i.e., those who lack or have restricted access
to resources that ensure a satisfactory quality of life
[40,41]. This fact is extremely important to better under-
stand the dynamics of disease transmission. Because CL
transmission is ruled by ecological processes [42], how
humans become part of a pathogen’s life cycle, especially
in neglected tropical diseases like leishmaniasis, can be
heavily influenced by social factors [43]. Even if recog-
nized as an important factor for the success of insecti-
cide applications in CL control [23,32], housing quality
has been unaccounted for when evaluating the outcome
of insecticide trials.

In Panama and Costa Rica, clinical treatment of patients
with skin lesions is the main activity pursued to control
CL transmission [44,45], neglecting active surveillance
and SF vector control. Nevertheless, the disease is be-
coming increasingly common in both countries. For ex-
ample, a recent urban CL outbreak occurred in Tilaran,
Guanacaste, Costa Rica [44]. Similarly, a CL epidemic in
Western Panamd province, Panamd, where 500 new CL
cases (~50% of them in children < 5 years of age) were of-
ficially reported, representing a two-fold increase for this
area when compared with recent years [45]. These out-
breaks suggest that changes are taking place in CL trans-
mission epidemiology in Central America, calling for the
implementation of vector control as a major strategy to
reduce the impact of CL on populations at risk of acquir-
ing the disease [7,41]. Here, we present results from a
small scale SF insecticide control trial carried out at
Trinidad de Las Minas, Western Panamd Province,
Reptblica de Panamd. Our goal was to evaluate the impact
of household insecticide thermal fogging (ITF) with
deltamethrin (6 mg aim™) on domiciliary and peri-
domiciliary SF abundance. Baseline observations showed
that household human infection rates were positively asso-
ciated with the household abundance of Lutzomyia
gomezi, but also with Lu. panamenesis and Lu. trapidoi
[45], the most abundant vector species in the area [46].
For 15 months we followed domiciliary and perido-
miciliary SF abundance in 24 houses, 12 were subjected to
two rounds, 6 months apart in time, of Insecticide Ther-
mal Fogging (ITF) with deltamethrin at 6 mg a.im™ and
12 kept as control. We found a 50 to 80% reduction in SF
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density in the fogged houses when compared with control
houses, while controlling for seasonal changes in SF abun-
dance associated with rainfall. We observed a variety of
species specific abundance changes, with Lu. gomezi, Lu.
panamensis, Lu. dysponeta and Lu. triramula reducing
their density between 40% and 90% after ITE, in contrast
to Lu. trapidoi whose density increased 5% after the ITF.
Spatially, we found that heterogeneities in SF abundance
after ITF were associated with housing quality, specifically
destitute houses, ie., those with features that ease insect
entrance, had the largest share of SF individuals, in some
cases with an increased domiciliary SF density following
the ITF. Thus, our results call for a better quantification
and understanding of housing quality as a major factor
underpinning the success of insecticide control for leish-
maniasis vectors.

Methods

Study Area

Our study was conducted at Trinidad de Las Minas,
(8°46’32°N and 79°59'45°W), a rural village in Capira District,
western Panamd Province, Reptblica de Panama. This vil-
lage is 230 meters above sea level, with an annual mean
temperature of 26.0°C and monthly rainfall ranging from
28 — 570 mm?®. Climate is markedly seasonal, with a dry
season from mid December to March and a rainy season
for the rest of the year. The area used to be a lowland
tropical moist forest, but currently is a transitional forest/
agricultural matrix, with scattered deciduous and xero-
phile species. Further details about the study site are
presented by Calzada et al. [46]. Daily rainfall records for
our study period were obtained from a meteorological sta-
tion within a 5 Km radius from our study site, managed
by Panamd’s electrical company ETESA.

Insecticide thermal fogging

We selected 24 houses for our study (out of 128 houses
in the village), where residents provided informed con-
sent to collect sand flies inside and outside their houses.
Twelve houses were subjected to indoor and outdoor in-
secticide thermal fogging, while the remaining 12 houses
were kept as controls (no fogging). The number of
houses evaluated in this study was primarily limited by
the availability of sampling resources, especially the
number of light traps. Nevertheless, based on the only
previous study on SF control by fogging in Panama [19]
a sample of 12 houses for the insecticide treatment and
12 control houses is powerful enough (1-B > 0.80, given
a < 0.05) to detect differences in sand fly abundance due
to insecticide thermal fogging (ITF), using a generalized
linear model with one treatment and one covariate (See
Additional file 1: Protocol S1 and Additional file 2: Figure
S1). We selected a cluster of houses with homogeneous
eco-epidemiological conditions and where intra-domiciliary
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SF presence was confirmed by residents. Although we
planned to match houses based on construction materials
and architecture, our selection was limited by the lack of
informed consent from some residents for the fogging, es-
pecially in the houses with the best construction materials.
However, to counter this limitation, we carefully recorded
details about housing construction and the peridomicile
and vegetation of each house (see section below on
Housing destituteness, the peridomiciliary environment,
peridomiciliary vegetation structure and animal abun-
dance/richness assessment) that were considered during
the statistical analysis. We evaluated two rounds of in-
door/outdoor ITF using deltamethrin (K-Othrine® 2.7
UBYV, Bayer, Guatemala). Insecticide selection and applica-
tion was performed by trained personnel of the Vector
Control Department from Panamd’s Ministry of Health.
For Insecticide selection, results from toxicity assays in
naive populations were considered [32,47-49], especially
given that our study site has never been subjected to
deltamethrin application for vector control. It is also
worth highlighting that agriculture is primarily organic at
Trinidad de Las Minas. The insecticide applications were
conducted on July 18, 2010 and January 23, 2011. The in-
secticide was applied with a hand-held thermal fogger
(Golden EagleTM, Model # 2610, Curtis Dyna-Fog Ltd,
Westtfield, IN, USA) to interior and exterior housing walls,
targeting cracks and crevices. A similar fogging was
performed in the 15 m around the houses (peridomicile).
We choose the 15 m radius for the fogging based on stud-
ies on New World SF dispersal in which SF rarely travel
beyond 50 m from a release point [50-52]. On average,
0.57 L of insecticide (diluted in diesel to a final concentra-
tion of 0.7 g /L, following Panamad Ministry of Health
guidelines) was used for the fogging of internal and exter-
nal house walls (whose total wall surface on average was
65 m?), corresponding to a concentration of 6 mg of active
ingredient per square meter (mg a.i.m™).

Ethical clearance

This study was approved by the National Review Board,
Comité Nacional de Bioética de la Investigacion, Instituto
Conmemorativo Gorgas de Estudios de la Salud, Ciudad
de Panamd, Republica de Panama (561 /CNBI/ICGES/06).

Sand fly (SF) abundance

We evaluated ITF impacts on SF abundance by compa-
ring collections from the domicile and peridomicile of
fogged and control houses. Sand flies were collected
using modified light-traps [53]. Each trap was slightly
modified by attaching an additional small LED light to
increase SF attraction [46]. Entomological sampling was
carried out monthly from April 2010 to June 2011, ex-
cept for the months of August and November 2010 and
January 2011, when access to this remote village was
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impossible because of logistical and operational con-
straints, which, in January 2011, prevented the sampling
of houses just before the 2nd ITF. Thus, a total of 12
sampling surveys were conducted during the study. For
each monthly collection, one trap was placed for one
night in the main bedroom of every household (indoor).
This trap was suspended from the ceiling at about 2 m
from the ground floor. Another trap was placed at the
same height, above vegetation, within 50 meters of the
house (i.e., peridomicile). Traps were setup for 12 hours,
from 6:00 pm to 6:00 am, in the same position (indoor
and peridomicile) during each sampling session.

Trapped sand flies were removed from the traps,
stored at —20°C to kill the insects and preserved in 70%
ethanol for identification. For each trap, we summarized
the abundance, sex and species of sand flies following
Young and Duncan [54], with male genitalia and female
spermathecae as main diagnostic taxonomic characters.
A detailed description of the SF fauna species composition
at Trinidad de Las Minas and changes following the ITF is
presented by Calzada et al. [46].

Housing destituteness, the peridomiciliary environment,
peridomiciliary vegetation structure and animal
abundance/richness assessment

For each house, we collected data on construction mate-
rials and the presence of insect friendly gaps to con-
struct an index of house quality, hereafter referred to as
housing destituteness index, HP. We specifically col-
lected data on materials used for walls and roofs,
whether the floor was earthen or covered with concrete
or wood. We recorded the presence of insect friendly
gaps, i.e; whether walls had crevices, if walls were
complete from the base to the roof, whether doors had
holes and if the houses had windows and whether the
windows had anti-insect screening. We recorded the
presence/absence of elements that may serve as pe-
ridomicilary resting places for sand flies, such as rubbish,
fruit trees, etc. [12,55] to estimate a peridomicile index
(PI). We measured several elements of the vegetation
structure in the peridomicile for the estimation of a
vegetation index (VI). To quantify any possible role that
vertebrate host abundance could have on sand fly den-
sity, we performed a census on all domestic animals be-
longing to each household and compiled a list of wildlife
species seen by household residents in the domiciliary/
peridomiciliary area of each household. We used these
data to estimate animal abundance indices. HP, PI, VI and
the animal abundance indices were estimated by comput-
ing the first principal component for the set of variables
considered in each index, for further details about the
variables considered for each index, and the principal
components analysis implementation see Additional file 3:
Protocol S2. For both domestic and wild animals we also
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estimated species richness at each household by, respec-
tively, counting the number of domestic species, recorded
in the domestic animal census, or the number of reported
wildlife species seen by the householders.

Statistical analysis

For the analysis we employed a two-fold strategy, we
evaluated the impact of the fogging both temporally and
spatially. For the temporal analysis we employed nega-
tive binomial generalized linear models (NB-GLM) that
accounted for overdispersion in SF counts [56]. As a first
approach, models considered all SF species abundance,
separating groups according to the feeding habit i.e.,
whether sand flies have been recorded biting humans or
not (i.e., anthropophilic or zoophilic) [42], and sampling
habitat (peridomicile and domicile). We also considered
the monthly average and the standard deviation, S.D., of
daily rainfall, with a one month lag, the lag selected with
a cross-correlation analysis [57], as a covariate to ac-
count for seasonal abundance fluctuations in SF abun-
dance and whether a house was fogged or not. We
included rainfall S.D. as covariate to account for rainfall
variability as an underpinning factor of SF abundance,
specifically SF abundance could be sensitive not only to
the amount of rain during a time period, a quantity mea-
sured by the average rainfall, but also to the intensity of
the rainfall events [12], a quantity measured by the S.D.
For the insecticide we considered whether fogging inde-
pendently of the application date had an impact on SF
density (Fogging A in the models) or whether the fog-
ging impact was different for each of the two fogging
rounds (Fogging B in the models). We further developed
models for the three main dominant vectors in our study
site: Lu. gomezi, Lu. panamensis and Lu. trapidoi (which
accounted for ~60% of the collected sand flies, Table 1
and [46]) and for the two most abundant non vector-
species Lu. triramula and Lu. dysponeta (Table 1); compa-
ring temporal dynamics in the domicile and peridomicile
of fogged and control houses. For the spatial analysis we
also employed NB-GLMs. In these models we looked at
the cumulative number of sand flies caught after the fog-
gings as a function of housing destituteness (HP), the
peridomiciliary environment index (PI), the vegetation
structure index (VI) and the animal abundance/richness
indices. We considered possible non-linearities in the asso-
ciation of HP, PI, VI and the animal abundance/richness in-
dices with SF abundance by fitting polynomials and models
with breakpoints [40], ie., threshold values in the inde-
pendent variables at which the association with a
dependent variable can change quantitatively, employing
hockey stick regressions (see Additional file 1: Protocol S1
for further details). For both the temporal and spatial
models we performed model selection based on the Akaike
Information Criterion, a tool for model selection that
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Table 1 Sand Fly species abundance in the control and
fogged houses

Species Control Fogged
Domicile Peridomicile Domicile Peridomicile

Lutzomyia trapidoi 562 158 228 203
(Fairchild & Hertig)
Lu. gomezi 448 238 291 169
(Nitzulescu)
Lu. panamensis 29 470 88 310
(Shannon)
Lu. triramula 71 902 25 152
(Fairchild & Hertig)
Lu. dysponeta 67 193 126 104
(Fairchild & Hertig)
Other 148 79 68 76
anthropophilic
species
Other zoophilic 87 116 51 88
species
Unidentified 2 1 4 4
Total 1484 2157 881 1106

The bottom row shows the total number of individuals sampled in each
category. A total of 24 houses were monitored (12 as control and 12 for the
fogging) and each house underwent a total sampling effort of 24 trap nights
(12 Domicile and 12 Peridomicile). Abundance is for combined male and
female counts.

guides the choice of a “best model” based on its likelihood
to explain the data with a minimum number of parameters
[56]. For the best temporal model, beyond the assumption
of the NB-GLM, we tested the temporal independence of
the residuals (error) through the inspection of the autocor-
relation function, ACF, and the partial autocorrelation
function, PACF [57]. For the best spatial model we tested
the spatial independence of the residuals with the Moran’s
I test.

Results

Sand fly fauna description

We collected 5628 sand flies in the 576 sampling night-
traps (Table 1). We were unable to identify 11 individuals,
all other individuals belonged to 24 SF species (full details
have been published elsewhere [46]). Of the collected spe-
cies, 8 had a proven vector status [41,42] and 3 accounted
for more than 50% of the samples: Lu. trapidoi (20%) Lu.
gomezi (20%) and Lu. panamensis (17%). Of the remaining
SF species, Lu. triramula (20%) and Lu. dysponeta (8.7%)
were the most abundant. Sand flies were more abundant
outside (peridomicile) than inside (domicile) the studied
houses (58% vs 42%). Table 1 also shows that total abun-
dance of sand flies was reduced by approximately 40%
inside the fogged houses (i.e, domicile; control: 1484,
fogged: 881) and close to 50% in the peridomiciliary envi-
ronments (control: 2157, fogged: 1106). Further details are
presented by Calzada et al. [46]
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Temporal impacts of insecticide thermal fogging on all
Sand Fly species

Additional file 4: Table S1 shows the different models
considered to explain the population dynamics of all the
SF species in the domicile (Figure 1A) and peridomicile
(Figure 1B). Rainfall (Figure 1C) seemed to be an im-
portant factor shaping SF population dynamics, so was
insecticide fogging (Figure 1D). The best model found
statistically significant differences in SF abundance ac-
cording to vectorial status (vector, i.e., anthropophilic or
non-vector, i.e., zoophilic), environment (domicile and
peridomicile), rainfall (a second degree polynomial),
fogged vs control houses, as well as the interaction of
vectorial status with the fogging and the environment
(Additional file 4: Table S1). Quantitatively, the best
model (Table 2) indicates that non-vector (zoophilic)
sand flies were most abundant in the peridomiciliary en-
vironments (on average 308/per house and sampling
night), followed by vector (anthropophilic) SF species
(about 22% less individuals than non-vectors in the
domicile). Inside the houses (domicile environment),
vector species (anthropophilic) were the most abundant
(about 78% of the zoophilic sand flies observed in the
peridomicile). Fogging reduced the abundance of vector
sand flies inside the houses by 51%, and 77% in the
peridomicile (when compared with non-vector species in
the peridomicile). Rainfall variability, measured by Rainfall
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S.D., had a concave relationship with SF abundance, i.e., a
second degree polynominal with a minimum, in other
words SF abundance was higher at low and high levels of
rainfall variability, a feature that could reflect the different
responses of SF to environmental variability. As suggested
by Chaniotis et al. [12] some sand flies might become very
abundant when rainfall is sustained, while others might
thrive when there is a high alternancy of dry and wet
periods. All the assumptions of the GLM model were not
violated and model residuals were not autocorrelated. In
general, all the estimated parameters accurately described
the patterns observed in Figure 1.

Temporal impacts of insecticide thermal fogging on the
most abundant Sand Fly species

Population dynamics of the five most abundant species
can be observed in Figure 2. Figure 2A and 2B show,
respectively, domicile abundance of fogged and control
houses. Figure 2C shows peridomicile abundance of fog-
ged houses, while Figure 2D shows peridomicile abun-
dance of control houses. Inside the houses (domicile) the
most abundant species were Lu. trapidoi and Lu. gomezi
with a higher abundance in the control houses. In the
peridomicile of the fogged houses Lu. trapidoi and Lu.
panamensis were the most abundant species, while in the
control houses, prior to the foggings, Lu. triramula was
the most abundant species. Additional file 5: Table S2 pre-
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Table 2 Parameter estimates for a negative binomial model explaining the abundance of all Phlebotomine sand fly

species in Trinidad de las Minas, Capira District, Panama

Parameter Proportional abundance change Estimate S.E. z Pr(>|z|)
Control-Peridomicile-Zoophilic 1(308)" 5.730 0451 12.712 <0.00001*
Domicile 0416 -0.878 0.268 -3.274 0.00106"
Anthropophilic 0.783 —0.245 0302 -0.812 0417
Fogged 0228 —1477 0.282 —5.246 <0.00001*
(SD. Rain)? 1.008 0.00875 0.00265 3.301 0.000964*
S.D. Rain 0.795 —-0.230 0.0689 -3338 0.000844*
Domicile*Anthropophilic 0.784° 0.880 0.377 2335 0.0195
Fogged*Anthropophilic 0482° 0.993 0.391 2.540 0.0110*

*Statistically Significant (P < 0.05). "the value inside parenthesis is the estimated

abundance for the reference group, i.e., Control-Peridomicile-Zoophilic.

* indicates a synergistic (a.k.a. interaction) effect. STo estimate the proportional abundance change of these interactions we considered the value in relation to

the estimate for the main factors.

The overdispersion parameter estimate (+ S.E.) was 1.217 + 0.164. The model considered whether a house was fogged or not (Control), the habitat (Domicile or
Peridomicile), whether species are known to feed on humans (Anthropophilic) or not (Zoophilic) and a second degree polynomial for the monthly S.D. of daily Rainfall.

sents the selection for the best model explaining the dy-
namics of the 5 most abundant species in our samples. All
species had significant differences in their domicile and
peridomicile abundance, all were sensitive to the fogging,
Lu. trapidoi and Lu. dysponeta were sensitive to the syner-
gistic (multiplicative) effects of monthly average daily rain-
fall and its standard deviation, meaning that these species
could be sensitive not only to total rainfall but also to how
variable the rainfall was during a time period, while Lu.

gomezi, Lu. panamensis and Lu. triramula were sensitive
to monthly S.D. of daily rainfall, in a non-linear relation-
ship described by a second degree polynomial, which indi-
cates these species thrive when there is sustained rain
levels or when there is a high variability in the rain levels.
In general terms all species were positively associated with
rainfall, i.e., their abundance increased following increases
in Rainfall. Lu. triramula was the most sensitive species to
the insecticide fogging (Table 3), reducing its abundance
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Table 3 Parameter estimates for the negative binomial models explaining the abundance of selected Phlebotomine

sand fly species in Trinidad de Las Minas, Capira, Panama

Parameter Species Proportional abundance change Estimate S.E. z Pr(>|z|)
Lutzomyia trapidoi 1(563) " 6.333 0.794 7.980 <0.00001*
Lu. gomezi 138" 3.647 0.220 16.586 <0.00001*

Domicile Lu. panamensis 1) " 2010 0.212 9.467 <0.00001*
Lu. triramula 1(5)" 1.646 0328 5015 <0.00001*
Lu. dysponeta 1016) " 2.752 0.745 3.694 0.000221*
Lu. trapidoi 052 -0.646 0.306 -2.108 0.0350*
Lu. gomezi 0.58 —0.551 0278 -2 0.0454*

Peridomicile Lu. panamensis 352 1.258 0.258 4.886 <0.00001*
Lu. triramula 9.54 2.255 0412 5468 <0.00001*
Lu. dysponeta 1.32 0.281 0.284 0.987 0.324
Lu.trapidoi 1.05 0.0486 0323 0.151 0.880
Lu. gomezi 0.32 -1.128 0292 —3.864 0.000112%

Fogged Lu. panamensis 0.60 -0515 0.271 —1.898 0.0576
Lu. triramula 0.09 —2.381 0452 -5.271 <0.00001*
Lu. dysponeta 049 -0.711 0.306 —2.323 0.0201%

i Lu.trapidoi 0.67 —-0.397 0.142 —2.792 0.00524*

Mrfain Lu. dysponeta 0.66 -0414 0.132 -3.125 0.00178"
Lu.trapidoi 0.71 -0.337 0.0624 -5401 <0.00001"
Lu. gomezi 0.75 —-0.289 0.100 —2.884 <0.00001*

S.D-Rain Lu. panamensis 0.76 -0.278 0.0936 -2973 <0.000071*
Lu. triramula 146 0379 0.158 2399 <0.00001"
Lu. dysponeta 1.07 0.0669 0.0602 111 0.266

S DA\-Rain Lu.trapidoi 1.03 0.0341 0.00859 3973 <0.00001*
Lu. dysponeta 1.01 0.0142 0.00812 1.751 0.0798
Lu. gomezi 1.01 0.0101 0.00386 2630 0.00855"

S.D-Rain’ Lu. panamensis 1.01 0.0140 0.00358 3928 <0.00001*
Lu. triramula 0.99 —-0.0106 0.00586 -1.807 0.0708

*Statistically Significant (P < 0.05). "the value inside parenthesis is the estimated abundance for the reference group, i.e,, Control-Domicile. * indicates a synergistic
(a.ka. interaction) effect. The overdispersion parameter estimates (+ S.E.) were 0.973 +0.210 for Lu. trapidoi, 1.182 + 0.234 for Lu. gomezi, 1.487 + 0.372 for Lu.

panamensis, 0.623 + 0.141 for Lu. triramula and 1.255 +0.302 for Lu. dysponeta.

Parameter indicates the different variables considered in the models for the selected sand fly species (see column with heading Species). Models considered the
habitat (Domicile or Peridomicile), the Fogging (Fogged), and a second degree polynomial for the monthly S.D. of daily Rainfall (S.D.-Rain) for Lutzomyia gomezi,
Lu. panamensis and Lu. triramula; and the interaction between S.D. and the mean (M-Rain) monthly daily rainfall for Lu. trapidoi and Lu. dysponeta.

by up to 91%, followed by Lu. gomezi (68%), Lu. dysponeta
(51%), Lu. panamensis (40%). In contrast, Lu. trapidoi in-
creased its abundance by 5% (Table 3).

Spatial impacts of insecticide thermal fogging on Sand
Fly abundance: the role of destitute housing

Figure 3A shows the spatial patterns of housing destitu-
teness, HP, which can be interpreted as a weighted average
of the different components considered for the index
(Additional file 6: Table S3). In general, high scores indica-
tive of housing destituteness, ie., features that could ease
SE entrance into houses, resulted in a high HP index.
Spatial patterns of SF infestation per trap the night before
(Figure 3B) and after the first (Figure 3C) and second

fogging (Figure 3D) in general suggest that, especially after
the foggings, large infestations were positively associated
with destitute housing conditions (Figures 3 and 4), but not
with the peridomicile environment (Additional file 7: Figure
S2, for index interpretation see Additional file 8: Table S4)
the vegetation structure (Additional file 9: Figure S3, for
index interpretation see Additional file 10: Table S5) or the
animal abundance indices (Additional file 11: Figure S4, for
index interpretation see Additional file 12: Table S6), or
household residents (Additional file 11: Figure S4L). Never-
theless, the larger infestations before fogging were associ-
ated with a high peridomicile index (Additional file 7:
Figure S2A), i.e, houses that had plenty of resting sites
that were neither ornamental trees nor vegetable crops
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Figure 3 Spatial patterns. (A) Housing destituteness (HP) index. Circle size is proportional to the HP index, in the inset legend C (grey) stands
for control and F (black) for fogged. Average sand fly density per house and trap night (B) Before the Fogging (C) After the 1st Fogging (D) After
the 2nd Fogging. In (B), (C) and (D) circle size is proportional to the abundance of sand flies, see inset legend in (B) for reference (25 Sand Flies/
trap night), and values were standardized by dividing the total cumulative abundance of each period by the number of trap nights in each

(Additional file 8: Table S4). In general, infestations seemed
to be unrelated with whether the vegetation was tall, ie;
high Vegetation Index, VI values, or ground cover ie., low
VI values (Additional file 10: Table S5, Additional file 9:
Figure S3). Figure 4A shows the association between
cumulative SF abundance prior to the fogging and HP.
Figure 4B shows the association between cumulative SF
abundance after the foggings and HP, which shows a clear
pattern were the houses with the highest HP, on average,
had the highest infestation. The curve shown in Figure 4B
is the fit from a hockey stick regression (Table 4), which
showed that, in general, after the foggings the highest in-
festations were observed in the most destitute houses,
with sandflies increasing about ten times (11.6) for each
0.1 increase in HP above 0.586. For values below 0.586 in-
festation levels were homogeneous, with an average of 90
sand flies over 9 night-traps. The model presented in
Table 4 had residuals that followed the assumptions of a
NB-GLM and were not spatially correlated according to a
Moran’s I test (/=0.11; P > 0.18). The model in Table 4 was
also selected from a larger ensemble of models that consi-
dered fogging, HP, PI, VI and the animal abundance indices
monotonically associated with SF abundance, as well as,
HP interactions with other variables (Additional file 13:
Table S7). Finally, Figure 4C and 4D show the difference in

the number of sand flies captured in the domicile and
peridomicile, respectively, before and after the fogging of
the studied households. Figure 4C shows that inside the
houses, in general, SF density decreased or stayed the
same, but for high HP, SF abundance tended to increase
after the foggings. In contrast, Figure 4D shows that in the
peridomicile environment SF abundance decreased inde-
pendent of the degree of HP.

Discussion

The leishmaniases primarily affect poor people worldwide
[39], but why poor populations are the most susceptible to
CL infection in the New World requires a better under-
standing of how socio-economic human conditions alter
CL transmission ecology [40,41]. SF abundance plays a
major role in CL transmission, baseline results from our
study area [45] and the whole Republica de Panama
[41,42,58] have shown a positive association between
domiciliary vector abundance and CL human infections.
Thus, our results suggest that housing quality, a socio-
economic and ecological factor, could be a major ento-
mological risk determinant for human infection with
Leishmania spp parasites in rural Panamd. Our data
clearly show how, beyond the transient impacts that in-
secticide applications could have on SF vector abundance,
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differences in housing quality may drive heterogeneities in
SF house infestation, supporting suggestions from earlier
SF insecticide control trials [23,32], which highlighted the
role that poor housing quality could have on hampering
SF control by insecticides. We found that houses with fea-
tures that ease insect entrance, such as lack of anti-insect
screening or with abundant holes, that were built with
poor quality building materials (e.g., mud, which is more
likely to generate places that can serve as resting sites for
sand flies), or materials that can shorten the active lifespan
of insecticides (e.g., wood or mud as opposed to concrete
[23,26,32]), had the largest share of sand flies after the
ITFs. In that sense, our results encourage further entomo-
logical research to understand exactly what factors make a

household more susceptible to the infestation by sand
flies. It will be ideal to devise simple housing modifications
that can reduce the likelihood of SF household entry, as
has been carried out with malaria vectors [59]. Also, a bet-
ter understanding of the impact of peridomiciliary insecti-
cide application on the recruitment of new adult sand flies
into households requires more detailed study. As observed
by Perich et al. [22], large scale barrier spraying can sig-
nificantly reduce the number of sand flies entering an
area. A similar decline in the number of sand flies inside
the houses after an indoor plus peridomiciliary spraying
was observed in Brazil [26] and Bolivia [25]. Nevertheless,
it is not clear if there is an additional impact on SF abun-
dance via a decrease in the recruitment of adults that may

Table 4 Parameter estimates for a negative binomial model explaining post intervention heterogeneities in sand fly

abundance across the households

Parameter Proportional abundance change Estimate S.E. z Pr(>|z])
Abundance 1(90) " 4501 0.159 28354 <0.00001*
HP > 0.586 116 4748 1.060 4481 <0.00001%

*Statistically Significant (P < 0.05). Ithe value inside parenthesis is the estimated post intervention abundance.
Overdispersion parameter for the model was (+ S.E.) 2.01 + 0.55. The breakpoint for the Housing Destituteness Index (HP) was fixed at 0.586 and was estimated by

a Brent optimization of the model Akaike Information Criterion.
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emerge from the peridomiciliary ground, given its poten-
tial to harbor SF larvae, either in tree trunks or the open
ground [60-65] as the insecticide may also act upon SF
larvae. For example, here we did not observe a rebound of
peridomiciliary SF abundance after the 1st ITE and this
may be related to the recruitment of adults from larvae.
However, it may also be related to eliminating a major
source/refuge of adult sand flies with the I'TFs [33].

Regarding the temporal impacts of deltamethrin on SF
abundance in the fogged houses, insecticide action
seemed to last up to 4 months, a shorter effect than
what has been reported for higher concentrations of this
insecticide when applied at 4-fold concentrations
(~25 mg a.im™), in residual spraying [25,26] or 2 to 10-
fold concentrations (~12.5 to 60 mg a.im™), when used
on impregnated nets and curtains [28,29], where impacts
seemed to last over 6 months. We think the difference
may be a direct effect of insecticide concentration, which
was significantly lower in our trial (~6 mg a.im™). Also,
unlike previous studies, we controlled for seasonality in
SF abundance by incorporating rainfall in our temporal
models, thus improving the ability to properly quantify
the effect of the insecticide when compared with pre-
vious studies on SF insecticide control [20-35]. Our ob-
servations also raise some questions about the ideal
frequency for insecticide application. For example, the
only previous study in Panama applied insecticides every
2 months based on practices for mosquito control [19],
but our study suggests that such frequency might be too
high given the low reactivity, ie., ability of sand flies to
respond to changes in their population abundance,
which, for example, can be very high for mosquitoes
[66]. Nonetheless, more detailed analysis of SF species
population dynamics are necessary to better understand
what would be an ideal frequency for insecticide applica-
tion based on the dynamical properties of SF popula-
tions and not merely on insecticide bioassays.

A point deserving further attention is the impact of in-
secticide application on the community of SF species, es-
pecially when several vectors co-occur [67]. Even though
Lu. gomezi and Lu. panamensis, two major vectors of
Leishmania panamensis, the CL parasite in our study
area, significantly reduced their abundance (more than
50% less abundant after the ITFs), Lu. trapidoi, trad-
itionally the major CL vector in Panama [42], increased
its abundance by 5% after the ITFs. This observation
maybe a byproduct of externally reducing the abundance
of other dominant vectors and/or reflect some un-
accounted variability of species seasonality [12]. How-
ever, it illustrates the need to more carefully look at
vector control impacts, not only on dominant species
but on the whole community of vectors [46,68,69]. We
also need to acknowledge that a better handling of SF
seasonality could have been possible in our models if we
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had access to more climatic variables, but only rainfall
was tracked at the only weather station in our study area
and we did not have resources to track meteorological
information on our own.

Finally, our study has some limitations due to its rela-
tively small scale. We are unable to tell whether there
was a community wide impact of the patchy ITF on 12
of the 24 houses, and a better house pairing according
to the destituteness was impossible given the lack of
consent. However, we are confident our analysis shows
that at the household level there is a reduction of SF
abundance following ITF and that heterogeneities in SF
reduction are related to housing quality. Still, scaling up
SF insecticide control trials could be a desirable first step
to improve CL control as it could allow a better under-
standing of the role of: (i) peridomiciliary (ii) patchy vs
uniform and (iii) differential insecticide applications
[33]. However, from our own experience, this is a major
challenge given the neglected nature of CL and the lack
of interested partners (funders, insecticide developers)
on making larger scale trials possible or improving CL
control.

Conclusion

Our data clearly illustrate the importance of accounting
for housing quality when evaluating insecticide control
for leishmaniasis vectors and highlight the major role
that destitute housing may have as a driving factor in
the association between leishmaniasis and poverty.

Additional files

N
Additional file 1: Protocol S1. Power estimation [19,53,70] (PDF 45 kb)

Additional file 2: Figure S1. Power Analysis (A) Assuming a 20%
reduction on Sand Fly Abundance (B) Assuming a 50% reduction on
Sand Fly Abundance. ITF = Insecticide Thermal Fogging. For further
details see Protocol S1.

Additional file 3: Protocol S2. Supplementary Methods
[12,19,40,42,55,56,60-63,70-72].

Additional file 4: Table S1. Selection of the best negative binomial
model explaining the abundance of all Phlebotomine Sand Flies in
Trinidad de Las Minas, Capira, Panama, following two foggings with
deltamethrin [6 mg aim™].

Additional file 5: Table S2. Model selection for the best negative
binomial models explaining the abundance of the five most abundant
sand fly species in Trinidad de Las Minas, Capira District, Panam4,
following two insecticide foggings with deltamethrin [6 mg active
ingredient /m?.

Additional file 6: Table S3. Principal components analysis used to
estimate the housing destituteness index.

Additional file 7: Figure S2. Peridomicile index and sand fly
abundance (A) Cumulative sand fly abundance before the fogging as a
function of the peridomicile index, PI (three nights) (B) Cumulative sand
fly abundance for the nine nights that contained the two interventions
as a function of PI. The solid black line is the fit from a negative binomial
model (C) Changes in domiciliary sand fly density per house and trap
night as a function of PI (D) Changes in peridomiciliary sand fly density
per house and trap night as function of PI. In panels (A) to (D) symbols
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indicate whether a house was intervened, triangles, or not, circles. In
panels (C) and (D) black symbols represent the pre-intervention densities
and green symbols post-intervention densities. To ease the tracking of
changes in each house we joined the pre and post intervention densities
with a line whose color is blue when sand fly density decreased and red
when sand fly density increased. In panel B the dark line is the fit of an
NB-GLM, where the intercept (+ S.E) is 494 +£0.18 and the slope (+ SE) is
0.67 +0.25. This means that for a Pl of 0 there where ~140 sand flies and
this number was doubled by each unit increase in PI. (TIFF 1986 kb)

Additional file 8: Table S4. Principal components analysis used to
estimate the peridomicile index.

Additional file 9: Figure S3. Vegetation index and sand fly
abundance (A) Cumulative sand fly abundance before the fogging as a
function of Vegetation Index, VI (three nights) (B) Cumulative sand fly
abundance for the nine nights that contained the two interventions as a
function of VI. The solid black line is the fit from a negative binomial
model (C) Changes in domiciliary sand fly density per house and trap
night as function of VI (D) Changes in peridomiciliary sand fly density per
house and trap night as a function of VI. In panels (A) to (D) symbols
indicate whether a house was intervened, triangles, or not, circles. In
panels (C) and (D) black symbols represent the pre-intervention densities
and green symbols post-intervention densities. To ease the tracking of
changes in each house we joined the pre and post intervention densities
with a blue line when sand fly density decreased and red when sand fly
density increased.

Additional file 10: Table S5. Principal components analysis used to
estimate the vegetation structure index.

Additional file 11: Figure S4. Host abundance/richness and sand fly
abundance. Cumulative sand fly abundance before the fogging (three
nights) as a function of (A) Wild animal index (B) Domestic animal index
(C) Wild and domestic animal index (D) Wild animal species richness (E)
Domestic animal species richness (F) Household human density.
Cumulative sand fly abundance after the foggings (nine nights) as a
function of (G) Wild animal index (H) Domestic animal index (I) Wild and
domestic animal index (J) Wild animal species richness (K) Domestic
animal species richness (L) Household human density.

Additional file 12: Table S6. Principal components analysis used to
estimate the animal abundance indices.

Additional file 13: Table S7. Model selection for the best negative
binomial model explaining post-fogging sand fly abundance in the
houses.
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