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Abstract

important diseases of cattle such as bovine babesiosis and

pathogen-free adult R. microplus.

dependent effects on differential up-regulation of CD86 in

microplus-cattle interactions at the blood-feeding interface.

Background: Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to
evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically

intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management
strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains
molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and
pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses
including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression
and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed,

Methods: Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 pg/mL of SGE followed by
1,6, 24 hr of 1 ug/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure
changes in co-stimulatory molecule expression and cytokine response.

Results: Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R.
microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages
when treated with 1 pug/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was
increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of
TNFa, IFNy and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression.

Conclusions: Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-

Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-
dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also
suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will
provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R.

anaplasmosis. An understanding of the biological

bovine macrophages activated by the TLR4-ligand, LPS.

Background

Ticks are external parasitic organisms that have to over-
come host defence mechanisms to obtain blood for their
survival. They also serve as vectors of pathogens causing
important diseases in animals and humans [1]. As a
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result, complex tick-pathogen-host interactions have
developed through evolutionary time. The southern cat-
tle tick, Rhipicephalus (Boophilus) microplus, is one of
the most economically important parasites of livestock.
Additionally, this invasive tick species is also a signifi-
cant vector of Babesia bigemina and B. bovis that cause
bovine babesiosis, which can be deadly to cattle [2].
Alternative strategies are required to control R. micro-
plus as populations across the globe continue to evolve
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resistance to commercially available acaricides [3,4]. An
understanding of the biological intricacies underlying
vector-host-pathogen interactions, including those invol-
ving the host immune system, is required to innovate
sustainable tick management strategies that can ulti-
mately mitigate the impact of animal and zoonotic tick-
borne diseases.

Tissue injury at the tick feeding site activates the dif-
ferent arms of the host immune system. While feeding,
ticks secrete bioactive salivary factors to modulate
humoral and cellular components of the innate and
acquired immune responses to improve reproductive fit-
ness [5,6]. This immunomodulation by salivary factors
has been shown to affect the activity of antigen present-
ing cells (APC’s), lymphocytes and other cells, and to
inhibit complement activation [7-11]. These effects on
the host immune system may also enhance the trans-
mission of tick-borne pathogens [5].

Many types of APC’s including macrophages, different
subtypes of dendritic cells (DC), and natural killer (NK)
cells reside in the skin and play a crucial role in indu-
cing protective T cell responses. Langerhans cells (LC),
a type of DC found in the skin, from guinea pig epider-
mis have been shown to acquire antigens from tick sali-
vary glands, migrate from infestation sites and present
them at local lymph nodes [12,13]. Tick-sensitized ani-
mals have greater numbers of LC at sites of tick infesta-
tion [14].

How tick saliva alters antigen presenting cell function
is not well understood. Inflammatory signals can effect
DC homeostasis, activation and differentiation [15]. Sev-
eral studies describe the effects of saliva, or salivary
gland extracts (SGE) on proinflammatory cytokine
expression in murine in vitro models. Studies with Der-
macentor andersoni, Ixodes pacificus, I. ricinus, and R.
sanguineus have shown a tick-induced shift away from
Th1 cytokines such as tumor necrosis factor o (TNFa),
interferon y (IFNy), and interleukin 1B (IL-1B), to pro-
moting up-regulation of interlukin-10 (IL-10), and inter-
lukin-4 (IL-4), which are consistent with Th2
polarization [11,16-21]. Specifically, a sphinomyelinase-
like enzyme has been identified in I scapularis that
reduces antigen specific responses and promotes Th2
polarization [18,22].

Tick saliva may direct DC differentiation and function
to drive naive CD4 T cells towards Th2 differentiation
[16,23]. Mice deficient in Langerhans cells, a subset of
skin DCs, prevent the suppression of a Thl response
when exposed to L scapularis ticks [24]. Salivary prosta-
glandin E, from I scapularis can also suppress CD4 T
cell proliferation by in vitro derived dendritic cells [25].
Altering the host immune response to a Th2 phenotype
may benefit the transmission by R. microplus of patho-
gens like the apicomplexan protozoa causing bovine
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babesiosis, which would be more successfully controlled
by a Thl response [26].

Another possible route to suppress APC’s ability to
induce a robust T cell response is by inhibiting cell
maturation and activation. Upon activation, APCs up-
regulate CD80 and CD86, which via binding to CD28
provide co-stimulatory signals for T cell activation [27].
CD80 and CD86 can modulate naive T cells towards Thl
or Th2 pathways [28-30]. While CD80 preferentially
favors Thl type T cell differentiation, CD86 promotes
IL-4 production and Th2 T cell differentiation [29,31,32].
CD86 can be differentially regulated by various cytokines
including the Th2 cytokine, IL-4 [33]. Using a murine
macrophage cell line, we demonstrated that molecules in
SGE of R. microplus have a concentration-dependent
effect on differential up-regulation of CD86 by the TLR4
ligand, LPS [34]. This CD86 up-regulation is at least par-
tially dependent on the ERK1/2 pathway, and may serve
to promote Th2 polarization of the immune response.
Here, we investigated the effects of R. microplus salivary
gland extract (SGE) on co-stimulatory molecule expres-
sion, macrophage activation, and cytokine expression in
cultured bovine macrophages.

Methods

Isolation of Tick Salivary Glands

The R. microplus Deutch strain used as the source of ticks
for this study originated from samples collected in Webb
County, TX during an outbreak in 2001. The Deutch
strain has been maintained by standard rearing practices
at the USDA-ARS Cattle Fever Tick Research Laboratory
at Moore Field, TX. The ticks were determined free of
Babesia bovis and Babesia bigemina as described pre-
viously [35] and SGE was isolated as previously described
[34]. Larvae were placed in patches and allowed to feed
following protocols approved by the Institutional Animal
Care and Use Committee of the USDA-ARS Knipling-
Bushland Livestock Insects Research Laboratory. Adult
ticks were fed for 2-3 days, cleaned with 70% ethanol and
dissected. Salivary glands were sonicated at 55 kHz for
three 20 second pulses on ice in Dulbecco’s phosphate
buffered saline (PBS) (Sigma, St. Louis, MO) and centri-
fuged at 14,000 x g for 20 minutes at 4°C. The supernatant
was collected and protein concentration was determined
by Pierce BCA (bicinchoninic acid) Protein Assay
(Thermo Scientific, Rockford, IL). The SGE was aliquoted
and subsequently frozen at -70°C.

Isolation and culture of bovine macrophages

Whole blood was drawn from healthy Hereford cows
following protocols approved by the Institutional Animal
Care and Use Committee of the USDA-ARS Knipling-
Bushland Livestock Insects Research Laboratory. Periph-
eral blood mononuclear cells (PBMC’s) were isolated by
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whole blood centrifugation using histopaque-1077
(Sigma-Aldrich, St. Louis, MO). PBMC’s were seeded
onto 24-well tissue culture treated plates in serum free
RPMI 1640 (Gibco-Invitrogen, Carlsbad, CA). Mono-
cytes were allowed to attach for 3 hrs at 37°C. Non-
adherent cells were removed by serial washes with Dul-
becco’s phosphate-buffered saline (PBS) (Sigma, St.
Louis, MO). Antibiotic-free RPMI media supplemented
with 10% heat inactivated FBS was exchanged every 3-4
days. After 8-10 days, > 95% of cells had morphological
characteristics consistent with a macrophage phenotype.

Real-time Quantitative PCR

Bovine in vitro differentiated macrophages were treated for
1 hr with 0, 1, 5 or 10 pg/mL of SGE followed by 1 pg/mL
LPS or no additional treatment. After 1, 6 or 24 hrs of LPS
treatment total RNA was extracted by spin column centri-
fugation using the RNAeasy Mini Kit (Qiagen, Valencia,
CA). RNA concentration and absorbance at 260/280 nm
was determined using a NanoDrop spectrophotometer
(Thermo Scientific, Wilmington, DE) and RNA quality was
analysed by non-denaturing agarose gel electrophoresis.
c¢DNA synthesis and real-time PCR was performed as pre-
viously described [34]. For the amplification of specific
mRNA, pre-inventoried 20x TagMan MGB probe-primer
sets for bovine TNF and GAPDH were purchased (Applied
Biosystems, Foster City, CA). For other bovine genes, cus-
tom probe-primer sets were designed as shown on Table 1
(Sigma-Aldrich, St. Louis, MO). PCR was performed in a
CEX96 Real-Time PCR Detection System (BioRad, Her-
cules, CA). Reactions were performed in duplicate. Relative
mRNA expression was calculated by comparative C;-
method [36]. GAPDH was used as the endogenous control.

ELISA

Bovine in vitro differentiated macrophages were treated
for 1 hr with 0, 1, 5 or 10 pg/mL of SGE followed by 1
pug/mL LPS for 24 hours. Cell culture supernatant was
collected and quantities of TNFoa and IFN-y were
assessed using bovine ELISA Kkits (R&D Systems,
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Minneapolis, MN). Briefly, undiluted supernatant was
incubated in the ELISA plate for 2 hrs, followed by
washing and incubation with secondary reagents as sup-
plied. Plates were read using a Spectramax Plus Micro-
plate Spectrophotometer and Softmax Pro analysis
software (Molecular Devices, Sunnyvale, CA).

Statistics

Results of 3-4 independent experiments are expressed as
means + SE. Significant differences between means were
determined using unpaired Student’s t-tests, or two-way
analysis of variance (ANOVA) with P < 0.05 considered
statistically significant.

Results

Changes in co-stimulatory molecule expression induced
by SGE

Co-stimulatory molecule mRNA profiles of in vitro dif-
ferentiated bovine macrophages were assayed by quanti-
tative real-time PCR after 1, 6, or 24 hrs of treatment
with or without 1, 5, or 10 pg/mL of SGE from adult
ticks fed on cattle for 3 days, and 1 pug/mL of LPS.
CDB80, CD86, CD40 and CD69 were up-regulated in the
presence of LPS (Figure 1). SGE alone did not alter mes-
sage expression compared to untreated control at any
concentration tested. 5 pg/mL SGE alone is represented
in Figures 1 &2. The 1 hr pre-treatment of SGE did
reduce LPS induced up-regulation of CD80 and CD69
message in a dose dependent fashion (P < 0.05); how-
ever, CD40 expression was not significantly changed.
Bovine macrophages treated with 1 pg/mL SGE and LPS
showed increased CD86 expression at 6 hrs as compared
to LPS alone, SGE alone or untreated cells. All concen-
trations of SGE treatments with LPS showed decreased
CD86 expression after 24 hrs as compared to LPS alone.

Changes in cytokine expression following exposure to
SGE

Cytokine mRNA expression levels were measured at 1, 6
and 24 hrs after LPS stimulation in the presence or

Table 1 Genes analysed by Tagman quantitative real-time PCR

Gene name NCBI Accession Sense Anti-sense Probe: FAM-TAMRA

CD8e6 NM_001038017 TAAGGCCGACAGCAGTTTCC TCACCCCGTTATTAAGATGATAGC TCCCAGCTCTGCTTCCAGTCGGGT
CD8o Y09950 GCATTGTGATCCTGGCTCTG CTGATCATTAACCTCACGGAAGTC  TGTCGGACAGTGGCACCTACACCT
CD40 NM_001105611 GCATTGTGATCCTGGCTCTG CTGATCATTAACCTCACGGAAGTC  TGTCGGACAGTGGCACCTACACCT
CDe9 NM_174014 ACCTTGGCCCAAAACTTTTGC CAGCCCGATCCAGTGTTCAG AACATGGTGCCACGCTTGCTGTCA
IFN-y NM_174086 GAAAGCGGAAGAGAAGTCAGAATC  CAAATATTGCAGGCAGGAGGAC ACGTTGATGCTCTCCGGCCTCGAA
IL-12p40 NM_174356 TGTGACACTCCTGAAGAAGATGG CCAAACTCTTTGACTTGGATGGTC TGCCAGAGCCCAAGACCTCACTGC
IL-10 NM_174088 CTCTGTTGCCTGGTCTTCCTG TGGTTGGCAAGTGGATACAGC CAGCCAGCCGAGATGCGAGCACC
IL-4 NM_173921 AGCAAGACCTGTTCTGTGAATG CAGCTTCAACACTTGGAGTATTTC AGCCAAGACGAGCACAAGTACGCT

Gene names, NCBI gene accession, sense and anti-sense primer sequences (5’ to 3') and Tagman probe sequence.
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Figure 1 Relative mRNA expression profiles of co-stimulatory molecules exposed to R. microplus salivary gland extracts over 24 hrs.
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Cultured bovine macrophages were unstimulated or stimulated for 1 hr with 0, 1, 5, 10 ug/mL SGE followed by 1, 6, or 24 hrs of 1 pug/mL LPS
or no LPS. Total RNA was extracted and real-time PCR performed to measure CD80, CD86, CD40, and CD69 message levels. N = 3-4 independent
experiments. * P < 0.05 compared to LPS, # P < 0.05 compared to Control or SGE alone.

absence of varying SGE concentrations (Figure 2). No
significant differences in IL-4 message were detected
with SGE alone, LPS alone, and LPS in combination
with SGE at any concentration tested. However, TNF,
IFEN-y, and IL-12 mRNA expression was significantly
decreased in LPS with SGE groups in a dose-dependent
fashion when compared to LPS alone, SGE alone, or
unstimulated control cells. Protein expression of TNFa
and IFN-y were measured in cell supernatant after 24
hrs of LPS stimulation (Figure 3). TNFa and IFN-y were
not detected in the control group, or the groups
exposed to 1, 5, and 10 pg/mL SGE without LPS stimu-
lation. A dose-dependent decrease of cytokine expres-
sion was observed with the addition of SGE when
stimulated with LPS. Taken together, these data indicate
R. microplus SGE contains factor(s) that supress LPS-
induced stimulation of macrophage activation, and cyto-
kine responses.

Discussion

Cattle infested with R. microplus have been shown to
reduce circulating bovine T and B cell numbers, and
decreased cell responsiveness [37]. By comparison to
innately resistant B. indicus cattle, less resistant B.

taurus breeds showed reduced numbers of basophils
and eosinophils. Bovine microarray studies have shown
that R. microplus differentially alters gene expression in
susceptible B. taurus cattle as compared to Bos indicus
breeds [38,39]. The expression of hemostatic proteins
and adhesion molecules controlling coagulation and the
recruitment of immune cells into sites of infestation,
respectively, was also altered [40,41].

This study expands our investigations documenting
how SGE from adult R. microplus affects the host’s abil-
ity to mount a successful immune response by altering
co-stimulatory and activation marker expression of
bovine macrophages in vitro. Similar to our previous
report using a mouse macrophage cell line [34], bovine
macrophage CD40, which binds CD40L on T cells, was
not significantly affected by exposure to SGE. At rela-
tively low physiologic concentrations of SGE, as
observed in our previous report, CD86 is up-regulated
after 6 hours of LPS stimulation, but this effect was not
seen at higher SGE concentrations. This finding is con-
sistent with concentration-dependent bi-modal
responses to differing levels of exposure to tick salivary
proteins in the skin microenvironment and systemic
responses. Low to moderate infestations with R.
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Figure 2 Relative mRNA expression profiles of cytokines exposed to R. microplus salivary gland extracts over 24 hrs. Cultured bovine
macrophages were unstimulated or stimulated for 1 hr with 0, 1, 5, or 10 pg/mL SGE followed by 1, 6, or 24 hrs of 1 pg/mL LPS or no LPS.
Total RNA was extracted and real-time PCR performed to measure TNFa., IFN-y, IL-12, and IL-4 message levels. N = 3-4 independent experiments.
* P <005 compared to LPS, # P < 0.05 compared to Control or SGE alone.
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microplus has been shown to induce an IgE response in
cattle, whereas high infestations show increases in IgG
antibody production [42]. CD86 expressed on human B
cells can also promote IgE production when stimulated
with IL-4 [43].

In contrast to results obtained with murine RAW
264.7 cells, in vitro differentiated bovine macrophages
demonstrated a dramatic decrease in CD80 and CD86
mRNA expression by 24 hours of exposure to 5 and 10
pg/mL of SGE in the presence of LPS. These divergent
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pg/mL LPS or no LPS. After 24 hrs, the cell culture supernatant was tested by ELISA. N = 4 independent experiments. * P < 0.05 compared to
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results highlight the differences in response between
murine and bovine systems. Higher concentrations of
saliva from adult R. sanguineus females fed for seven
days can inhibit differentiation and maturation of mur-
ine bone-marrow-derived dendritic cells including CD80
and CD86 expression [23]. I ricinus saliva pulsed den-
dritic cells were first reported to drive a Th2 response
using 15 pg/mL saliva from females fed for 5.5 days
[16,17]. In the presence of IL-1pB, these DCs showed
increased CD80 and CD86 expression and increased IL-
4 production leading to Th2 priming of naive CD4 T
cells. Prostaglandin E, from I scapularis saliva was
shown to increase CD86 expression of LPS stimulated
murine bone-marrow derived DC, while it inhibited IL-
12p70 and TNFa protein expression in culture superna-
tants [25]. We did not observe changes in IL-4, but
TNFa, IL-12p40, IFN-y, CD80 and CD86 mRNA
expression were decreased following exposure to R.
microplus SGE at concentrations < 10 pg/mL. These
findings could be explained by differing immunoregula-
tory proteomes among species, varying concentration of
salivary components tested, as well as changing compo-
sitions of salivary gland protein profiles during blood
feeding [11,44-46].

These data support the hypothesis that in addition to
altering APC function, the overall maturation and acti-
vation may be actively suppressed by molecules present
in salivary glands of R microplus. During the process of
maturation macrophages and immature DCs change
from phagocytic antigen processors to highly efficient
activators of T cells. Up-regulation of CD80 and CD86
are markers of cell maturation as well as CD69. CD69 is
expressed following activation in all bone marrow-
derived cells [47]. The role of CD69 in the activation
and regulation of the bovine immune response to tick
salivary molecules is unknown. Our results document
that CD69 expression is significantly reduced when SGE
is present prior to LPS activation. Thus, tick salivary fac-
tors may actively prevent APC maturation needed for
proper T cell activation. Additionally, CD69 is a com-
plex co-stimulatory and immunoregulatory molecule as
reviewed in [48]. CD69 may act as a proinflammatory
receptor, promoting TNFa, nitric oxide secretion and
IL-2 production, which increase T-cell proliferation.
Knockout of CD69 in a murine asthma model showed
increased eosinophil recruitment and enhanced Th2
cytokines in lung tissue [49]. Therefore CD69 may play
a role in limiting Th2 responses. Further studies are
needed to elucidate the role of CD69 in tick immunore-
gulation of host responses.

In adult B. taurus, ticks modulate host immune
responses away from a Thl profile by decreasing IFNy,
while promoting a Th2 phenotype via increased IL-4
production [18,19,23]. Moreover, this Th2 response
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appears to facilitate pathogen transmission [50,51]. By
comparison, young calves demonstrate a strong innate
immunity to B. bovis that has been characterized as a
Thl response with macrophage induction of IL-12 and
early IFN-y response by NK cells [52,53]. Increasing evi-
dence points to the central importance of macrophages,
DCs and NK cells in the spleen-dependent immune
response of calves to B. bovis [54,55]. IL-12 produced by
B. bovis exposed monocytes was sufficient to drive IFN-
v production by NK cells [56]. Evidence of crosstalk
between human DCs and NK cells has revealed that
DCs can improve the effector function of NK cells and
in response NK cells can promote maturation and
immunostimulatory properties of DCs [57]. This interac-
tion may be a likely target for immunosuppression by
tick salivary factors. R. sanguineus has been shown to
suppress IL-12 production in murine bone-marrow
derived DCs after LPS stimulation [23]. To the best of
the authors’ knowledge, this report is the first to docu-
ment that R. microplus salivary gland proteins reduce
IL-12 message in bovine macrophages activated by LPS.
Reduced IL-12 is consistent with lower levels of IFN-y
and TNFa, which correlate with the suppression of a
Thl response. These studies are limited to largely look-
ing at changes in mRNA message profiles, and have not
been correlated to protein levels. Additional studies are
warranted to identify and characterize the immunomo-
dulatory factors in the salivary glands of R. microplus
and investigate the molecular mechanisms affecting
bovine APCs. Examining the downstream effects on T
cell memory and effector function, NK activation and
crosstalk in cattle will contribute to our understanding
of how components in tick saliva suppress Thl
responses. Knowledge of the immunobiological intrica-
cies underlying the tick-host blood feeding interface
offers the opportunity to innovate sustainable technolo-
gies to mitigate the impact of R. microplus on livestock
production systems globally.

Conclusions

Molecules in the salivary glands of adult R. microplus
showed bimodal concentration-, and time-dependent
effects on differential up-regulation of CD86 in bovine
macrophages activated by the TLR4-ligand, LPS. Proin-
flammatory cytokines and the Thl promoting cytokine,
IL-12, were down regulated in a dose-dependent man-
ner. The co-stimulatory molecule CD80 and the activa-
tion marker CD69 were also suppressed by salivary
gland extracts. Our results indicate that salivary gland
factors may prevent activation of the innate immune
system in parasitized cattle. Further studies to identify
and characterize the immunomodulatory salivary factors
secreted by R. microplus at the feeding site are war-
ranted to assess their molecular mechanism, and to test
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the hypothesis that they are involved in the transmission
of Babesia spp.
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