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Wolbachia strain wPip yields a pattern of
cytoplasmic incompatibility enhancing a
Wolbachia-based suppression strategy against the
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Abstract

Background: Cytoplasmic incompatibility (CI) is induced in nature by Wolbachia bacteria, resulting in conditional
male sterility. Previous research demonstrated that the two Wolbachia strains (wAlbA and wAlbB) that naturally
co-infect the disease vector mosquito Aedes albopictus (Asian tiger mosquito) can be replaced with the wPip
Wolbachia strain from Culex pipiens. Since Wolbachia-based vector control strategies depend upon the strength and
consistency of CI, a greater understanding is needed on the CI relationships between wPip, wAlbA and wAlbB
Wolbachia in Ae. albopictus.

Methods: This work consisted of a collaborative series of crosses carried out in Italy and in US to study the CI
relationships between the “wPip” infected Ae. albopictus strain (ARwP) and the superinfected SR strain. The Ae.
albopictus strains used in Italian tests are the wPip infected ARwP strain (ARwPIT), the superinfected SR strain and
the aposymbiotic AR strain. To understand the observed pattern of CI, crossing experiments carried out in USA
focused on the study of the CI relationships between ARwP (ARwPUS) and artificially-generated single infected lines,
in specific HTA and HTB, harbouring only wAlbA and wAlbB Wolbachia respectively.

Results: The paper reports an unusual pattern of CI observed in crossing experiments between ARwP and SR lines.
Specifically, ARwP males are able to induce full sterility in wild type females throughout most of their lifetime, while
crosses between SR males and ARwP females become partially fertile with male aging. We demonstrated that the
observed decrease in CI penetrance with SR male age, is related to the previously described decrease in Wolbachia
density, in particular of the wAlbA strain, occurring in aged superinfected males.

Conclusions: The results here reported support the use of the ARwP Ae. albopictus line as source of “ready-made
sterile males”, as an alternative to gamma radiation sterilized males, for autocidal suppression strategies against the
Asian tiger mosquito. In addition, the age dependent CI weakening observed in the crosses between SR males and
ARwP females simplifies the downstream efforts to preserve the genetic variability within the laboratory ARwP colonies,
to date based on the antibiotic treatment of wild captured superinfected mosquitoes, also reducing the costs.
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Background
Aedes (Stegomyia) albopictus (Diptera: Culicidae) (Asian
tiger mosquito) is known as a mosquito species with an in-
vasive behavior and a competent vector of various dange-
rous viruses [1-3]. In a few years since its arrival in Italy,
Ae. albopictus has gained the position of the most import-
ant public health vector species and is at the top of the
noxious species list [4,5]. The recent occurrence of autoch-
thonous epidemics of Chikungunya and Dengue viruses in
southern Europe [6,7] transmitted by Ae. albopictus, seems
to confirm that the currently applied mosquito control
methods (larval control, source reduction, and community
participation) are not sufficient to keep the mosquito adult
density below the epidemic risk threshold [8]. This was the
main reason that stimulated the start of research for the de-
velopment of a Sterile Insect Technique (SIT) program in
Italy [9]. Several characteristics make Ae. albopictus a
suitable candidate for SIT application, as follows: it is a
recently introduced species with population showing a
low genetic variability [10], it mainly colonizes urban
areas while showing low aptitude to establish in rural
and natural areas, it has a low active dispersal activity
[11-13], and it is relatively easy to manage under mass
rearing and artificial conditions [9]. Nowadays interest
in SIT for vector control has resurfaced, driven also by
the availability of new technologies that have the poten-
tial to provide significant improvements in cost-
effectiveness for SIT [14]. Although males of Ae. albo-
pictus may be sterilised through ionizing radiations, by
exposing mature pupae to a dose of 30–40 Gy γ-rays
[15], the technique requires laborious handling procedures
to prepare pupae for irradiation and transportation, in
addition to the need for a radiation source, which is an ex-
pensive tool that needs an infrastructure requiring a sub-
stantial regulatory framework. Developing alternative
technologies to produce “ready-made sterile males”, avoi-
ding sterilization with gamma rays, could improve the
overall competitiveness of the released insects with a con-
sequent improvement in program efficiency and a signifi-
cant decrease in costs.
In the last two decades, scientists have given an in-

creasing level of attention to Wolbachia pipientis Hertig
(Alphaproteobacteria, Rickettsiales) [16], a widespread
intracellular bacterium [17] able to manipulate host
reproduction [18]. Cytoplasmic incompatibility (CI) is
the most commonly detected type of Wolbachia-induced
reproductive alteration in insects [19]. When a popula-
tion contains individuals with different Wolbachia infec-
tion types (infected/uninfected or infected by different
Wolbachia strains) their crosses can be (i) compatible
and produce viable offspring; (ii) incompatible in both
directions and produce infertile eggs (a phenomenon
called bidirectional CI) or (iii) incompatible in one direc-
tion while the reciprocal cross is fertile (unidirectional
CI). While the genetic and biochemical mechanisms of
CI are not known, the cytological effects are clear [20].
Sperm that are “modified” by Wolbachia in the testes
show abnormal processing following fertilization of the
egg, if the appropriate Wolbachia strain is not present in
the egg to “rescue” the modification [21].
These attributes are now being studied by many re-

search groups with the aim of developing new technolo-
gies and strategies to achieve significant improvements
in pest and vector control. Wolbachia-mediated CI has
been proposed as a strategy for insect control via two
approaches: (1) using CI to cause sterility for a mass male
release strategy analogous to sterile insect technique and
consequently named “Incompatible Insect Technique”
(IIT) [14,22-25], or (2) using the reproductive advantage
afforded by Wolbachia-induced CI as a tool for a popula-
tion replacement strategy, driving desired phenotypes (e.g.,
lower affinity for pathogens) into medically important
mosquito populations [26-29]. Both of these approaches
require a method to artificially transfer Wolbachia, gener-
ating new patterns of CI [30]. In 2010, a transinfected line
(ARwP) of Ae. albopictus was generated by removing the
naturally occurring co-infection of wAlbA plus wAlbB and
microinjecting in the aposymbiotic eggs the wPip Wolba-
chia strain from Culex pipiens molestus (Diptera: Culici-
dae) [31]. The new symbiosis was shown to be stable and
efficiently transmitted from females to their offspring.
Since Wolbachia-based vector control strategies rely on
the strength and consistency of CI, a greater understand-
ing is needed of the CI pattern resulting between the
ARwP line and the naturally occurring infection types in
Ae. albopictus. The main goal of this work was to
characterize and explain the pattern of CI displayed in
crosses between the ARwP and SR mosquito lines
and evaluate its implications in the development of
Wolbachia-based strategy against the Asian tiger mosquito.
This was done by analyzing the egg hatching in cross-

ing experiments involving five laboratory mosquito lines:
i) the transinfected ARwP (harbouring wPip); ii) the nat-
urally superinfected SR strain (harbouring both the
wAlbA and wAlbB infection types); iii) the artificially
single-infected HTA strain (infected with wAlbA only);
iv) the artificially single-infected HTB strain (infected
with wAlbB only); and v) the AR strain that has had its
Wolbachia infection removed (i.e. aposymbiotic). In
addition to examining young males, for some strains we
evaluated also the effects of male aging on CI, through
crosses involving old males.

Methods
Mosquito strains and rearing conditions
This work consisted of a collaborative series of crosses:
one series (Series I) conducted at the Laboratory of Sus-
tainable Management of the Agro-ecosystems of ENEA
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(Rome, Italy); the other series (Series II) at the Department
of Entomology, University of Kentucky (Lexington,
Kentucky, USA). The Ae. albopictus strains used in
Italian tests are the wPip infected ARwP strain (ARwPIT),
the superinfected SR strain and the aposymbiotic AR
strain, as defined in a previous work [31]. In order to avoid
genetic depression, the three lines have been periodically
outcrossed with wild superinfected males, following anti-
biotic treatment for Wolbachia removal [32,33]. The
crossing experiments carried out in USA focused on the
study of the CI relationships between ARwP (ARwPUS)
and artificially-generated single infected lines, in specific
HTA and HTB, harbouring only wAlbA and wAlbB
Wolbachia respectively. ARwPUS colony originated from a
stock of about 5,000 eggs produced by the ARwPIT strain
and shipped to the University of Kentucky in 2010.
All colonies, both in Italy and USA, were maintained

as previously described [32]. Since temperature of water
used for larval rearing may influence Wolbachia density
and CI penetrance [34], care was used to keep the water
temperature between 25 and 27°C.
When testing for CI, potential confounding effects in-

fluencing fertility of the crossing experiments, such as
the nuclear background of the host, have to be limited
by the experimental design [35]. Since ARwPUS and
HTA-HTB had been generated from wild type mosquito
strains having a different geographic origin, HTA and
HTB lines (originated from US “Hou” strain) and ARwPUS
were outcrossed for 5 consecutive generations with
aposymbiotic AR males obtained from a stock of eggs
also shipped to US from Italy.
The HTA line was generated using a previously

described microinjection procedure [36]. In brief, aposym-
biotic embryos (HT1 strain) [32] were microinjected with
cytoplasm containing Wolbachia from wild type Ae.
albopictus embryos (Hou strain, Texas 1986). Adult
females developing from microinjected eggs were mated
with aposymbiotic males (HT1 strain), blood fed, isolated
and allowed to oviposit individually. Iso-female lines were
generated from hatching egg broods that originated from
females in which Wolbachia was detected. This procedure
was repeated until maternal transmission rates of
Wolbachia reached 100% for more than three generations.
For the HTA strain, selection was repeated for eight
generations. After the second generation, all iso-females
tested were PCR positive for Wolbachia using the
Wolbachia molecular diagnosis protocol described below.
Additional tests with clade-specific primers demonstrated
that infected females were positive for A-clade specific
Wolbachia (328 F, 691R primer set). All tests using B-
clade specific primers (183 F, 691R primer set) were
negative, indicating the loss of one of the Wolbachia types.
Following the eighth generation, iso-female selection was
stopped and the line was maintained using a generation
specific (non-overlapping) rearing scheme in which no se-
lection was used. Periodic (every three generations) A-clade
specific Wolbachia primers checks were performed to
ensure the stability of Wolbachia infection levels. HTB line
was obtained following a similar procedure, as described in
a previous work [37].
Wolbachia molecular diagnosis
PCR assays were performed to check that all males and
females mosquitoes used in the experiments had the
expected infection type. Molecular discrimination of unin-
fected from infected males was performed by the diagnos-
tic wsp primers (81 F-691R) that amplify a region of the
gene encoding the Wolbachia outer surface protein (wsp)
and allow for a broad identification of Wolbachia strains
[38]. Wolbachia strains wPip and wAlbB can be easily
identified by the same specific set of primers (183 F, 691R)
[39] when they live separated in their natural hosts (Cx.
pipiens and Ae. albopictus respectively). Here we were
faced with the need to discriminate wPip from wAlbB
infected individuals to ascertain the absence of contamina-
tions. For this purpose we designed the following specific
set of primers: wPF (50- CGACGTTAGTGGTGCAA
CATTTA -30) and wPR (50 AATAACGAGCACCAGCAA
AGAGT-30) by which we were able to specifically amplify
the wsp region of the wPip Wolbachia strain.
DNA was extracted from individual mosquitoes by dis-

secting and homogenizing ovaries or testis of adults in
100 μl STE with 0.4 mg/ml proteinase K [4]. The PCR
cycling procedure used was: 94°C for 5 min followed by
35 cycles of 94°C for 30 s, 55°C (54°C for the wP primers)
for 30 s, 72°C for 40 s and a single final step at 72°C for
10 min. Amplified fragments were electrophoresed on 2%
agarose gels, stained with ethidium bromide (1 μg/ml) and
visualized under ultraviolet light. DNA template quality was
assessed by amplifying a fragment of the insect mitochon-
drial cytochrome oxidase I (COI) DNA, using the primers
CI-J-1751 and CI-N- 2191 [40].
Crossing experiments
The following series of 7 crosses (female x male) were
set up in Italy: 1) SR x SR, 2) ARwPIT x ARwPIT, 3) AR x
AR, 4) AR x SR, 5) ARwPIT x SR, 6) AR x ARwPIT,
7) SR x ARwPIT.
CI relationships between ARwP, SR and AR mosquito

strains had been previously observed and shown to result
in a pattern of bidirectional incompatibility for crosses be-
tween ARwP and SR mosquito lines and unidirectional CI
by crossing ARwP with AR and SR with AR [31-33]. In
this work, we examined the variable "male age" for crosses
of SR and ARwP males with virgin 2–4 d old SR, ARwP
and AR females. For the objectives of this work, female
age was kept constant in all crosses (2–4 d).
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For Series I experiments male age was assessed from
the emergence (= Day 0). Groups of males were aged 3,
11, 19 and 27 days (± 1). For each cross type, 20 females
and 20 males were kept together in mating cages (40 ×
40 × 40 cm) over a 24 h period. Subsequently, female
groups were allowed to feed on anesthetized mice, in
accordance with the Bioethics Committee for Animal
Experimentation in Biomedical Research and following
procedures approved by the ENEA Bioethical Committee.
Gravid females were then removed from the mating cages
and transferred to a new cage (oviposition cage) and pro-
vided with oviposition devices as previously described
[31]. Eggs were counted and stored for 5 d before allowing
them to hatch, by the immersion in a nutrient broth
stimulating hatching [9]. In crosses with no egg hatch,
females were dissected to check for the presence of
spermatozoa. Males were kept in the original cages. After
removing the first groups of females, a new cohort of vir-
gin females was added to the cages containing males at
1:1 female:male ratio. Following this procedure, the CI re-
lationship between the different Wolbachia infections was
investigated under conditions similar to those common to
a release of young incompatible males, getting older, more
experienced and consuming their sperms in the field. This
cycle was repeated for the four male age-classes.
The general protocol described above was used also for

Series II experiments set up to study the CI relationships
between the ARwP line and the two single-infected strains
HTA and HTB. The following 7 crosses (female x male)
were set up in US: 1) ARwPUS x HTA, 2) HTA x ARwPUS,
3) ARwPUS x HTB, 4) HTB x ARwPUS, 5) ARwPUS x ARw-
PUS, 6) HTA x HTA, 7) HTB x HTB. The design of the lat-
ter crosses did not include male age and all crosses
consisted of young (2–4 d old) males. Four cage replica-
tions were set up for each crossing type.
At the end of the crossing experiments, the infection

status of the males was checked (by PCR assays) to ver-
ify that all had the expected infection type (to avoid an
incorrect interpretation of the results possibly due to the
rare presence of aposymbiotic individuals among males
of an infected line). Molecular analysis was also per-
formed on any males found dead in the cages to deter-
mine their symbiotic status.

CI computation and statistics
Calculation of CI expression was based upon the mean
egg hatch rate found in incompatible crosses in compari-
son with the results from the compatible crosses (e.g.
ARwP x ARwP, SR x SR, HTB x HTB, HTA x HTA), using
the CIcorr index [41]. This index allows the exclusion of
embryonic mortality observed in compatible crosses and
male age effects that are not due to CI expression.
Within the different crossing types egg-hatching data and

CI values were compared in relation to male ages.
Normality of egg-hatching data was examined by
D’Agostino and Pearson omnibus normality test using
Prism 5 (Graphpad software). Significant differences among
mean egg hatch rates were tests by analysis of variance
(ANOVA) on arcsin sqrt transformed data. A statistical
comparison was then performed by Newman-Keuls Mul-
tiple Comparison Test (α = 0.05). Paired t test was also
used to analyze differences in mean egg hatching rates
between two different groups.

Results
Male age effects on hatch rate and CI expression
In all crosses between males and females harbouring the
same Wolbachia infection type, the mean hatch rate was
initially high (80.0 ± 6.0% to 86.2 ± 4.7% hatch) (Table 1).
However, starting from the 3rd male age class, we
observed a significant decline in egg hatch within each
of the compatible crosses. In the 19 ± 1 d male age class,
egg hatch had significantly fallen to 46.4 ± 10.3 0% in
the ARwPIT (ANOVA: F = 16.65; d.f. = 12; P < 0.001), to
47.7 ± 7.5% in AR (ANOVA: F = 10.69; d.f. = 12; P = 0.001)
and to 63.2 ± 10.2% in SR mosquito line (ANOVA:
F = 23.01; d.f. = 12; P < 0.001). A further decrease was
observed with the males of the fourth age class. This gen-
eral trend agrees with a gradual decrease of the in-
semination capacity as males get older already reported in
previous works [33-42].
As shown in Table 1, all the crosses involving males of

the first age class and females with a different infection sta-
tus were characterized by a complete egg hatch failure. This
result did not significantly change with male aging in three
out of four incompatible crosses. Only in the cross between
ARwPIT females and SR males the percentage of eggs
hatching increased significantly starting from the second
age class (ANOVA: F = 150.00; d.f. = 12; P < 0.001) and
reaching values close to 20% with the oldest males. Conse-
quently in this cross type CIcorr decreased to about 50% of
that observed with 3 days old males (100%) (Figure 1).

CI in crosses between single-infected lines
The mean egg hatch values observed in the ARwPUS com-
patible crosses of Series II were lower than that observed
in the Series I crosses (45.0 ± 22.2 and 84.3 ± 7.9% re-
spectively at the first age class) (Table 2). A low hatch rate
(44.7 ± 13.7%) was also observed in compatible crosses of
the HTA line while HTB was the single infected line
showing the highest egg fertility (66.0 ± 12.4%).
As shown in Table 2, crosses between the ARwPUS strain

and the single infected lines showed low egg hatch levels
and high CIcorr values (close to 100%) with one exception,
in the cross between ARwPUS females and males with the
wAlbB infection only (i.e. HTB line) CIcorr weakened to
55.8% (Student’s test, α = 0.05; t = 2.03), corresponding to
a 19.9 ± 5.5 percentage of eggs hatching. Reciprocal crosses



Table 1 Percent egg hatch from crosses between Ae. albopictus lines, in dependence of male aging

Cross type (♀ X ♂) Percent egg hatch (mean ± SD) at different male ages (days ± 1)

3 d 11 d 19 d 27 d

SR x SR 86.2 ± 4.7 (2758) 79.1 ± 7.9 (3001) 63.2 ± 10.0a (2476) 45.8 ± 9.9b (2238)

ARwPIT x ARwPIT 84.3 ± 7.9 (2646) 69.9 ± 8.0 (2960) 46.4 ± 10.0a (2253) 38.0 ± 15.8a (1944)

AR x AR 80.0 ± 6.0 (2344) 70.0 ± 12.3 (1999) 47.7 ± 7.5a (2843) 43.0 ± 15.4a (1822)

AR x SR 0.0 (2730) 0.0 (2738) 0.5 ± 0.7 (3034) 1.0 ± 2.0 (2258)

ARwPIT x SR 0.0 (3142) 4.0 ± 0.8a(2754) 18.0 ±2.4b (2456) 19.2 ± 8.1b (2678)

AR x ARwPIT 0.0 (2669) 0.3 ± 0.5 (3453) 0.2 ± 0.2 (2113) 0.0 (2014)

SR x ARwPIT 0.0 (3681) 0.0 (2905) 1.3 ± 1.9 (2882) 0.0 (2251)

Presented data show the results of the Series I experiments, carried out in Italy.
SR= wAlbA + wAlbB superinfected; ARwPIT =wPip infected; AR = aposymbiotic.
Number of total scored eggs are in parenthesis. Within a row, letters following the data indicate significant differences (P < 0.05) (Anova-Newman-Keuls Multiple
Comparison Test).

Calvitti et al. Parasites & Vectors 2012, 5:254 Page 5 of 9
http://www.parasitesandvectors.com/content/5/1/254
between individuals with the wPip (ARwPUS) and wAlbA
(HTA) infections were bidirectionally incompatible. In con-
trast, reciprocal crosses between individuals with the wPip
(ARwPUS) and wAlbB (HTB) infections showed full incom-
patibility in one direction only.

Discussion
Data obtained by studying the egg hatch rate and thus
computing the level of CI in crosses between ARwPIT and
SR lines have provided interesting insights that suggest an
unusual pattern of bidirectional CI, changing partially to
unidirectional as superinfected SR males get older. We
observed that males harbouring the wPip Wolbachia strain
remain strong CI inducers, despite their age and regardless
of whether they mate with naturally superinfected or unin-
fected females. In contrast, in crosses of naturally-
superinfected males (SR line) with ARwPIT females, CI
Figure 1 Estimated CI levels in function of male ageing, CIcorr (%) [41]
and compatible crossing types (female x male) involving SR (superinf
albopictus lines. Different letters at each male age interval indicate significan
drops so that egg hatching increases to approximately 20%
as males reach the fourth age class (Table 1).
A number of studies have documented that the

strength of Wolbachia-mediated CI can decrease as
males get older. For example, in Drosophila melanogaster
Meigen (Diptera: Drosophilidae) this occurs with values ran-
ging from 70-100% of CI expression, when the males are
very young (1–2 days), to extremely low levels (4-5% of CI)
after males age 15 days [43]. The underlying mechanistic
hypothesis is that Wolbachia density decreases with male
aging [44,45]. In Cx. pipiens, CI strength was not found to
decrease with male age [46], while an increasing bacterial
density was observed in the testes of older males [47], in
disagreement with the model according to which the CI
penetrance tends to decrease in old males directly propor-
tional to the density of Wolbachia in the testes or sperm
cysts in general [48].
was estimated from egg hatching data observed in incompatible
ected), AR (aposymbiotic) and ARwPIT (transinfected) Ae.
t differences (P<0.05) (Anova-Newman-Keuls Multiple Comparison Test).



Table 2 Percent egg hatch and CIcorr level from crosses
between Ae. albopictus lines different by their Wolbachia
infection status

Cross type (♀ X ♂) Percent egg hatch CIcorr level

(mean ± SD) (mean ± SDCP

ARwPUS x ARwPUS 45.0a ± 22.2 (3210) 0

HTA x HTA 44.7a ± 13.7 (2976) 0

HTB x HTB 66.0b ± 12.4 (2165) 0

ARwPUS x HTA 0.9c ± 0.6 (3266) 98.0a ± 1.5

HTA x ARwPUS 0.0c (3165) 100a

ARwPUS x HTB 19.9d ± 5.5 (2076) 55.8 ± 8.4b

HTB x ARwPUS 0.0c (3241) 100a

Presented data show the results of the Series II experiments, carried out in
USA, using 3 ± 1 days old males. ARwPUS = wPip infected; HTA = wAlbA single
infected, HTB = wAlbB single infected. Number of total scored eggs are in
parenthesis.
Within a column, letters following the data indicate significant differences
(P < 0.05) (Anova-Newman-Keuls Multiple Comparison Test).
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With regard to Ae. albopictus, the data obtained in the
present work confirm that the naturally superinfected males
express a strong level of unidirectional CI towards the
aposymbiotic AR line which does not undergo decreases
with male aging, at least up to 26–28 days. In contrast, the
same males show age dependent weakening of induced CI
when crossed with ARwPIT females (Figure 1). Data on CI
relationships between SR and AR lines are consistent with
previous reports [49] in which a strong CI expression was
observed in all crosses between wild superinfected males
and laboratory-reared uninfected or wAlbA (KOH line)
infected young females. In addition, the same authors also
reported a pronounced weakening of CI in old KOH males
mated with aposymbiotic females. The KOH line is a nat-
ural single-infected line harbouring the wAlbA Wolbachia
strain, similar to the artificial HTA described here. While
the wAlbB density in Ae. albopictus remains constant over
the mosquito life-time, the density of the wAlbA infection
decreases gradually as the males get older [50,51].
In this work, we associated the decrease of CI observed

in crosses between ARwPIT females and SR aged males to
the above described wAlbA strain-dependent changes in
Wolbachia density. However, to support this hypothesis, we
needed to ascertain that males single-infected by the wAlbB
Wolbachia were only partially incompatible when crossed
with wPip infected females. The change inWolbachia dens-
ity may explain the observed CI pattern if (A)B ≈ B and if
the wAlbB infection alone causes partial incompatibility.
As an initial test to validate this model, we conducted

crosses of single infected Ae. albopictus, artificially ge-
nerated through microinjection, such that individuals
carried either the wAlbA or wAlbB infection, with the
ARwPUS line (Series II crosses). Consistently with model
prediction, the wAlbA infected males were observed to
cause strong CI in crosses with wPip infected females,
while the wAlbB infection caused partial CI in crosses
with wPip infected females. In the reciprocal crosses,
males infected with wPip induced strong incompatibility
when mated with females that were single infected with
either the wAlbA or wAlbB Wolbachia strains. According
to the hypothesized model, mean CIcorr values found
when crossing ARwPIT females x old SR males (Figure 1)
and ARwPUS females x young HTB males (Table 2) were
quite similar (49.5± 14.2% vs 55.8 ± 12.8%).
The differences between Series I and II in egg hatch of

the ARwP line compatible crosses may be explained by a
bottleneck resulting from the shipment between laborato-
ries, by the different size of the colonies and by small varia-
tions in environmental factors, application of the rearing
procedures and handlers. This discrepancy may also reflect
an improvement in the ENEA strain quality (mainly oc-
curred in the last two years) resulting from selection, out-
crossing practices and enhancement of the rearing
methods that will be the topic of a further article. In fact,
egg hatching rates of ARwPUS compatible crosses resemble
that reported in a previous work [31] for the ARwPIT strain.
However, these differences, even if significant, can not in-
validate the scientific findings of the whole experimental
plan, since the measurement of the CIcorr allowed us to
take into account the misleading effects of the background
mortality while interpreting the results coming from the
two Series of experiments. Thus, we thought it was not ne-
cessary to wait for the establishment in the USA of ARwP
colonies showing levels of fertility similar to the Italian col-
ony, since this process could take more than 1 year.
Based on our preliminary results, the findings of this
work will allow us to set up new high fitness ARwP col-
onies, within 2–3 generations of establishment (Moretti
and Calvitti, unpublished data). A lower hatch rate was
observed in compatible crosses of the HTA line if com-
pared to egg hatching data reported for other single-
infected (wAlbA) strains established in other laborator-
ies (i.e. KOH in the Islands of Koh Samui and Maur-
itius) [32-50]. Since HTA has been recently established
in the laboratory, hypotheses to explain this observation
include inbreeding effects associated with the establish-
ment of isofemale lines (i.e. increased homozygosis of
deleterious loci) and high mortality associated with the
artificially generated single wAlbB infection type. Intro-
gression with males of uninfected mosquito lines could
attenuate potential inbreeding effects as successfully
demonstrated with HTB [34].
According to the mod-resc model [20], wPip is able to

partially rescue the wAlbB mod function, while it is not
able to rescue the wAlbA mod. Differently, wAlbB is a
weak CI inducer towards wPip and cannot rescue the wPip
mod function (asymmetrical CI). Such asymmetrical CI
relationships had been previously reported in the Cx.
pipiens–Wolbachia system [52,53] as well as for wMel and
wRi Wolbachia strains [41]. The Wolbachia strain wAlbA



Figure 2 CI relationships among wPip and Ae. albopictus native Wolbachia strains. The Wolbachia strain wPip is a strong CI inducer
towards wAlbA and wAlbB (both unable to rescue its mod function) While wPip it is not able to rescue the wAlbA mod function, it can partially
rescue wAlbB (arrows indicate CI intensity).
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is a strong CI inducer towards wPip and cannot rescue the
wPip mod function (Figure 2).

Conclusions
The reported CI features are consistent with the traits
desired for promising use of the ARwP line as a suppres-
sion tool against Ae. albopictus. First, a persistent full CI
in older males enforces the efficacy of any CI-based
mosquito control strategy. This becomes more relevant
given the report that Ae. albopictus males in La Réunion
show an unexpectedly high mean life expectancy, ran-
ging from 16.2 to 24.5 days [54]. Currently, the optimal
radiation doses for a SIT programs against Ae. albopictus
is chosen in such a way (30 rather than 40 Gy) that
it balances induced sterility with the preservation of
male competitiveness [15-55]. However, the more the
irradiation dose is lowered, the more it is reasonable
to assume that a potential recover of fertility could
occur when males are still potentially competitive
[56]. No recovery of fertility has been observed in
ARwP males tested up to 26 days.
Secondly, we know that the colonies of insects reared in

the laboratory for subsequent field applications need to be
periodically outbred to offset the effects of genetic adapta-
tion to captivity and inbreeding depression [57-59]. For
colonies of mosquitoes whose males are destined to be
irradiated this problem is less relevant because there is no
reproductive barrier between the insects of the colony and
the wild types. Also for Wolbachia transinfected lines dis-
playing a unidirectional CI pattern with uninfected wild
populations [26-60] this problem does not arise because
the males in nature are uninfected and therefore can be
used to fertilize transinfected females.
In the case of ARwP or other transinfected mosquito

lines displaying bidirectional CI towards wild popula-
tions (wild males are incompatible with females of the
colony), the outbreeding procedures require the treat-
ment of wild males with antibiotics for Wolbachia infec-
tion removal [32] and “compatibility” restore. The use of
antibiotics, very useful at laboratory scale, may be rather
laborious, time consuming and not cost-effective to pro-
duce large amounts of “antibiotic cured males” under
mass rearing conditions. The discovery that ARwP
females are partially fertile when mating with old wild
Ae. albopictus males may simplify significantly the
downstream efforts to preserve the genetic variability
within the laboratory ARwP colonies; in fact, it would be
sufficient to release periodically in the colony ARwP
females mated with wild males aged at least 15 days.
In one hand the interest for the ARwP line in the IIT

strategy against the Asian tiger mosquito has been in-
creasing, in the other, new artificially generated infection
types like Ae. albopictus harboring “wMel” [29], showing
anti-viral (Chikungunya and Dengue) properties asso-
ciated to limited fitness costs, are promoting the applica-
tion of “population replacement” strategies. Recent
trends in the application of a population replacement
program suggest that a phase of population suppression
should be performed to support a following male-biased
release of the avirulent invading mosquito strain (i.e.
wMel infected) minimizing any transient increase in dis-
ease risk or biting nuisance [61]. ARwP males, strong
and persistent CI effectors, could be considered in the
preliminary suppression phase of a population replace-
ment program or for the application of suppression
strategies in areas where there are not risks of pathogen
transmission and consequently no need to replace a
mosquito population. Although the ARwP mosquito line
appears to be relatively robust and suitable for mass
rearing, research is in progress to achieve a further at-
tenuation of the negative effects of the new Wolbachia
infection on female reproductive parameters (fecundity
and fertility), as well as mating competitiveness of males,
which is being evaluated not only in the laboratory
(Moretti & Calvitti, unpublished data) but also in semi-
natural (confined greenhouses) and field conditions.
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