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Abstract

Background: Anopheles funestus is one of the major malaria vectors in tropical Africa. Because of several cycles of
drought events that occurred during the 1970s, this species had disappeared from many parts of sahelian Africa,
including the Senegal River basin. However, this zone has been re-colonized during the last decade by An. funestus,
following the implementation of two dams on the Senegal River. Previous studies in that area revealed
heterogeneity at the biological and chromosomal level among these recent populations.

Methods: Here, we studied the genetic structure of the newly established mosquito populations using eleven
microsatellite markers in four villages of the Senegal River basin and compared it to another An. funestus population
located in the sudanian domain.

Results: Our results presume Hardy Weinberg equilibrium in each An. funestus population, suggesting a situation of
panmixia. Moreover, no signal from bottleneck or population expansion was detected across populations. The tests
of genetic differentiation between sites revealed a slight but significant division into three distinct genetic entities.
Genetic distance between populations from the Senegal River basin and sudanian domain was correlated to
geographical distance. In contrast, sub-division into the Senegal River basin was not correlated to geographic
distance, rather to local adaptation.

Conclusions: The high genetic diversity among populations from Senegal River basin coupled with no evidence of
bottleneck and with a gene flow with southern population suggests that the re-colonization was likely carried out
by a massive and repeated stepping-stone dispersion starting from the neighboring areas where An. funestus
endured.
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Background
Anopheles funestus Giles, 1900 is one of the major mal-
aria vectors in tropical Africa with An. gambiae sensu
stricto and An. arabiensis [1], being the primary malaria
vector in some areas [2-5]. In Senegal, An. funestus has
been already described in all bio-geographic zones [6]
and exhibits a predominant role in malaria transmission
[7-9]. Following the recurrent droughts that have
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occurred during the 1970s, this species had disappeared
from many parts of sahelian Africa, including the Sene-
gal River basin, in consequence of the disappearance of
its specific breeding sites [10]. However, after more than
three decades of absence, the re-emergence of An. funes-
tus was reported at the beginning of this century in the
low valley of the Senegal River [11]. The hydro-
agricultural implementations following the start-up of
the Diama dam are highly suspected to create favourable
breeding places for the re-establishment of An. funestus
[9,12]. This re-colonization had thus given rise to the
fear of recrudescence of the transmission and incidence
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of malaria in this area. An entomological survey carried
out thereafter in the Senegal River basin showed hetero-
geneity of An. funestus populations in their anthropoph-
ily, densities and parity [9]. Because this species is
known to be biologically and genetically highly poly-
morphic [13-17], these observations led us to suspect a
potential genetic structure within the newly established
An. funestus populations. Likewise, significant chromo-
somal differentiation not linked to geographical distance
has been reported between the An. funestus populations
from the Senegal River basin and those from the suda-
nian domain [12].
In the present study, we studied the genetic structure

of the An. funestus populations in the Senegal River
basin using microsatellite DNA markers. This set of mo-
lecular markers were demonstrated to be suitable tools
for population genetics studies within this mosquito [17-
20]. We aimed at investigating the genetic diversity and
the genetic structure of the newly established An. funes-
tus populations in the Senegal River basin in comparison
to a more southern population of this species.

Methods
Study sites and mosquito collection
The study was carried out in four villages located in
the Senegal River Basin, in sahelian domain (Mbilor,
Gankette Balla, Diaminar Keur Kane, Loboudou) and
in the village of Dielmo, located in the sudanian do-
main (Figure 1). The re-emergence of An. funestus was
previously observed in the four selected villages from
the Senegal River basin and biological heterogeneities
were observed between sites [9]. The village of Mbilor
(16°29' N, 15°33' W) is situated in the low valley of
the Senegal River. A retention basin made by the
Senegalese Sugarcane Company and derived from the
Senegal River represents the unique source of perman-
ent water, which represents the main breeding site of
anopheline mosquitoes. The village of Gankette Balla
(15°58'N, 15°55'W), Diaminar Keur Kane (16°00'N, 15°
54'W) and Loboudou (15°57'N, 15°55'W) are situated
on the shores of The Guiers Lake. The association be-
tween the shores of the Guiers Lake and the develop-
ment of fresh water plants represent the main
breeding sites for An. funestus, being the predominant
anopheline species collected [9]. Mosquito collections
were carried out between October 2003 and September
2004 in these four villages.
Mosquitoes from the Senegal River basin populations

were compared to Dielmo (13°45’N, 16°25’W), located in
a sudanian domain of central Senegal, on the marshy
bank of a small permanent stream, where anopheline
mosquitoes breed all year round. Specimens from
Dielmo were collected during the rainy season in 2000,
between July and October.
All mosquitoes were collected by indoor pyrethrum
spraying in randomly selected human dwellings. After
collection, An. funestus were identified morphologically
[21] and stored individually in labelled tubes with desic-
cant for further molecular processing.
DNA extraction, molecular species identification and
microsatellite genotyping
Genomic DNA was extracted from wings and legs of
each individual mosquito following the protocol
described by Morlais et al. [22]. DNA was then resus-
pended in sterile water in individual tubes. Morpho-
logical identification of An. funestus sensu stricto was
confirmed by molecular methods [23,24]. Eleven micro-
satellite loci were selected from published An. funestus
sequence data [25-28], based on their high polymorph-
ism and no evidence for null alleles. These microsatel-
lites were FunL, FunO, AFUB11, AFND19, AFND20,
AFND32, FunQ, AFND40, AFND5, FunG and FunF.
PCR was performed for each locus individually in a

25 μl reaction volume. The reaction mixture contained 1
X PCR buffer containing 1.5 mM MgCl2 (Promega,
France), 0.2 mM of each dNTP (Eurogentec, Belgium),
10 pmol of each primer, 0.1U of Taq DNA polymerase
(Promega, France) and approximately 5–10 ng of tem-
plate DNA. The forward primer was labelled in 5’ with
either by Fam, Vic, Ned or Pet fluorescent markers to
allow multiplex electrophoresis (Eurogentec, Belgium).
Amplification was performed in a GeneAmp 9700 ther-
mocycler (Applied Biosystems, France). Cycling condi-
tions were: an initial denaturation step at 94°C for 2 min
followed by 36 cycles of 30 s at 94°C, 30 s at 54°C, 30 s at
72°C and a final elongation step of 10 min at 72°C. Ampli-
fied products were diluted and pooled for genotyping in
AB3130 sequencer (Applied Biosystems, France). Alleles
were sized relatively to an internal size standard using
GENEMAPPER v4.0 (Applied Biosystems, France).
Data analysis
For each locus and each population sample, heterozygos-
ity was computed using GENETIX v.4.05 [29] and the
number of alleles were computed using FSTAT v.2.9.3.2
[30]. FSTAT and GENEPOP v.4.0.3 [31] were used to as-
sess the deviation from Hardy-Weinberg equilibrium at
each locus, each population sample, and overall as indi-
cated by the inbreeding coefficient (FIS). Linkage disequi-
librium between pairs of microsatellite loci was assessed
using FSTAT v.2.9.3.2 [30]. Significance was tested using
the randomization approach implemented in FSTAT
with Bonferroni-adjusted P-values.
Genetic differentiation between populations was assessed

by estimating Wright's F-statistics [32], calculated according
to Weir & Cockerham [33]. Statistical significance of FST



Figure 1 Map of Senegal showing collection sites of An. funestus from four villages located in the Senegal River Basin, in Sahelian
domain and from the village of Dielmo, located in the Sudanian domain.

Samb et al. Parasites & Vectors 2012, 5:188 Page 3 of 9
http://www.parasitesandvectors.com/content/5/1/188
was assessed using G-based exact tests for genotypic differ-
entiation [34], available in GENEPOP.
Because demographic instability such as recent popula-

tion bottleneck and/or expansion might bias genetic differ-
entiation, heterozygosity tests were implemented to test for
Mutation-Drift Equilibrium (MDE) using BOTTLENECK
V1.2.02 [35]. At selectively neutral loci, the expected het-
erozygosities calculated from allele frequency data (He)
and from the number of alleles and sample sizes (Heq) are
expected not to be significantly different (He�Heq) in a
population at MDE. If a population experiences a bottle-
neck, rare alleles will be lost by genetic drift, and Heq will
decrease faster than He (He >Heq). The resulting apparent
excess of heterozygotes is an indicator of a recent bottle-
neck event, while the opposite (He <Heq) may suggest
population expansion. Estimates of expected heterozygosity
under MDE were calculated using two mutation models
for microsatellite evolution: the Two Phased Mutation
model (TPM) [36] and the Stepwise Mutation Model
(SMM) [37]. Wilcoxon signed rank tests were used to de-
termine whether deviations from MDE were statistically
significant.
We applied a Bayesian model-based clustering algo-
rithm to infer population structure and to assign indivi-
duals (probabilistically) to clusters without a priori
knowledge of population units and limits. This ap-
proach, implemented in STRUCTURE v2.2 [38], uses in-
dividual multilocus genotype data to cluster individuals
into K groups while minimising Hardy-Weinberg dis-
equilibrium and gametic phase disequilibrium between
loci within groups [39]. In STRUCTURE v 2.2, the num-
ber of distinct genetic clusters in the data set (K) was
estimated from 1 to 12 by the posterior log probability
of data under each K, Ln [Pr(X|K)] [38]. Each run car-
ried out 500,000 iterations after a burn-in period of
40,000, using the admixture model and correlated allele
frequencies. To check for convergence of the Markov
chain Monte Carlo (MCMC), we performed over 5 repli-
cates for each value of K and then checked the
consistency of results [40]. The estimated number of
clusters (K) was taken to be the value of K with the
highest Pr (X|K) [39].
Groups of populations were defined according to

STRUCTURE results and the hierarchical genetic variation



Table 1 Genetic Variability at 11 microsatellites loci in
Anopheles funestus from Senegal

Locus
(chromosomal
location)

Populations

Diaminar Dielmo Gankette Loboudou Mbilor Overall

(N = 48) (N = 41) (N = 49) (N = 47) (N = 50) (N = 235)

AFUB11 Nall 7 9 7 6 7 9

(2 L) HO 0.5682 0.7576 0.5833 0.6383 0.4681 0.594

Fis 0.215 −0.009 0.106 0.046 0.347 0.1530

FUNL Nall 10 11 7 9 9 15

(2 L) HO 0.8864 0.7813 0.8140 0.6444 0.9375 0.816

Fis −0.076 0.043 0.013 0.191 −0.094 0.0175

FUNO Nall 9 7 8 7 8 10

(2R) HO 0.7381 0.8125 0.7083 0.8085 0.8298 0.778

Fis −0.010 −0.062 −0.036 −0.114 −0.102 −0.0363

AFND19 Nall 11 8 11 11 9 13

(3R) HO 0.5870 0.7179 0.7234 0.7179 0.7200 0.692

Fis 0.305 0.010 0.137 0.127 0.141 0.1673

AFND20 Nall 8 8 7 8 6 10

(3R) HO 0.7500 0.7949 0.7234 0.7500 0.6800 0.736

Fis −0.045 −0.062 0.049 0.052 0.059 0.0232

AFND32 Nall 10 10 9 8 9 15

(2R) HO 0.7609 0.7750 0.8723 0.8974 0.7000 0.797

Fis 0.101 0.081 −0.049 −0.073 0.102 0.0535

FUNQ Nall 3 4 4 5 4 6

(X) HO 0.5000 0.6500 0.4681 0.5128 0.6600 0.559

Fis 0.109 0.081 0.156 0.184 −0.021 0.1162

AFND40 Nall 6 7 7 7 5 8

(2R) HO 0.8889 0.7250 0.8000 0.7273 0.7292 0.775

Fis −0.146 −0.022 −0.051 0.085 −0.001 −0.0182

AFND5 Nall 5 6 5 5 5 6

(2R) HO 0.3913 0.5000 0.5217 0.4783 0.4286 0.463

Fis 0.246 0.141 0.039 0.211 0.089 0.1493

FUNF Nall 5 7 4 6 5 7

(3 L) HO 0.7391 0.7500 0.7174 0.6739 0.6122 0.696

Fis −0.138 0.028 −0.114 0.020 −0.067 −0.0285

FUNG Nall 10 8 9 9 8 12

(3R) HO 0.8043 0.7500 0.8261 0.7826 0.7917 0.792

Fis 0.063 −0.020 0.020 0.078 0.070 0.0854

Mean Nall 7.6 7.7 7.09 7.3 6.8 10

across all loci HO 0.6922 0.7286 0.7053 0.6938 0.6870 0.700

Fis 0.054 0.017 0.023 0.070 0.048 0.06

Table 2 Heterozygosity tests in An. funestus populations
from Senegal

Locality TPM SMM

70% 80% 90%

Diaminar 3 4 4 7

Dielmo 7 7 7 10**

Gankette 3 3 4 7

Loboudou 1** 3* 7 8

Mbilor 2 5 5 6

TPM: Two-Phase mutation Model. SMM: Stepwise Mutation Model.
*P < 0.05, **P < 0.01 (two-tailed Wilcoxon signed-rank test P-values for
deviation from MDE) after correction for multiple tests. The number of
microsatellite loci showing heterozygote deficiency (e.g., He <Heq) out of 11
test loci is given.

Table 3 Estimates of FST values and their statistical
significance (Bolded values)

Populations Diaminar Dielmo Gankette Loboudou

Diaminar – – –

Dielmo 0.0463 – –

Gankette −0.0004 0.0490 –

Loboudou −0.0030 0.0429 0.0055

Mbilor 0.0092 0.0519 0.0125 0.0140

P- values obtained after 10.000 permutations; Indicative adjusted nominal level
(5%) for multiple (10) comparisons is 0.005.
P< 0.0001 for Bolded values.
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existing within groups of populations and within popula-
tions was analyzed by Analysis of Molecular Variance
(AMOVA) using Arlequin version 3.5 [41].
The correlation between genetic and geographical dis-

tances was assessed by the regression of FST/(1 – FST)
on the logarithm (ln) of geographical distance [42], and
tested using the Mantel test available in GENEPOP. Dis-
persion ability was estimated by the “neighborhood size,”
Dσ2, that is, the product of the effective population
density (D) by the average squared parent offspring dis-
tance (σ2) [42].
Kruskal-Wallis test was used to compare the average

number of alleles and the average proportions of hetero-
zygosity between populations using XLSAT Pro 2006W.
The Bonferroni correction procedure [43] was applied

to evaluate significance when multiple tests were
performed.

Results
Genetic variability
Genotypes of 235 An. funestus females were scored
at 11 microsatellite loci. These microsatellite loci
were highly polymorphic with a number of distinct
alleles per locus ranging from 6 (FUNQ, AFND5) to
15 (AFND32, FUNL) in our five populations (Table 1).
The average number of alleles per locus ranged from
6.8 to 7.7 and was not significantly different among
populations (P = 0.83). Mean observed heterozygosity
across all loci ranged from 0.68 to 0.72 and was not
significantly different among populations (P = 0.89).
Heterozygosity tests were performed to explore



K      Ln Pr (X|K)   SD 
1 7343.16 0.55
2 7360.52 12.00
3 7132.28 3.11
4 7171.06 7.75
5 7316.38 41.50
6 7535.54 60.17
7 7749.38 68.18
8 7986.34 163.29
9 8253.68 225.39
10 8339.3 142.89
11 8388.9 256.58
12 8359.18 61.22

Figure 2 Estimated population structure from Structure
analyses: Mean (± SD) posterior probability variation of the
data [LnPr(X|K)] (over 5 Structure replicated runs) between
successive number of clusters (K) estimated using STRUCTURE
v 2.2.

Table 4 Analysis of molecular variance (AMOVA) of 11
microsatellite loci in the An. funestus populations from
Senegal, for 5 populations and 3 groups defined as
(Dielmo/Mbilor/Diaminar, Gankette and Loboudou)

Source of variation Sum of
squares

Variance
components

Percentage
variation

Among groups 39.166 0.12333 2.97159

Among populations within
groups

8.986 0.00339 0.08157

Among individuals within
populations

907.273 0.17487 4.21357

Within individuals 850.500 3.84868 92.73328

Total 1805.926 4.15026
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demographic stability in An. funestus populations and
compliance to mutation-drift equilibrium. Significant
deviations from mutation-drift equilibrium, as a result of
heterozygote excess, was found in a population of
Loboudou, when the studies were performed under
TPM 70% and TPM 90% model. In Dielmo, significant
deviations associated with strong heterozygote deficien-
cies were detected under SMM model. For the popula-
tions of Gankette, Diaminar and Mbilor, no deviation
from MDE was found (Table 2).

Hardy-Weinberg and linkage disequilibrium
When the pooled samples were analyzed as a single
population, 3 (AFUB11, AFND19 and FUNQ) of 11 loci
showed significant deviations from Hardy-Weinberg
equilibrium due to significant heterozygote deficiency
(Table 1). When considering all loci, no deviation from
Hardy-Weinberg equilibrium was observed within each
population studied. However, significant deviation from
Hardy-Weinberg expectations was observed for loci
AFUB11 and AFND19 respectively in populations of
Mbilor and Diaminar after the Bonferroni correction
was applied. These deviations from Hardy-Weinberg
expectations were associated with heterozygote defi-
ciency (Table 1). No linkage disequilibrium was
observed in any pair of loci (6600 permutations,
P > 0.05).

Genetic differentiation and structure analysis
The levels of genetic differentiation between pairs of
populations were estimated by FST values. Table 3 shows
FST estimates for all pairwise population comparisons.
The values of FST between pairwise population compari-
sons for all loci ranged from 0 (Diaminar-Gankette) to
0.0519 (Dielmo-Mbilor). The highest FST estimates were
obtained between the most distant populations. FST esti-
mates were highly significant (P <10-4) between Dielmo
and the populations of the Senegal River basin and be-
tween Mbilor and the populations around Guiers Lake
area (Diaminar, Gankette and Loboudou). After all,
only three comparisons were not significant after
Bonferroni correction: Diaminar-Loboudou (P > 0.005),
Diaminar-Gankette (P > 0.005), and Gankette-Loboudou
(P > 0.005).
Structure v 2.2. provided consistent results over 5

replicated runs tested for each K. The probability of the
data (LnPr(X|K)) greatly increased from K= 1 to K= 2,
and then reached a maximum value at K= 3, after which
the values decreased gradually (Figure 2). Thus, in agree-
ment with results based on FST, the most likely number
of genetic clusters in the dataset is K= 3 (Figure 2).
The analysis of molecular variance (AMOVA) of all

the eleven microsatellites then confirmed the differen-
tiation and structure analysis with the variation within
individuals, among individuals within populations,
among populations within groups and among groups
being 92.73%, 4.21%, 0.08%, and 2.97% respectively
(Table 4). AMOVA showed that the variation among
populations within groups explained only 0.06% of the
total variance while the variation from among indivi-
duals within populations and within individuals
explained 4.21% and 92.73% of the total variation,
respectively.

Isolation by distance
Isolation by distance was tested and showed a positive
and significant (R2 = 0.76, P= 0.02) correlation between
FST/(1- FST) and the logarithm of distance, when consid-
ering the five villages (Dσ2 = 7.23) (Figure 3). The



Figure 3 Correlation between FST/(1- FST) and logarithm of distance (in Km) for pair-wise comparisons of 5 Anopheles funestus
populations from Senegal genotyped at 11 microsatellite loci.
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correlation became non significant when considering
only the An. funestus populations of the Senegal River
basin (R2 = 0.69, P= 0.20) (Dσ2 = 20.94).

Discussion
This study revealed genetic stability among the popu-
lations of Anopheles funestus in the Senegal River
basin. Moreover, our results showed high levels of
genetic diversity within the re-emergent populations
of the Senegal River basin and a permanent popula-
tion in the Sudanian domain. The comparable levels
of genetic diversity between both areas confirmed the
genetic stability of the newly established populations
from the Senegal River basin. Furthermore, geograph-
ical distance seems to be the key factor for popula-
tion genetic divergence, although, other factors could
potentially play a role in the genetic differentiation
among Senegal River basin populations. The high
levels of gene flow denote important mosquito mi-
gration among populations.
The observed genetic stability of An. funestus

populations from the Senegal River basin was at least
unexpected. Indeed, after several decades of periodic
droughts, and recent re-emergence of An. funestus,
we predicted a genetic signal of bottleneck followed
by population expansion, as reported elsewhere in
An. gambiae [44]. The absence of such demographic
signals may be explained by the noteworthy effective
population size of the An. funestus population, which
could promptly foster population equilibrium [45].
For instance, the large population size in Anopheles
gambiae prevented any impact on the mosquito
population structure after strong population selection
(i.e. vector control measures, dry seasons) [46,47].
On the other hand, high migration rates between
populations can also erase any genetic signal of
natural selection [48]. Therefore, the absence of sig-
nal for bottleneck and demographic expansion may
indicate that the re-colonization was massive and/or
seasonally repeated. We then hypothesize that the
gene flow between Senegal River basin and other An.
funestus populations may occur each year at the
rainy season, when breeding sites are numerous and
close enough to allow mosquito dispersal among
populations.
Our results showed low but significant levels of gen-

etic differentiation between populations of the Senegal
River basin and those from the sudanian area. High
levels of gene flow have been repeatedly reported on
An. funestus and our estimates are consistent with pre-
vious studies on genetic structure of An. funestus
populations in Senegal and other parts of Africa using
microsatellites [17,18,20,49,50]. The important gene
flow between An. funestus populations from the Sene-
gal River basin and the sudanian population (252 km
apart), revealed by our analysis, indicate the existence
of continuous populations of this malaria mosquito are
inter-connected. Such observations were already
reported in the other genetic studies in the popula-
tions of An. funestus [19,49,51,52] and An. gambiae s.l
[53-56]. Therefore, these results reassert that the re-
colonization of An. funestus in the Senegal River basin
was probably carried out by a step by step dispersion
starting from the neighbouring areas where An. funes-
tus had not disappeared.
The genetic analysis clearly distinguished between

sahelian and sudanian populations. The genetic tests
of isolation by distance suggested that genetic differ-
ences observed between domains are linked to the
geographical distance. This is a common pattern in
Anopheles [44,57,58] and particularly in Anopheles
funestus [18,20,50,51]. In contrast, An. funestus
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populations from the Senegal River basin may be sub-
divided into two distinct genetic entities: populations
around Guiers lake area (Diaminar, Gankette, Lobou-
dou) and populations from the low valley of Senegal
River (Mbilor). The existence of these three genetic en-
tities (two in the Senegal River basin and one from the
sudanian domain) was confirmed by different genetic
approaches (i.e. Structure and AMOVA). When Dielmo
was excluded from the isolation by distance analysis,
geographical distance did not explain the genetic dif-
ferentiation observed between Mbilor and populations
around Guiers Lake area. Thereby, other factors rather
than geographical distance should play a key role into
the population structuration of An. funestus popula-
tions in the Senegal River basin. Chromosomal differ-
entiation detected between An. funestus populations of
the low valley of Senegal River and the Guiers Lake
area (difference of frequency for the inversion 3La)
[12] may be implicated in the structure observed as
demonstrated in the An. funestus populations of Bur-
kina Faso [17]. Because paracentric inversions are
involved in the adaptation to various environments, the
chromosomal differentiation detected between An.
funestus populations of the low valley of Senegal River
and the Guiers Lake area [12] could be the conse-
quence of different breeding sites, themselves conse-
quences of different environmental changes induced by
human activity.

Conclusions
Our study showed the existence of three genetically
different subpopulations of An. funestus: populations
around Guiers Lake area, populations from the low
valley of Senegal River, and populations from Dielmo.
The high genetic diversity among populations from
the Senegal River basin coupled with no evidence of
bottleneck and with a gene flow with the southern
population suggested that the re-colonization was
likely carried out by massive and repeated stepping-
stone dispersions starting from the neighbouring
areas where An. funestus endured. Geographical dis-
tance is not the only factor involved in shaping of
the genetic structure observed between the An.
funestus populations from the low valley of the Sene-
gal River and The Guiers Lake area and we
hypothesize that the different breeding sites created
by human activities may have shaped chromosomal
structuration and may explain the restricted but still
occurring gene flow. Our study is therefore indicative
of adaptation of malaria vectors to the environment
modified by humans.
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