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Abstract

Background: The heat stress suffered by Leishmania sp during its digenetic life-cycle is a key trigger for its stage
differentiation. In Leishmania subgenera two classes of HSP70 genes differing in their 3" UTR were described.
Although the presence of HSP70-I genes was previously suggested in Leishmania (Viannia) braziliensis, HSP70-II
genes had been reluctant to be uncovered.

Results: Here, we report the existence of two types of HSP70 genes in L. braziliensis and the genomic organization
of the HSP70 locus. RT-PCR experiments were used to map the untranslated regions (UTR) of both types of genes.
The 3" UTR-Il has a low sequence identity (55-57%) when compared with this region in other Leishmania species. In
contrast, the 5" UTR, common to both types of genes, and the 3" UTR-I were found to be highly conserved among
all Leishmania species (77-81%). Southern blot assays suggested that L. braziliensis HSP70 gene cluster may contain
around 6 tandemly-repeated HSP70-I genes followed by one HSP70-Il gene, located at chromosome 28. Northern
blot analysis indicated that levels of both types of mRNAs are not affected by heat shock.

Conclusions: This study has led to establishing the composition and structure of the HSP70 locus of L. braziliensis,

complementing the information available in the GeneDB genome database for this species. L. braziliensis HSP70
gene regulation does not seem to operate by mRNA stabilization as occurs in other Leishmania species.

Background

The Leishmania genus involves about 20 species that
infect humans, causing different clinical manifestations
ranging from self-healing cutaneous lesions (CL), muco-
sal lesions (MCL) to fatal visceral infections (VL) [1].
More than 350 million people are considered at risk of
contracting leishmaniases, and some 2 million new cases
occur yearly [2]. In Latin America, CL and MCL are
neglected public health problems endemic in 22 coun-
tries. Many species of the subgenus Viannia cause the
majority of CL cases but MCL is principally caused by
Leishmania (Viannia) braziliensis [3]. Canine leishma-
niases, caused either by Leishmania infantum or by L.
braziliensis, is also widespread in South America, being
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among the most important canine vector-borne diseases
occurring in this region [4].

During its digenetic life cycle, the Leishmania parasite
needs to adapt from the environmental (vector) tem-
perature to the mammalian-host temperature (37°C). As
a result, the heat shock response is induced and the
heat shock proteins (HSPs) are expected to play impor-
tant roles in the adaptation process, influencing the
developmental change from promastigotes in sandflies
to amastigotes in mammalian hosts [5-10]. Among
HSPs, HSP70 is the most highly conserved in both
sequence and function. Proteins of the HSP70 family are
central components of many fundamental cellular pro-
cesses, including the folding and assembly of newly
synthesized proteins, refolding of misfolded and aggre-
gated proteins, membrane translocation of organellar
and secretory proteins, proteolytic degradation of
unstable proteins, and control of regulatory protein
activity [11-14].
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Two classes of HSP70 genes, HSP70-1 and HSP70-1I,
sharing the 5’ untranslated region (UTR) and the coding
region but differing in their 3" UTR, have been described
in several Leishmania species like L. infantum, Leishma-
nia major, Leishmania tropica, Leishmania mexicana
and Leishmania amazonensis [15,16]. In general, these
genes are arranged in a single genomic cluster that con-
tains five or six HSP70-I copies, followed by one HSP70-
II copy. In L. infantum, it has been demonstrated that
whereas HSP70-I mRNAs accumulate in response to
heat shock treatment, and are translated at both 26 and
37°C, HSP70-1II mRNAs do not show a temperature-
dependent accumulation, but show preferential transla-
tion at heat shock temperatures [15].

Given that Leishmania genes are transcribed into
polycistronic RNA precursors that need to be further
processed into individual mRNAs by trans-splicing and
polyadenylation, post-transcriptional regulation repre-
sents the main level of controlling gene expression in
these parasites [17]. Currently, multiple efforts are being
dedicated to identify cis- and trans-elements involved in
the modulation of mRNA processing, mRNA stabiliza-
tion/destabilization, mRNA half-life, or translation effi-
ciency. Although regulatory sequences have been
identified in both 5" and 3’ UTRs, most of them have
been located in the 3’ UTRs [18-23]. For instance, pre-
ferential translation of HSP83 in Leishmania requires a
thermosensitive polypyrimidine-rich element (PPT) in
the 3’ UTR [24].

Our knowledge on the organization and expression of
HSP70 genes in Leishmania species of the subgenus
Viannia is scanty. Although, the sequence for the L.
braziliensis genome has recently been published [25],
unfortunately, the genomic sequence found in the Gen-
eDB database presents several gaps that hinder to eluci-
date the organization of the HSP70 locus in L.
braziliensis. Moreover, in a preliminary work, it was
documented by hybridization assays the existence of
HSP70-I genes in L. braziliensis, but evidence on the
presence of HSP70-II genes was not obtained [16]. In
this work, we have determined the 5" and 3” UTRs for
the HSP70 L. braziliensis genes, demonstrating the exis-
tence of the HSP70-II gene in this Viannia species, and
established the organization of the HSP70 locus. Also
the expression of both types of HSP70 genes was
assessed.

Methods

Parasite cultures

Promastigotes of L. braziliensis (MHOM/BR/75/M2904)
were cultured in vitro at 26°C in Schneiders's insect
medium (Sigma Aldrich, Inc., St. Louis, USA) supple-
mented with 20% heat-inactivated fetal calf serum
(Eurobio, Inc., Les Ulis, France), and 0.1 pg/mL of 6-
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Biopterin (Sigma Aldrich, Inc., St. Louis, USA). For heat
shock treatments, 10 mL-aliquots of L. braziliensis pro-
mastigote cultures at logarithmic phase (5-9 x 10° pro-
mastigotes mL'l) were transferred into 50 mL flasks,
and incubated at 32°C, 35°C or 37°C for two hours.
Afterwards, parasites were harvested for DNA or RNA
extraction.

Southern and Northern blot analyses

Total DNA from L. braziliensis cells was isolated using
the phenol-chloroform-isoamilic alcohol method [26].
Two pg of DNA were digested with several restriction
enzymes according to the manufacturer specifications
(Promega, Inc., Madison, WI, USA), electrophoresed on
0.8% low electroendosmosis agarose gels (Conda Prona-
disa, Inc., Madrid, Spain), and transferred to nylon
membrane (Roche, Inc., Mannheim Germany) by stan-
dard methods [26]. Total RNA from promastigotes was
isolated using the Total Quick RNA Cells and Tissues
(TALENT, Inc., Trieste, Italy). Four pg per line were
separated on 1.5% (w/v) low electroendosmosis agarose/
MOPS/formaldehyde gels and transferred to nylon
membranes. L. braziliensis chromosomes were prepared
from promastigotes, harvested during log phase, washed
and embedded in 0.6% low melting agarose (GIBCO
BRL, Inc,, N.Y, USA) plugs, which were finally soaked in
a lysis solution (0.5 M EDTA, pH 9; 1% SDS, 1 mg/mL
proteinase K) at 50°C during 48 h.

After three washes with 0.2 M EDTA for 2 h each
one, the blocks were loaded directly into the wells of 1%
agarose NA gel (Amersham Bioscience, Inc., Uppsala,
Sweden), sealed in place, separated by pulsed homoge-
neous electric field gel electrophoresis (PFGE) using a
Pharmacia Biotech Gene Navigator apparatus at 100 V,
120° separation angle and switch times varying from 100
s/7 h; 200 s/10 h and 500 s/20 h, and transferred to
nylon membranes. The following probes were used: 3’
UTR-I (clone pTLb3HSP70-D, Smal/EcoRI digested), 3’
UTR-II (clone pTLb3H70-11B, Hincll/EcoRI digested),
and intercoding (IR-HSP70, clone pLbHSP70-IR-E, PstI
digested). They were labeled with digoxigenin by ran-
domly primed synthesis using the DIG High Prime
DNA Labeling kit (Roche, Inc., Mannheim, Germany).
Hybridizations and immunological detection were per-
formed using the Detection Starter kit II (Roche, Inc.,
Mannheim, Germany) according to manufacturer’s
instructions. Finally, membranes were exposed on Curix
RP2 plus medical X-Ray film (AGFA, Mortsel, Belgium).

Cloning UTR sequences and in silico analyses

First-strand cDNA synthesis was carried out from L.
braziliensis total RNA using an oligo-dT primer and a
c¢DNA synthesis kit (LKB Pharmacia, New Jersey, USA).
Amplification of the UTRs was performed from poly-T
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primed-cDNA using specific primers: LbSL (5’CGCTA  multiple alignments of sequences, were carried out to
TATAAGTATCAGTTTC3’) and Lb181 (5’ TGCAACC  determine the similarity among them.
CGATCATGACCAAG 3’) for the 5" UTR, and Lb1824

(5’GATCATGACCAAGATGTACCAGAG 3’) and Poly Results and discussion

T EcoRI (5CGGAATTCTTTTTTTTTTTTTTTTTTT  The L. braziliensis HSP70 locus contains two types of

3’) for the 3 UTR-I (see Additional file 1). Briefly, 20 uL.  HSP70 genes

reactions containing 2 pL of cDNA, 1X reaction buffer =~ Gene structure and expression of the HSP70 protein
(10 mM Tris-HCI pH 9.0, 50 mM KCI, 0.1% Triton X- have been well characterized in L. infantum
100), 1.5 mM MgCl,, 0.7 mM of dANTP mix, 0.2 uM of [7,15,16,27] and other trypanosomatids of medical
each primer, 2 M betain, and 0.06 units per uL of importance as L. major [28], Trypanosoma brucei
expand high fidelity enzyme (Roche, Branford, USA) [29,30], and Trypanosoma cruzi [31-36]; nonetheless,
were prepared. For 3" UTR-II amplification, 1 mM little is known about their genes in L. braziliensis. A
MgCl, and 0.5 pM of each primer were used. An MJ  previous study showed the presence of the HSP70-1
Research PTC-100 DNA thermocycler was used for the  genes in this parasite; however, it was not determined
reaction with the following amplification profile: 95°C/5  their copy number. These authors also reported that
min (initial denaturation), 35 cycles at 92°C/0.5 min, 58°  using the 3’ UTR-II region from L. infantum as probe,
C/0.5 min and 72°C/1 min, with a final incubation at it was not possible to detect the presence of HSP70-II
72°C for 10 min. All the amplified fragments were genes in L. braziliensis [16].

resolved in agarose gels and visualized under UV expo- In order to determine the genomic organization of
sure after ethidium bromide staining. RT-PCR products ~ HSP70 genes in L. braziliensis, we searched in the L.
were excised from gels, purified using GFX Gel Band  braziliensis genome database at GeneDB for entries con-
Purification kit (Amersham Biosciences, GE Healthcare, taining HSP70 sequences. One complete HSP70 gene
Chalfont St. Giles, Buckinghamshire, England) and (GeneDB ID: LbrM28_v2.2990) and two incomplete
cloned in the pGEM®™-T Easy plasmid (Promega, Madi-  sequences, LbrM28_v2.2980 (bearing a 5'-fragment of
son, WI, USA); pCR®H (Invitrogen, California, USA) or  the gene encoding the N-terminal region of HSP70) and
pCR2.1 (Invitrogen, California, USA) plasmids. The fol- LbrM28_v2.2970 (encoding the C-terminal protein
lowing clones were obtained: pLbHSP70-5B containing region) were found (Figure 1). Between both fragments
the 5° UTR, pTLb3HSP70-D for the 3 UTR-I, of HSP70 genes, a sequence gap of undetermined length
pLb3H70-11B for the 3’ UTR-II, and pLbHSP70-IR-E  is annotated in the database. Even though
for the intercoding region. The sequences were deter-  LbrM28_v2.2980 and LbrM28_v2.2970 might be part of
mined using the Big Dye Terminators v3.1 kit (Applied the same gene, the sequenced regions do not overlap.
Biosystem, California, USA) by automatic sequencing at  All three sequences are tandemly organized on the
the Servicio de Gendémica (Parque Cientifico de Madrid, minus strand of chromosome 28. No other entries for
Universidad Auténoma de Madrid). In order to deduce = HSP70 genes were found in the L. braziliensis database.
the HSP70 mRNA UTRs from other Leishmania species  This genomic organization of the HSP70 genes in L.
LALIGN (http://www.ch.embnet.org/software/LALIGN -  braziliensis resembled that found in other Leishmania
form.html) analyzes were performed. A ClustalW analy-  species of the subgenus Leishmania, i.e. a locus contain-
sis (http://www.ebi.ac.uk/Tools/clustalw2/index.html) for  ing tandemly repeated HSP70 genes [16]. However,
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L. braziliensis M2904 chromosome 28
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Figure 1 Location of HSP70 genes in the L. braziliensis genome. The upper black arrows demarcate the HSP70 locus. Red boxes indicate the
5" UTR, blue arrow the 3 ‘UTR-I, green arrow the 3 ‘UTR-Il and red stars the gaps in the sequence. Current information on the L. braziliensis
HSP70 locus at GeneDB database can be accessed through the link: http://www.genedb.org/gene/LbrM.28.2990:mRNA?actionName=%
2FQuickSearchQuery#lLbrM.28.2990:mRNA
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tandem gene arrays are among the most challenging to
resolve correctly using current genome sequencing tech-
nology, since repetitive sequence reads tend to collapse
into a single contig when no variation exists to distin-
guish them. Thus, in order to determine the copy num-
ber of HSP70 genes composing the locus, and possible
sequence divergence existing between the different
genes, we designed specific oligonucleotides to cloning
the complete intercoding regions (UTRs+intergenic
regions), from genomic DNA, and also the 5’- and 3’-
UTRs by RT-PCR from poly-A™ RNA (see Methods sec-
tion for further details). A single amplification fragment
for the intercoding region was obtained and, after clon-
ing, its sequence was found to be conserved (99.8% of
sequence identity) with the sequence located between
genes LbrM28_v2.2990 and LbrM28_v2.2980. These
findings suggest a high conservation of intercoding
regions in the HSP70 locus; however, a more accurate
determination of degree of conservation would require
the sequencing of several additional clones.

On the other hand, using RT-PCR and specific oligo-
nucleotides, it was possible to determine the 5" UTR
sequence, which is 198 bp in length (Figure 2). This
sequence has been deposited in the GenBank database
under the accession number JF449363. In spite of the
high sequence identity, among the four sequences ana-
lyzed, two microsatellite length polymorphisms in the
5-UTR were observed (see Additional file 2), suggesting
the existence of allelic polymorphisms in the L. brazi-
liensis HSP70 locus. In addition, the alignment of the 5’
UTR with the genomic sequences allowed us to deduce

5 UTR 5 UTR 5 UTR 5 UTR 5 UTR 5"UTR 5 UTR

R e o B B, B, B B o

B

Lmj ~-GATCCTAAACACGCACTCGCACTCAAGCTGTCCGAAGATAACACATACGCGCACAGGC 58
Li --GATCCTAAACACGCACTCGCACTCAAGCTGTCCGAAGAGAACACATACGCGCACAGGC 58
Lmx —--GTCCTAAACACGCACTCGCACTCCAGCTGTCCGAAGAGAACACATACGCGCACAGGC 57
Lb AGGATCCTAAGCACGCAGTCTCGCTCACGCTCTCCTAAGAGAACACATACGCGCACAGCC 60
Lmj ATACGTCTCTCTCGCTCTGCGCTCTATTACGTAACCCTAGAAACACCCT—————-1 CCTCC 112
Li ATACGTCTCTCTCGCTCTGCGCTCTATTACGTAACCCTATAACCACCCT--—-—~ CCTCC 112
Lmx ACACGTCTCTCTCGCTCTGCGCTCTATTACGTAACCCTATAAACACCCC-----~ CCTCC 111
Lb ATACACCTCTCCTGTGCTGCACTCTATTGCGTAACCCTACAAACCCCCTTTCACACCTTC 120
Lmj TCCTCCCCACCCCCCACCCCCATCCT----——=———==—===—— ACACGCACATACACAC 154
Li —----CCCCACC----—- CCCCATCCC-—————————————————, ACACGCACATACACAC 144
Lmx ACACATACATAC 124
Lb CGGCGCCTATTTCACCGCCCCCCCCCCCACATACACACAC, GTACATAC 180
Lmj ACGACCACTGCCGCAGAG 172

Lin ACGACCACTGCCGCAGAG 162
Lmx ACCACCACTGCCGCAGAG 142
Lb ACTACCGCTGCTGCAGGG 198

Figure 2 Position and sequence of the 5" UTR of HSP70 cluster
from L. braziliensis. (A). Graphical representation of the 5" UTR
position in the HSP70 cluster of L. braziliensis. (B). Multiple
sequence alignment among HSP70 5" UTR from L. braziliensis (Lb:
JF449363), L. major (Lmj: LmjF28.2770), L. infantum (Li:
LinJ28_V3.2960) and L. mexicana (Lmx: LmxM28.2770). Conserved
sequences are shaded in gray.
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that the AG splicing acceptor is located 194 and 199
nucleotides upstream of the start codon of
LbrM28_v2.2990 and LbrM28_v2.2980 genes, respec-
tively. Also, in both entries, 28 nucleotides upstream of
the splicing acceptor site, an identical polypyrimidine
tract of 22 nucleotides in length (5 CTCCCCTTTCTCT
CTCTGCCCC 3’) with a U/C ratio of 0.62 is observed.
It is likely that this polypyrimidine tract is relevant for
the trans-splicing process. Furthermore, in the coding
regions contained in clones pLbHSP70-IR-E and
pLbHSP70-5B, two transitions of guanine by adenine
were found. The first one causes a change of cysteine by
tyrosine, and the other produces a change of glutamic
acid by lysine in the encoded polypeptides (Additional
file 2). This variability, together with the microhetero-
genicity detected in the 5" UTR, supports the existence
of at least four HSP70 genes in the diploid genome of L.
braziliensis; but this resulted to be an underestimation
as we demonstrate below.
Regarding the 3° UTR of HSP70 genes, two types of
sequences were cloned and sequenced (GenBank
JF449364 and JF449365), showing a high sequence diver-
gence each other. After sequence comparison, they
could be assigned to the two types of 3’ UTR (I and II)
described in HSP70 genes of other Leishmania species
(Figures 3 and 4). Thus, we determined that the 3 UTR
type I is 936 nucleotides long, and would correspond to
the LbrM28_v2.2990 entry (and possibly other genes of
the HSP70 gene cluster, see below), and the 3’ UTR type
II is 932 nucleotides long and would be associated with
LbrM28_v2.2970 entry. The 3° UTR-II was found 100%
identical with the genomic sequence located down-
stream of LbrM28 v2.2970, whereas the 3° UTR-I had
99.1% of sequence identity with the sequence located
downstream of LbrM28_v2.2990 entry, suggesting that
the cloned 3" UTR-I might correspond to other HSP70
gene in the cluster (see below). According to the 3’
UTR-I sequence, the polyadenylation in the
LbrM28_v2.2990 transcript would occur after two ade-
nines, and 187 bp upstream of the putative polypyrimi-
dine tract previously mentioned. Regarding the
LbrM28_v2.2970 gene, the polyadenylation would take
place, after an A-rich region of 11 residues, and 154 bp
upstream of a C-rich polypyrimidine tract of 14 nucleo-
tides in length and U/C ratio of 0.08 (5’CCCCC
CCCCTCCCC 3). It is a common feature that the pre-
sence of adenosine residue precedes the polyadenylation
sites of a large number of trypanosome mRNAs [37]. It
is believed that poly(A) polymerases prefer an initial
adenosine residue for attachment of the poly(A) tail,
and the selection of the polyadenylation site would be
strengthened by the presence of adenosine residues [38].
After determining the extent of the UTRs, it was pos-
sible to define the intergenic region (IR) within the L.
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3"UTR-1 3'17R-| 3"UTR-1I 3 YTR-1 3 UTR-1 3"UTR-1

Figure 3 Graphical representation of the 3’ UTR-I position in the HSP70 cluster of L. braziliensis.
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ATCGCCCGAGTGCGCCGGAGGTGCTGCAGAGCGCCTGCTCACCTCGTCCCTGCTGGCTGCTCCAGCCTGCGGGGGTGAGGG—————— CTC
ATCGCCCGAGTGCGCCGGAGGTGCTGCAGAGCACCTGCTCACCTCGTCCCTGCTGGCTGCTCCAGCCTGCGGGGGTGGGGGCTCTCTCTC
ATCGCCCGAGCGCGCCGGTGGTGCCGCACTGCACTTGCTCACCTCGTCCCTGCTGGCTGCTCTAACCTGCGGGAGCGGGGA-————————
—-GCTCTGTGTGCACCAGCGGTGCTGTG-—————————— TTCCGCG---CTGATG

TCTCTTTCTTGCATCTTCGCTCTCCTGTGCGTGCTGATGTGTACTTGGGCGTGGTGGTGGGTGGTGTGCACCGCCGTTGCGCCG--GCGC
TCTCTCTCTTGCGTCTTCGCTCTCCTTTGCGCGCTGATGTGTGCTTGGGTGTGGTGGTGGGTGGTGTGCACGGCCGTTGCGCCG--GCGC
—CTCTCTCCCGCATCTCCGCTCTCCTTTGCGCGCCGATGTGGGCTCGCGTGTGGTGGTGGGTGGTGTGCACGGCCGCTGTGCCGCAGCGL
TGTATGTGCG--TGTGG—--TGGGAGAGG-GGCAGATGGTGCGCGCGGCCGTTGTGCCT--GCGC

CGCTGCGGCTGTGGCGCGTGATACGGGGTTTGTGGCATGGACCATGGCATGAAGACCCAGAAGGCGCCACGCGGAGGAGGCGGCAGLCCGL
CGCTGCGGCTGTGGCGCGGGGTACGGGGTTTATGGCATGGATCATGGCATGAAGGCCCGGAAGGCGCCACGCGGAGGAGGCGGCGGLGGL
CGCTGCGGCTGTGGCGCGTGGTACGGGGTTTGTGGCATGGATCATGGCATGAAGACCCGGAAGGCGCAACACG-————— GCGGCGGCGGL
CGCGGCTGCGGTGGCACGTGGTACGAGGTTTGTGACACGGACCGTGGCATGAAGACCCGGAAGCGGCCACGLCG———————————— GCGGC

AGCGCGCAGGGGCATTGTGCACCTCCCTCCCCCCTTTCACCCCCCGATTCCTAGCAGATGCGAGCTGCCGGAGTGCGTGTGATGCGCGTG
AGCGCGCAGGGACATTGTGCACC-CCCTCCCCCC— —CCCCAATCCCTAGCAGATGCGAGCTGCCGGAGTGCGTGTGATGCGCGTG
GGCGCGCAGGGGCGTTGTGCACC----TCCCCCC—- ———-—-AATCCGTGGCAGATGCGAGCTGCCGGAGTGCGTGTGATGCGTGTG
GGTGCGCAAGGGCATGTT---—----— GICTCCCC--—-——————— ACTCCCTGGCCCGGGCGGACTGCTGGGGTGCGTGTGATGTGCGGG

TGAGCGCATCTGCTCGTTTGCGAGCGAGCATGGCGGGCGTGCGGCAGCGGCGGCGTGTTGGCCGGTAGTGGTGGAGAGGCGGCGTGCTGG
TGAGCGCATCTGCTCGTTTGCGAGCGAACATGGCGGGAGCGCGGCAGCGGTGGCGTGTTGGCCGGTAGTGGTGGAGAGGCGGCGTGCTGG
TGAGCGCATCTGCTCGTTTGCGAGCGAATATGGCGGGCGCGCGGCTGCGGCGGCGTGTTGGCCGGTAGTGGTGGAGAGGCGGCGTGCTGG
GCGGGCGAGCATGGCGAGTTCGCTGATGCGGTTGCGTGTTGGTCGGTAATGGTGGAGAGGCGGCCTGCTGG

CAGCTGTGTGTGTGTGTGT-—-—-— ATGTGCGTGCGAAGCAGGTGTGCTCGGCGTGGAATGCCCGCACACACACTGCTGCGCAAGCACTG
CAGCTGTGTGTGTGTGTGTGTGTGTATGTGCGTGCGAAGCAGGTGTGCTCGGCGCGGAATGCTCGCGCACACACCGCTGCGCAAGCACTG
CAGCTGTGTGTGCGTGTAT--———--— GTGCGCGTGAAGCAGGTGTGCTCGGCGCGGAATGCTCGCACACACACCGCTGCGCAAGCACTG
CAGCTCTGTGTGCGTGTCT-——————————— GTGCGAAGCAAGTGTGCCCGGCACGGTATGCTCG--CACACACTGGTGCACAAGCACAG

CCTCTATCGTTGGCCTCTGTGCTGCTGCTCTTCCTC----TACACTTCGCATGTGTGACTGGTGCGGTGTGCGTGTCCCTCCCGTGTGTG
CCTCTATTGTCGGTCTCTGTGCTGCTGCTCTCCCTC----TACACTTCGCATGTGTGAATGGTGCGGCGTGCGTGTCCCTCCCGTGTGTG
CCTCTATCGTCGGACTCTGTGCTGCTGCTCTCCCTCCCTGTACGCTTCGTACGTGTGACTGGTGCGGCGTGGGTGTCCCTCCCGCGTGTG
CCTCTATCGTTGGTCTCTGTGTTGCGGCTCTCCCTC----TACGCTTCAAACGTGTGGCTGATGCAGCGTGTGTGTCCCTCTCGTGTGTG

TGTGTGTGTGTGTGTGTATGTGTGTCTGTGCATCTCCTCGAACTGCACCGCCGCGGCTGAGGGCGCACACACGCAGTCCCATGTGCGCGT

TGTGTGTGTG-———————-—=—=--=--= TGCATCTCCTCGAACTGCACCGCCGCGGCTGGGGGCGCACGCACGCTGTCCCGTGTGCGCGT
TGTGTGTGTGTGTG-~—~——=-=— TCTGTGCATCTCCTCGAACTGCACCGCCGCGGCTGAGGGCGCACGCACGCAGTCCCATGTCCGCGT
DG GGG~ — — — == — == = == = = = = = CGT

TGAGCGAGAGCGCTTGAGGCCGACCCTCTTTCCTCCCCCTACCCGTGTTCCGCGCTCCGTGTCCTACGACACCGACGAGGACCGCGCACA
TGAGCGAGAGCGCTTGAGACCGACCCTCTTTCCTCCCCCTACCCGTGCTCCGCGCTCCGTGTCTTACGACACGGACCAGGACCGCGCATG
TGAGCGAGAGCGCTTGAGACCGACCCTCTTTCCTCCCCCTACCCGTGTTCCGCCCTCCGTGTCCTGCGGCACGGACGAGGACCGCGCACA
TGAGCGAGAGCGCATGAGACCGACTCTCTTTCCTCCCCCTACCCGTACTCTGCGCTCCGTGTTCAGTGACACCGGCGAGGGCCGTGCATA

CGGCCAGCACTCACCCTGACTGCCCGCCGCG----CCTTTCTCTCCCTTGATGGAGTCCCTGTTAACCTTTACCGTCGCGCACGCACATG
GGGCCAGCGCTCACCCCGACTGCCCGCCGCG-—--CCTCTCTCTCCCTTGATGGAGCTCCTGTTAACCTTTACCGTCGCGCACACACATG
TGGACAGCACTCACCCTGACTGCCCGCCGCG----CCT--CTCTCCCTTGATGGAGCCCCTGTTAACCTTTGCCGTCGCGCACACGCATG
CGGCCAGCACTCACCCTGAATGCGCGCTGCGTCCCCCTCTCCCTCCCTCAGCTGAAGCCCTATTAACTTTTACCGGCACGCAC-———-———

CCGATGCCGCACCATCAGCGTACGGCATCCCCCTTCGCTTTTGTGCGTGCGCGTGTGCGCTTCTCCTT-TGTCTCTTCTCCTCCTTATTT
CCGATGCCGCACCATCAGCGTACGGCATCCCCCTTCGTTTTTGTGTGTGCGCGTGTGTGCTTCTCCTT-TGCCTCTTCACCTCCTTATTT
CCGATGCCGCGCCACCAGCGTACGGCATCCCCCTTCGCTTGTGTGCGTGCGCGTGTGCGCTTCGCCGT-TGTCTCTT-—-CTTCTTATTT
—CGAG--AGGGCACACGGCGTCC--CCCCCCCCCCCGCTT----GCGTGTGCGTGTGC-CCTCTCGGTGCCTCTCTT-TTCTTCTTTCCT

GCGGCAACTGTGCAGAGCGGGGGAGCGTCGCCGCCGGTGAGTCAGAGGGGAGACGGGG-AGGGAGACAGCGATGGAAGCACG-CCCCTCC
GCGGCAACTCTGCAGAGCGGGGGAGCGCCGCTGCCGGTGACTCARAGGGGAAACGGGGGAGGGAGACAGCGATGGAAGCACGCCCCCTCC
GCGGCAACTGTGCAGAGCGGGGGAGA-——————— CGGTGAG-—————————————— GGGAGGGG- -CGCG----CCTC
GTGGCAGCG--GATGCGCGGAGCGACTCCTCTACCTCTCGCCATCTTTCGCCCCACGTCCGCGTG——————————— CGCGCTCCCCCTCC

CCTCGCTGTCTCCCCCCCCCTATGCCCCCTCTTCGCCTAT-CATTTCAGTCTTGAGTTTCATCGATAAGAAGGCCCGACTCCGCGAGTGC
CCTCGCTGTCTCCTCCCCCCT---CCCCCTCTTCGCCTAT-CATTTCAATCTTGAGTTTCATCGATAAGAAGGCCCGACTCCGCGAGTGC
CATCGCTG--TCCTCCCCCCT--CCCTCCTCTTCGCCTAT-CTTTTCAGTCTTGAGCTTCCTCGATAGGAAGGCCCGACTCCGCGAGTGC
TGCCGCCTG-TCTTCCTCCCCTTCCCTCCTCCTCTGTTCCGTATTTCATTCCGGTGGTACATCGACAAGAAGG-ACGGCTCCGTGAGTGC

CGACCTGTGCCCCCTCCCCCTT-CCTTAA 1172
CGGCCTGTGCCCCCTCCCCCTTTCCTTAA 1158
CGGCCTGTGCCCCCTCCCCCCT-CCTCAA 1093
CGGCCTGTGCCCCCTTCCCCTT-CCTTAA 936

Figure 4 Multiple sequence alignment among HSP70 3’ UTR-I from L. braziliensis (Lb: JF449364), L. major (Lmj: LmjF28.2780), L.
infantum (Li: LinJ28_V3.2960) and L. mexicana (Lmx). Conserved sequences are shaded in gray. L. major 3" UTR-l sequence was deduced by
comparison with L. infantum and L. braziliensis 3" UTR-I sequences. Additional file 3, shows the sequence information, currently available in the
GeneDB database, that was used for assembling of the putative L. mexicana 3" UTR-I sequence.
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braziliensis HSP70 locus. The IR, not included in the
mature mRNA, is defined as the sequence beginning
downstream of the polyadenylation site and ending
immediately upstream of the spliced leader acceptor site
of a downstream gene. Thus, the IR between
LbrM28.2990 and LbrM28.2980 genes was found to be
237 nucleotides in length; this region was almost identi-
cal (99.6%) to that cloned for this work (pLbHSP70-IR-E
clone, GenBank accession number JF449366), suggesting
a high degree of conservation of this region along the
HSP70 cluster.

Comparison of L. braziliensis HSP70 UTRs with their
homologues in other Leishmania species

The characterization of UTRs for L. braziliensis HSP70
genes (Figures 2, 3 and 4) has evidenced the existence
of a remarkable conservation of the HSP70 locus along
the genus Leishmania, extending previous studies [16]
to a species of the Viannia subgenus. The 5° UTR
cloned in this work was found to be highly conserved
with the equivalent regions of the LbrM28_v2.2990 and
LbrM28_v2.2980 genes (98% and 99.5%, respectively).
The comparison with the HSP70 5" UTR of other Leish-
mania species showed also a remarkable sequence iden-
tity (77-81%). Noticeably, this region was well conserved
among all Leishmania species analyzed except for two
exclusive sequences of L. braziliensis (Figure 2).

Comparison of the 3’ UTR-I from L. braziliensis with
those from other Leishmania species revealed identities
between 71-73%. Furthermore, stretches of identical
nucleotides are present in the 3 UTR-I in all the species
analyzed (Figure 3 and 4). Again, it was found that L.
braziliensis sequence is the most divergent among the
analyzed sequences. Thus, the L. braziliensis 3’ UTR-1
lacks several regions common to the other Leishmania
species; in particular, there are two important sequence
gaps, of 60 and 77 nts, located at the beginning and the
middle of the region, respectively (Figure 3 and 4).

In contrast to the 3’ UTR-I, the 3° UTR-II from L.
braziliensis showed to be more divergent, having only a
55-57% of identity with the other species analyzed.
Indeed, some sequences at the first half of the region
were exclusive for L. braziliensis (Figure 5 and 6). Con-
versely, it was found that L. braziliensis sequence lacks
several regions common to the other Leishmania spe-
cies, especially in the second half of the region (Figure 5
and 6). Nevertheless, the presence of several short
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stretches of identical sequences among all the species
analyzed was also found (Figure 5 and 6), suggesting a
common evolutionarily origin.

Expression analysis of HSP70 genes in L. braziliensis

The identification of two divergent 3° UTR sequences
for HSP70 genes in L. braziliensis and their comparison
with the sequences in the GeneDB database allowed us
to define the existence of two types of HSP70 genes, a
question that remained to be solved [16]. Northern blot
assays using different probes were performed in order to
elucidate the expression of these genes in L. braziliensis.
Using the IR-HSP70 probe, containing the complete 3’-
UTR-I together with 5-UTR and short fragment of the
coding region, two hybridization RNA species of very
similar size were observed (Figure 7). In addition, a
slight hybridizing fragment of about 5.6 kb was observed
in all lanes, but its signal became stronger when para-
sites were incubated at 37°C; accumulation of additional
high molecular RNA species was also observed with this
treatment (Figure 7A). It is likely that those fragments
are representing RNA precursors (pre-mRNA), whose
processing is disturbed by heat shock. The use of probes
specific for 3 UTR-I and UTR-II allowed us to show
the existence of both types of transcripts: the HSP70-1I
mRNA, which corresponds to the upper RNA in figure
7A, and the HSP70-I mRNA, which corresponds to the
lower one. Of special interest, both types of transcripts
did not show accumulation under heat shock treatment
(Figure 7).

Copy number and chromosomal location of HSP70 genes
in L. braziliensis

In order to estimate the number of HSP70 genes in the
L. braziliensis locus, a Southern blot analysis was car-
ried out (Figure 8). L. braziliensis total DNA was either
totally or partially digested with selected restriction
enzymes, and, after electrophoretic separation and
transferring, hybridized with specific probes. A promi-
nent 3.3-kb fragment was observed after digesting
DNAs with either Smal- or BamHI and hybridizing
with the intercoding probe (H70-IR-E; Figure 8A),
indicating that indeed the HSP70 locus in L. brazilien-
sis should consist of tandemly repeated genes with a
repetition unit of 3.3-kb. Additional fragments, show-
ing lower hybridizations signals, were interpreted as
representing the boundaries of the locus (Figure 8A,

3"UTR-I

34

\ll<hsp70-ﬂ =K hsp70-1 [ =K hsp70- [T=IK hsp70- [T=HEK hsp70-l [T=HEK hsp70- [J=HEK hsp70-| 5’

Figure 5 Graphical representation of the 3’ UTR-II position in the HSP70 cluster of L. braziliensis.
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****** ATCGCTCGAGT-------—--GCTGTGAAACTTCACCCCACGTTTGCACTGCACTGTATGTTTACTCTTTCTATTGTGCCTAGG
—————— ATCGCCCGAGC--—-----—---GCTGTGAAACAGCCTCCCATGTATGCGCTGCATTTATTTTGTTCG—---CCTGTAGGCCAAGG
GCTCTGTGTGCACCAGCG-—----— GTGCTGTAGTGCT--CGCCGGTGAATGCCATATATCCTGCTCACGCCG-CTGATGTATGTCTGGG

TGGTTTGTAGG-GCGCCGCTGCTATTCCCCGGGAATGCACACCACCACCTGATAGATTCTGTGTG-——-———-————————— TGTGCT---C
TGATGTGCGGCTGCGCCTTTGCTGCTCCCCTGTAATGGACACCACCACTTGATAGATTGTGTGTGTCTTTGTGTT-TGCGTGCGCT---C
TGATATGGGAG-GCGCCGTCCTTATTCCCGGGAAACGCACACCACCACTTGATAGATTTTCTCTG-——-——————— TGTGTGTGCT---C
TGTTG-GCGGATGCGGGTTCGCTGATGCCGTGGAG-ATACTCCTCGAACTGATGGATATGGTGCTACTATGTCCTGTTCAGGTGTTTTTC

TCTGTAGCTCTGCTGCGC-—-—-— TTTTTCGAGTGC----CGTCGCTC—-—--— CGCGTGTCGTTTG-TGTCTAT---—— TCTGAATTTGT
TCCGTCGCTCTGCCGCAC-—--— TGTGTCGAGTGT----CATGAGTG--—--— CGCGTGTTGTTCGGTGTCTAT—--—— TGTGAATTA-T
TCCGTCCCGCTGCCGCGC-—--— TCTCTCGACTGC----CGTCGTTC------ TGCGTGTCGTGTG-TGTCTCG-—-—-— TCTGAAGTATC

TGCCTTGCGTTGACGCGCGGGTGTCTTACAGTGGCGCTGCGACGCTCTCTCCTCGCATATGCGGCG-TGTCTCTGCGTGTGTGTATGTCT

TCTACGTTITTT-------- TTTCCGTTTTATTTCGGAAGACTTCCGCGTGCTAAATCC---CCCCTTTCCCCCGTAACC-CCCCTCCCCC
TCTGCATTTTTGGTT-TGTTTTGAATCTTATTTCGGAAGACTTCCGCGCGCTAAATCCTCCCCCCCCCCCCCCATTCCC-CCCTTCCCCC
TCTGTTTTTTTTCG——-——— TTTGGG--TTGTTTCAAAAGACCCCCGCGCGTTAATATCCTCCTCCCCCCAACACACACT-CTTCTCCCCC

TTTATTTTITTTGTGTGTGTTTTATATTTTTCTCCTTTCGTACTAAGAGCGTTTGCTCACTCCTACCCACCCCACATTAAGCCCCTCCTCC

TTTTTTTCTCTACG——-—-—- TCTGTTTCGCCTTATTT---——-———————————— TATATATATATATAT---ATTATGGTACCGCCACC
CTCCCCGCCCCCCGATAACTCTCCCTTCCCCCTTGTTTGTCTGCGTCCGTTTCGCTATATATATATATATGATATTATGGTATCGCCACG
TTCCCGTAACTCCC---CCTCCCTACTCTTCCTTCTCTGCGTCAGGTTTGCCTCATATATATTTATATTATATTTTATGGTACCGCCACC
CCTCTCCCCCTCCCG-——=-—=—— CATTTTGTTTTGTCT--——————————————— TCAAAAATTAGTTCTCTCTTTGTT-TCCCGCCCTC

GCTCACGCTCTCGCATTCACA----GAGAGCCGTCCCTATCCACTCTTTCTCCCTCTTGTCCCTCACGCTGTCCATCGTACTAGCCACCC
GCGCATGCTCTCGCATTCACA----GAGAGCCGTCTTTTTCCCCTCTCCCTCCCTCTTGTCCCTCAAGCTGTCCCTCGTACTACCCAGTC
GCTCACCCTCTCGCGCACACACAGAGAGAGCCGTCCTTCTCCCCTCTCCCTCCCTCTTCTCCCTCACGCAGCCCCTCGTACTATTCACCC
TCTCGGTGTCTTGCG----CA---—-— TGAACTCGCAGAGAGTCATCGCACACTCTCCTCTTCCTTAGTCTCTCCCTCTCTCTTTAACGCC

CCTCCCGC--CCCTACTTTTCCGCTGTCGGTCTTTCTAGTCCACACTCAAATACCACAACCACGGTGCCTGCGGCGCTGTGGGTGTGCGT
CCTCCCGG--CCCCACTTTTCCGCTGTCGGTCTTTCCAGTCCACACCCAACTACCACGGCCACAGTGCGTGCGGCACGTTGTGTGTGCGT
CCCCCCACGTCCCCACTCTTGTGCTGTCGGTCTTTCTCGTCCACACCCAACTACCACAGCTACGGCGCGTGCAGCACTGTG--TCTACGT
CCAACCTG-——-———=——————— TTGTCGTTCTGTCTT--CCACACCCCACTACTGCGGTCACGCTGCATGTG-————————=—— TGTGT

TGGTGTGCACATGGCGGGCTTGTGGACTCTCTGTTTGTCGATCTCGTTCCCCTTCCACCAGTCG-CAGTTTACGCGCGAAGCCCTGCTGG
TGGTGTGCACATTGCAGGCTTGTAGACTCTCTGTTTGTCGTTCTCGTTCCCCTTCCACCAGTCG-CAGTTGAGGCGCTAAGCCCTGCTGG
TGGTGTGCACATTGCAGGCGTGTTGACTCTCTGTTTGTTATTCTCGTTCCCCTTCCACCAGTCG-CAGGATCCGTGCAACGCTCTGCTGA
GTGTGGGCGCAGTGCCTTCTTGTGTTCTCTCTGTTT——---— TCGCTTTCCCCTTCCACCCGTGGGCAGTAAAGGCGCATAAGCCTGTGCG

CTGGTGCGCGAGGGAGGAGAGGCCCACCAGCCAGCGTGTGTGCCACACTCTCTGGCAGGG-TTGCTTGCCGGCTTTGTAGCTGAGGACGT
CTGGTGCGCGAGGGAGGAGAGGCCCACTAGCCTGCGTGTGTGCTACACTCTCTGGTACAG-CTGCTTGCCAGCTGAGTAGCAGAGGACAT
CTGGTGCGCGAGGGAGGAGAGGCCAACGAGCCTGCGTGTGTGCTACACTCTCTGGTAAGGTTTGCCTGCCAGCTTTGTAGCAGAGGACAT
CTGGTGCGCGAGGGAGGAGAGGACAACGAGCCCGCCTIGTCTGCTATAATCGCCGGTGAAG-TTGTTCGACACCTTCGCAGGAGAGGAAGT

GGACAGATCACACCGTTGGGGGCGTAGAGAGAGGGAGCGTGCAG--TGGGTGAAAGCTCGGCAGGCGGGCGACGGCAGCGAGGATGCTCA
GAATAGATCGCACCGTGGGAGGGGTAGAGAAAGGAAGTGTGCAGAGTGGGTGAAAGCTCGGCAGGCGGGCGACGGCAGCGAG-———————
GGATAGATCGCAGTGGTGGAGGCGTAGAGAGAGGGAGTGTGCAGTGTAGGTGAAAGCTCGGCAGGCGGGTGACGGCAGCGAGGATGCTCA
GGATTGATCGCGGCGGTCGGGGCG--GAGAGAGGGAG-——————————————————————— CTGGTG--AGAAGGAAAAGAG---—-—--

CTGCACGTCTGCATCGAGGTGCGTGTGGATGCACGCAAGCCGCCTCAGCA---ATCTACGCGTCTGTGTGTGTGCGAGAGAGCGAATTAA
—————————————————— GTGCACATGGATGCACGCAAGCTGGCTCAGCA---ATCTACGCGTCTGTGTGTGTGCGAGAGAGCGAATTAA
CTGTAGGTCTGCATCGAGGTGCGTGTGGATGCACGCAAGCCGCCTCAGCAGCAATCTGCGCGTCTCTGTGTGTGCGAAAGGTCGAATCGA

AGAAGAG---AAGAAGAGAGACGACGGAAGTGCGCGCGCAAACCAGGAAAGCCAACCGGCTTCCACACCCACAAACCCCCCG-TCGCTTT
AGAAGAGAACATGAAGAGAGACGACGGAAGTGCGCGAGCAAACCCGGAAGGCCAACGGGCTTCCACACCCGCAAACCCCLCG--TCGCGTC
AGAAGAGAATAAGAAGAGAGACGACGGAAGTGCTCGAGCAAGCATG-AAAGCAAACGGGCTTCCACACCCACAAGCCCCCCTGTCGCGTC

TGATTTCTCGTTGTCTGGCACTCACATCAGCTCTCTCCCT--GTCTCTCCTTTATGGAGCATGACGATACGGTAACATGCAGTGCGAGCA
CGATCTCTCGTTTTCTGGCACTTACATGAGCTCTCTCCCTCTGTCTCTCCTTTATGGAGCATGTCGATACAGTAACATGCAGTGCGAGCA
GAATCTCTCGTTGTCTGGCACTTAGGTCGGCTCCCTCCCTCTGTCTCTCCTTTGTGGAGCATGACGATACGGTAACATGCAGTGCAAGCA

CTGGAAAA 1071
CTGGAAAA 1096
CTGGAAAA 1107
AAAAAA-- 932

Figure 6 Multiple sequence alignment among HSP70 3’UTR-Il from L. braziliensis (Lb: JF449365), L. major (Lmj: LmjF28.2770), L.
infantum (Li: LinJ28_V3.3000) and L. mexicana (Lmx: LmxM.28.2770). Conserved sequences are shaded in gray. L. major and L. mexicana
sequences were deduced by comparison with L. infantum and L. braziliensis 3' UTR-Il sequences.
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Figure 7 ldentification of HSP70-1 and HSP70-II transcripts of L. braziliensis. Four micrograms of total RNA isolated from promastigotes
incubated for 2 h at the indicated temperatures were separated on denaturant 1.5% agarose/MOPS/formaldehyde gel, blotted and hybridized
with the H70-IR-E (A), 3" UTR-I, and 3" UTR-II (B) probes. As load control, the agarose gels were stained with ethidium bromide (rRNA panels).
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Figure 8 Genomic organization of HSP70 genes from L. braziliensis. DNA from promastigotes was totally or partially digested with restriction
enzymes and the resulting fragments were separated on a 0.8% agarose gel, transferred to nylon membrane and hybridized with the H70-IR-E
probe (A). The same blot was stripped and rehybridized with the HSP70-3" UTR-Il probe (B). Lanes: 1, 185 ng of A DNA Hindlll; 2, 300 ng of Xhol-
digested DNA; 3, 1 ug of Xhol+Smal-digested DNA; 4, 1 ug of Xhol+BamHI-digested DNA; 5 to 9, DNA digested with BamHI for 2 min (lane 5), 5
min (lane 6), 15 min (lane 7), 30 min (lane 8), and 3 hours (lane 9); lane 10, 140 ng of ®29 DNA+Hindlll. Molecular weight markers (lane 1 and
10) were labeled with digoxigenin and used as a probe in the hybridizations. (C) Pulsed field gel electrophoresis showing ethidium bromide
staining of S. cerevisiae (lane 1), and L. braziliensis chromosomes (lane 2). Panel 3 shows the hybridization of the H70-IR-E probe to the L.
braziliensis chromosomes. (D) Graphical representation of the deduced physical map for HSP70 locus in L. braziliensis. Small red boxes represent
the 5" UTR; light blue boxes the 3" UTR-, dark blue one the 3" UTR-ll, and green boxes the ORFs.
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lane 3, and 8B, lanes 3, and 4). The tandem organiza-
tion of the locus was demonstrated by BamHI partial
digestion of L. braziliensis DNA; a typical ladder was
observed (Figure 8A, lanes 5 to 8).

Hybridization of the membrane with the 3° UTR-II
probe showed a sole hybridization fragment (5.1-kb in
Xhol+Smal digested DNA, and 4.1-kb in Xhol+BamH]I
digested DNA) (Figure 8B, lanes 3 and 4, respectively),
in agreement with the existence of a unique HSP70-I1
gene, which was located at the 3’ end of the locus (Fig-
ure 8D). According to the number of fragments
observed in the lanes containing BamHI partially
digested DNA (Figure 8A, lanes 5 to 8), and taking into
account the size of the hybridizing Xhol-fragments
which should contain the complete locus (Figure 8A,
lane 2), it was estimated the presence of around seven
HSP70 genes in the L. braziliensis HSP70 locus, as is
shown in Figure 8D which summarizes the genomic
organization of the L. braziliensis HSP70 locus.

The presence of two hybridization fragments, larger
than 20 kb, in the lane containing X/ol-digested DNA
(Figure 8A, lane 2) has no direct explanation. Two
hypotheses may be invoked to explain this unexpected
finding. On the one hand, it can be postulated the exis-
tence of two identical HSP70 tandems that, furthermore,
should be found in the same chromosome. Thus, PFGE
separation and hybridization assays showed that HSP70
genes are located in a chromosome of approximately 1.5
Mb (Figure 8C), which would correspond to the chromo-
some 28, according to the location of the HSP70 locus in
the GeneDB database. The other hypothesis is the exis-
tence of allelic polymorphisms either within the locus
(affecting the number of HSP70 gene copies) or in its
boundaries (affecting one of the X/hol restriction sites).
Although the size and hybridization intensity of these
Xhol restriction fragments supports the second alternative,
and the resolution of the PFGE assay do not permit distin-
guish between the two size different sister chromosomes,
further work is needed to clarify this finding.

Conclusions

The present work was intended to establish the genomic
organization of HSP70 genes in L. braziliensis. Firstly, by
RT-PCR and cloning, we identified two types of 3" UTR
sequences, demonstrating that also in L. braziliensis two
types of HSP70 genes exist, a feature shared with other
Leishmania species. In addition, our analyses support the
existence of at least seven HSP70 genes arranged in a
head-to-tail manner. In summary, the HSP70 locus in L.
braziliensis, like in Leishmania subgenus species, is com-
posed of the two types of genes (HSP70-I and HSP70-II),
the number and the relative position of these genes being
very similar in the Leishmania genus. This finding is of
especial value taking into account that L. (V.) braziliensis
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complex is considered as the earliest divergent species of
the genus Leishmania [39]. The strict conservation of the
HSP70 gene array in all Leishmania species analyzed sug-
gests that this type of arrangement must have an impor-
tant functional role. Indeed, as recently reported, the
HSP70-II gene in L. infantum is extremely relevant for
virulence and intracellular survival of the parasite [40].

Additionally, we have experimentally mapped the 5’
and 3’ UTR of both types of HSP70 genes of L. brazi-
liensis. After comparing with the genomic sequences,
the position of processing signals, such as the trans-spli-
cing and polyadenylation sites as well as the C-rich
polypyrimidine tracts, were determined. The distance
between these elements is in agreement with previously
reported range of distances [41].

Former studies in L. braziliensis reported that after
probing the mRNA blot with the HSP70 coding region,
two hybridization RNA species very close in size were
observed, corresponding the lower molecular weight
species to that hybridizing with a 3° UTR-I probe [16].
Our Northern blot analysis supported these findings and
revealed that the larger RNA corresponds to the HSP70-
II transcript, confirming the existence of the HSP70-I1I
genes in this parasite. Although, the size difference
between these transcripts could not be explained by the
sole difference in size of both 3" UTRs, it is likely that
the differences are due to different length of the poly(A)
tail [42,43]. Noticeably, it is considered that unstable
mRNAs carry shorter poly (A) tails [44,45]. Northern
blot assays showed that the steady-state levels of both
transcripts are not affected by the temperature of incu-
bation. Consequently, in contrast to the species of the
Leishmania subgenus, L. braziliensis HSP70-I transcripts
are not stabilized upon heat shock.

Additional material

Additional file 1: Strategy for cloning the intercoding and UTR
regions of L. braziliensis HSP70 genes. (A) Location of the primers
according to the L. braziliensis genome database. (B) Amplification of the
intercoding region using the Lb1817F/Lb181R primers (pLbHSP70-IR-E
clone). (C) Total RNA was extracted and cDNA synthesized with polyT-
EcoRl primer. The cDNA was used as template to amplify the 5" UTR,
using the LbSLF and Lb181R primers (pLbHSP70-5B clone), or 3" UTRs,
using the Lb1824F and polyT-EcoRI primers. pTLb3HSP70-D, and
pLb3H70-11B clones correspond to 3" UTR-l, and 3" UTR-Il, respectively.

Additional file 2: CLUSTAL 2.1 multiple sequence alignment
between the sequence of pLbHSP70-5B clone and the equivalent
sequences present in pLbHSP70-IR-E clone, and genes
LbrM28_V2.2990 and LbrM28_V2.2980. Shaded in grey is the start
codon; LbrM28_V2.2980 gene has in the 5" UTR an additional cytosine in
position 138 (in bold); the 5" UTR from LbrM28_V2.2990 gene contains
four nucleotide gaps (underlined in the other sequences). In position 248
(shaded in green) of pLbHSP70-IR-E sequence, within the coding
sequence, there is a G to A transition that generates a change of
cysteine (C) by tyrosine (Y) in the protein. In position 340 (shaded in
fuchsia) of pLbHSP70-5B sequence, there is other transition of a guanine
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for an adenine that generates a change of Glutamic acid (E) by Lysine
(K).

Additional file 3: Location of HSP70 genes in the L. mexicana
genome. The upper black arrows demarcate the HSP70 locus. Red boxes
indicate the 5" UTR, blue arrows the 3" UTR-, green arrow the 3" UTRIl,
and red stars the gaps in the sequence. L. mexicana 3" UTR-l sequence
was assembled from three fragments (GeneDB positions: 1'048.970 -
1'049.137; 1'047.042 - 1'047.656, and 1'045.959 - 1'046.951) deduced by
comparison of the L. mexicana genome with the GenBank entry
L14605.1, a sequence containing the 3'UTR-I from L. mexicana
amazonensis. L. mexicana 3' UTR-Il sequence was deduced by
comparison with L. infantum and L. braziliensis 3' UTR-Il sequences.

Abbreviations

CL: cutaneous leishmaniasis; MCL: muco-cutaneos leishmaniasis; HSP: heat
shock protein; HSP70: 70 kDa heat shock protein; IR: Intergenic region; PFGE:
pulsed field gel electrophoresis; PPT: thermosensitive polypyrimidine-rich
element; UTR: untranslated region; VL: visceral leishmaniasis; LACK: activated
protein kinase ¢ receptor (guanine nucleotide-binding protein beta subunit-
like protein).
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