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Expression level of a flavonoid 3'-hydroxylase gene
determines pathogen-induced color variation
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Abstract

identify the key genes determining this color variation.

Background: Sorghum (Sorghum bicolor L. Moench) accumulates 3-deoxyanthocyanidins and exhibits orange to
purple coloration on parts of the leaf in response to infection with the fungus Bipolaris sorghicola. We aimed to

Results: Sorghum populations derived from Nakei-MS3B and M36001 accumulated apigeninidin, or both apigeninidin
and luteolinidin, in different proportions in lesions caused by B. sorghicola infection, suggesting that the relative
proportions of the two 3-deoxyanthocyanidins determine color variation. QTL analysis and genomic sequencing
indicated that two closely linked loci on chromosome 4, containing the flavonoid 3'-hydroxylase (F3'H) and Tannini
(TanT) genes, were responsible for the lesion color variation. The F3'H locus in Nakei-MS3B had a genomic deletion
resulting in the fusion of two tandemly arrayed F3'H genes. The recessive allele at the TanT locus derived from M36001
had a genomic insertion and encoded a non-functional WD40 repeat transcription factor. Whole-mRNA sequencing
revealed that expression of the fused F3'H gene was conspicuously induced in purple sorghum lines. The levels of
expression of F3'H matched the relative proportions of apigeninidin and luteolinidin.

Conclusions: Expression of F3'H is responsible for the synthesis of luteolinidin; the expression level of this gene is
therefore critical in determining color variation in sorghum leaves infected with B. sorghicola.
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Background

Sorghum (Sorghum bicolor L. Moench) is a rich source of
phytochemicals, including certain 3-deoxyanthocyanidins
[1], dhurrin [2], and sorgoleone [3]. 3-deoxyanthocyani-
dins are not commonly found in higher plants [4], but
sorghum accumulates them in response to pathogen infec-
tion [1,5-7]. One 3-deoxyanthocyanidin, luteolinidin, is
toxic to fungi and accumulates at increased levels in
sorghum lines resistant to the anthracnose fungus [5,8].
Sorghum that accumulates 3-deoxyanthocyanidins ex-
hibits various changes in coloration after infection with
B. sorghicola [6]. The sorghum REDforGREEN mutant
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accumulates a >1000-fold higher amounts of the 3-
deoxyanthocyanidins luteolinidin and apigeninidin (and
variants) than the wild type and exhibits intense red—
purple color of the leaves [6,9]. However, the enzymes re-
quired for 3-deoxyanthocyanidin synthesis have not been
fully identified, and the key genes required for detemin-
ing color variation remain to be elucidated.

Functional genomic studies of sorghum began after its
genome sequencing was completed in 2009 [10,11].
Whole-genome sequencing of sorghum BTx623 has re-
vealed that many genes are duplicated and tandemly
arrayed [10]. Each gene may have developed different
functions related to a particular biochemical reaction.
The sequence similarity of these duplicated genes makes
it difficult to distinguish the expression of gene members
of this family by using polymerase chain reaction (PCR)-
or oligonucleotide array-based technology. Given the
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rapid progress of next-generation sequencing technol-
ogy, shotgun sequencing of whole transcripts—so called
RNA-seq—has been used for the profiling of gene ex-
pression in sorghum in response to infection with the
fungus Bipolaris sorghicola, the cause of target leaf spot
[12,13]. 3-deoxyanthocyanidin biosynthesis after infec-
tion with B. sorghicola occurs through the coordinated
expression of genes encoding the catalysts of sequential
reactions; these catalysts include phenylalanine ammonia
lyase, trans-cinnamate 4-monooxygenase, 4-coumarate:
CoA ligase, chalcone synthase (CHS), chalcone isomerase
(CHI), dihydroflavonol 4-reductase (DFR), and putative
anthocyanidin reductase [12]. De novo transcriptome as-
sembly has revealed that transcripts derived from B.
sorghicola induce a defense response in sorghum [13].
Transcriptome analysis is a powerful tool for identifying
the key genes expressed among family members.

Here, we aimed to identify the key genes detemining
color variation in sorghum. For this purpose, we used
sorghum populations derived from Nakei-MS3B (which
has purple B. sorghicola lesions) x M36001 (which shows
no color change with B. sorghicola infection); this popula-
tion shows a gradation of different colors. We performed
a metabolic analysis to identify accumulated pigments, a
quantitative trait locus (QTL) analysis to map candidate
genes, and whole mRNA sequencing to comprehensively
identify the genes expressed. We found that the expression
levels of a particular flavonoid 3'-hydroxylase (F3'H) gene
on chromosome 4 matched the relative proportions of the
3-deoxyanthocyanidins apigeninidin and luteolinidin, and
this gene was thus responsible for the gradual variation of
colors in sorghum leaves infected with B. sorghicola.

Methods

Plant materials and phenotyping

The sorghum cultivar Nakei-MS3B, and the M36001
were used as parents. A mapping population was estab-
lished from a cross between these cultivars. For the plant
color test, at Shinshu University in Nagano, Japan, in
2011, the F2 population was grown and inoculated with
barley seeds colonized by Bipolaris sorghicola. At Tsukuba,
Ibaraki, Japan, in 2012, the F3 populations were subjected
to high-density genetic mapping and mRNA-seq analysis.
Accumulated pigments were quantified by using LC-MS/
MS as described previously [14].

Marker development and genetic mapping

A mapping population was established from a cross be-
tween the sorghum cultivars Nakei-MS3B and M36001.
We used 150 F2 progeny; the 122 progeny with color
changes in their lesions were used for bulk mapping of
purple or orange leaf color, with an analysis of 172 sor-
ghum SSR markers as described previously [15]. The
major SSR markers used for the genetic mapping of plant
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color are shown in Additional file 1: Table S1. QTL ana-
lysis was performed for the entire population by using
Windows QTL Cartographer ver. 2.5 (http://statgen.ncsu.
edu/qtlcart/WQTLCart.htm). The F2 intercross algorithm
and default linkage criteria [LOD (logarithm (base 10)
of odds) 3.0 and 50 ¢cM maximum distance) were ap-
plied. The Kosambi function was used to establish gen-
etic distances.

Construction and screening of a sorghum BAC library

BAC (bacterial artificial chromosome) libraries were
constructed from young leaves of Nakei-MS3B; they
contained 39,267 (average insert size 134 kb) clones, re-
spectively. We used conventional methods, namely a
partial DNA digest with HindIIl enzyme, size fraction-
ation of high-molecular-weight DNA by pulsed-field gel
electrophoresis (CHEF; Bio-Rad Laboratories, USA), and
vector ligation (pIndigoBAC-5; Epicentre Biotechnolo-
gies Madison, WI, USA) and transformation into E. coli
(DH10B strain). Positive BAC clones covering the region
of the F3'H gene were screened from each library by
using tightly linked DNA markers through PCR amplifica-
tion, and subjected to shotgun sequencing to give ap-
proximately 10-fold sequence coverage using a previously
described method [16]. A BAC clone containing inserts
from the F3°H region—namely MS3B_108E24 (183 kb)—
from Nakei-MS3B was found by PCR analysis by using
SB20978 and SB20980 (Additional file 1: Table S1). The
BAC sequences were produced by Sanger shotgun se-
quencing of subclones followed by assembly of the shot-
gun sequences. The sequences of candidate genes were
obtained from the sorghum genome database (http://
www.plantgdb.org) and used for gene expression analysis.

RNA-seq

To extract RNA from each plant tissue, five biological
replicates were collected, immediately frozen in liquid
nitrogen, and mixed to minimize the effect of transcrip-
tome unevenness among plants. Total RNA was ex-
tracted by using an RNeasy Plant kit (Qiagen, Hilden,
Germany). RNA quality was calculated with a Bioanalyzer
2100 algorithm (Agilent Technologies, Palo Alto, CA,
USA); high-quality (RNA Integrity Number >8) RNA was
used. Total RNA samples (10 pg) were subjected to cDNA
construction for Illumina sequencing, in accordance with
the protocol for the mRNA-Seq sample preparation kit
(lumina, San Diego, CA, USA). Oligo (dT) magnetic
beads were used to isolate poly (A) RNA from the total
RNA samples. The mRNA was fragmented by heating at
94°C for 5 min. First-strand cDNA was synthesized by
using random hexamer primers at 25°C for 10 min, 42°C
for 50 min, and 70°C for 15 min. After the first strand had
been synthesized, dNTPs, RNaseH, and DNA polymerase
I were added to synthesize second-strand DNA for 2.5 h
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at 16°C. The ends of double-stranded cDNA were repaired
by using T4 DNA polymerase and Klenow DNA polymer-
ase and phosphorylated by using T4 polynucleotide kinase.
A single “A” base was added to the cDNA molecules by
using Klenow exonuclease, and the fragments were ligated
to the paired end (PE) adapters from the Illumina mRNA-
Seq kit. cDNA with 200 + 25-bp fragments was collected.
The purified cDNA was amplified by using 15 cycles of
PCR at 98°C for 10 s, 65°C for 30 s, and 72°C for 30 s
using PE1.0 and PE2.0 primers.

Bioinformatics

We used an in-house program to trim out low-quality
nucleotides (<Q15) from both the 5'- and the 3'-ends of
the reads until a stretch of 3 bp or more of high-quality
(=Q15) nucleotides appeared. Adaptors were also trimmed
out by using Cutadapt version 1.0 (http://code.google.
com/p/cutadapt/). We used Bowtie 2 version 2.0.0 beta6
[17] to align the reads against sorghum rRNA gene se-
quences downloaded from the Plant Repeat Database [18];
aligned reads were removed. The reads were deposited in
the DDB] (DNA Data Bank of Japan) Sequence Read
Archive (Accession No. DRA001265).

The reads were aligned to the sorghum reference gen-
ome of BTx623 [10] by using Bowtie 2, SAMtools version
0.1.18 [19], and TopHat version 2.0.4 [20]. RPKM (Reads
Per Kilobase of exon model per Million mapped reads)
[21] values were calculated for each transcript annotated
in Phytozome [22] or assembled by using Cufflinks version
2.0.0 [23]. Transcripts that were differentially expressed
between cutting-stress samples and control samples were
detected by using a G-test with a false discovery rate
threshold of 0.1%.

The Sb04g024710 gene sequence was aligned to genes
from Phytozome and Cufflinks by using BLAST + ver-
sion 2.2.26 [24], and the top 50 hits were considered to
be Sb04g024710 paralogs. A heatmap of Sb04g024710
paralogs was generated by using R (http://www.R-project.
org/) package gplots version 2.10.1 (http://cran.r-project.
org/web/packages/gplots/index.html) with log2 values of
the RPKM fold changes. Reads mapped to genes in the
F3’H region were visualized by using Integrative Genom-
ics Viewer [25].

Results

Identification of pigments in sorghum exhibiting
different-colored lesions

Sorghum leaves exhibit various colors upon infection
with Bipolaris sorghicola. Sorghum populations derived
from a cross between Nakei-MS3B and M36001 had
spots of purple (Nakei-MS3B, #96), red (#62), or orange
(#3, #127), or no color change (M36001) (Figure 1A). Sor-
ghum plants produce the 3-deoxyanthocyanidins apigen-
inidin and luteolinidin in these lesions [12]. Accumulation
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of these pigments was confirmed by using thin layer chro-
matography and high performance liquid chromatography
(data not shown). In each line, the color pigments in the
lesions were further analyzed by using liquid chromatog-
raphy — mass spectrometry/mass spectrometry (LC-MS/
MS) (Figure 1B), which was confirmed by the retention
time and MS and MS/MS of authentic compounds [14].
Apigeninidin and luteolinidin were barely detected before
infection but were clearly produced after infection. The
purple lesions on Nakei-MS3B and line #96 contained
luteolinidin and a small amount of apigeninidin, whereas
the orange lesions on line #3 contained only apigeninidin.
The red lesions on line #62 contained both luteolinidin
and apigeninidin in relatively small proportions. There-
fore, the relative proportions of luteolinidin and apigenini-
din determined lesion color upon infection with Bipolaris
sorghicola.

Mapping of QTLs responsible for color variation in

B. sorghicola lesions on sorghum

We identified QTLs determining color variation in the
sorghum lesions by using a population derived from
Nakei-MS3B x M36001. The F, population segregated
for 150 individuals with and without color pigmentation
change at a frequency of 122:28 (y* = 3.20; P = 0.073 for
a 3:1 segregation ratio, chi-squared test). Because our
aim was to elucidate the genes responsible for color vari-
ation, we subjected the 122 colored-lesion F, progeny to
further analysis. The ratio of the pigments in the lesions
was purple to red to orange = 24:67:31 (y*=1.262; P =
0.532 for 1:2:1 segregation ratio, chi-squared test), sug-
gesting that color variation was controlled by a single
semi-dominant locus. Bulk mapping revealed a clear bias
toward purple or orange lesion color between simple se-
quence repeat (SSR) markers SB2623 (44.80 Mb) and
SB2925 (66.54 Mb) on chromosome 4, indicating that
color variation—related genes were present at a single
locus (Figure 2, upper panel). We then subjected 150 F,
plants to genetic mapping, which revealed that the pre-
dicted regions were segregated into two regions, between
SB2685 (53.07 Mb) and SB2734 (56.42 Mb) for purple
and between SB2760 (57.96 Mb) and SB2836 (62.14 M b)
for orange (Figure 2). Further mapping showed that the
candidate genes responsible for purple were located in an
880-kb region between SB2703 (54.15 Mb) and SB2710
(55.03 Mb); those for orange were located in a 2.09-Mb re-
gion between SB2792 (60.05 Mb) and SB2836 (62.14 Mb).

F3'H locus

At the first locus, which was responsible for the purple
and was located between the SSR markers SB2703 and
SB2710, 85 genes were annotated in Phytozome [22]. At
this locus, three F3'H genes (Sb04g024710, Sb04g024730,
Sb04g024750) are tandemly arrayed on the BTx623
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Figure 1 Coloration of sorghum leaves after infection with Bipolaris sorghicola. (A) Nakei-MS3B (right) has purple lesions and M36001 (left)
has no change in color. Populations derived from Nakei-MS3B x M36001 had purple (#96), orange (#3, #127) or red (#62) lesions. (B) Quantification
of accumulated pigments by LC-MS/MS. The “orange” lines (#3, #127) accumulated apigeninidin, whereas the “purple” lines (#96, Nakei-MS3B)
accumulated luteolinidin. The “red” line (#62) accumulated both pigments. Box indicates color exhibited by lesions in each sorghum line.

genome in the Phytozome annotation. F3'Hs are en-
zymes that introduce a hydroxyl group at the 3" pos-
ition of ring B of the flavonoid. We did not perform a
complementation experiment on the F3'H proteins
encoded by these genes in sorghum, but the proteins
encoded by Sb04g024710 and Sb04g024750 (previously
named SHF3°H2 and SbF3'HI, respectively) have F3'H
activity in the #t7 mutant of Arabidopsis to produce 3'-
hydroxylated flavonoids [26]. As the other genes located at
the locus were not likely to be involved in flavonoid syn-
thesis, we focused only on these F3'H genes.

The genomic sequences of the F3'H loci were compared
in BTx623 (orange) and Nakei-MS3B (purple). BTx623
had three tandemly arrayed F3'H genes (Sb04g024710/
SbF3’H2, Sb04g024730/SbF3 H3, and Sb04g024750/SbF3’
H1I), whereas Nakei-MS3B had a genomic deletion flanked
by the 5’-region of Sb04g024710/ShF3’H2 and the 3'-
region of Sb04g024730/SbF3’H3, resulting in only two
F3'H genes (an Sb04g024710-30 fused gene named
Sb04g024710N and Sb04g024750/SbF3°HI) at the locus
(Figure 3A). The fused F3'H protein in Nakei-MS3B had
two amino acid substitutions in the C-terminal region,

namely K503M and A507T (Additional file 2: Figure S1).
The deletion was detected in lines exhibiting purple
lesions (Nakei-MS3B, #96), but not in lines exhibiting
orange ones or no color change (#3, #127, M36001;
Figure 3B), suggesting that the deletion was inherited from
Nakei-MS3B. A heterozygous line (#62) with red lesions
contained both alleles (Figure 3B). Genomic PCR analysis
confirmed that accessions exhibiting purple lesions after
Bipolaris sorghicola infection (i.e. JN43 and Nakei-MS3B)
had the deletion, but those exhibiting no color change
or orange lesions (ie. BTx623, bmr-6, and M36001;
Figure 3C) did not. This result suggested that there was an
association between genomic deletion at the F3'H locus
and lesion color.

We compared the genomic sequences of the region
upstream of Sb04g024710 between BTx623 and Nakei-
MS3B. Two nucleotide substitutions (at positions —144
and -664), and one insertion/deletion (at position —661)
were found in the 1000-bp region upstream of the tran-
scription start site of the Sb04g024710 gene (Additional
file 3: Figure S2). We searched for candidate cis-regulatory
elements by using the PLACE (Plant cis-regulatory DNA
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Figure 2 Quantitative trait locus (QTL) analysis for color variation. (Upper) The purple or orange leaf color locus was mapped on chromosome 4
as a single locus. (Lower) QTL likelihood curves of logarithm of odds (LOD) scores for color variation of lesions on sorghum leaves after infection with
Bipolaris sorghicola (purple, solid line; orange, dashed line) show significant regions on chromosome 4. Using the F2 population, the predicted regions
were segregated into a region for purple and one for orange. Genetic distances (in centimorgans) between markers are indicated on the X axis. Vertical
line corresponds to the critical LOD value.

Elements) [27] program. CTCTT (found only in Nakei-
MS3B at position -664) is one of the consensus se-
quence motifs in promoters activated in the infected
cells of root nodules in Vicia faba, Glycine max [28-30].
CACT (found only in BTx623 at position —144) is a key
component of Mem1 (mesophyll expression module 1),
which is found in the cis-regulatory element of phos-
phoenolpyruvate carboxylase (ppcAl) in the C4 dicot
Flaveria trinervia [31]. GCCAC (found only in Nakei-
MS3B at position —644 antisense) is a promoter motif
involved in light-induced gene expression in Arabidopsis
and rice [32,33].

Tannin1 locus

At the second locus, which was responsible for the or-
ange and was located between the SSR markers SB2792
and SB2836, we found 243 genes annotated in Phyto-
zome. Among these, the Tanninl (Tanl) gene encoding
a WD40 repeat transcription factor (Sb04g031730). Tanl
controls tannin biosynthesis in sorghum, and transforming
the sorghum 7Tanl open reading frame into a nontannin

Arabidopsis mutant restores the tannin phenotype [34].
Tanl derived from M36001 (which has no color change
upon fungus infection) had a 10-bp insertion (CGGGC
AGCGQG) in the exon region that caused a frame shift at
position 921 nt (307aa) (Additional file 4: Figure S3), sug-
gesting that this allele encoded a non-functional transcrip-
tion factor. M36001, #127, and #3 did not accumulate
tannin in the seeds (Table 1). Tanl is similar to PACI
(Pale aleurone colorl), which encodes a regulator of the
maize anthocyanin pathway [35].

As other candidate genes at the locus, we located genes
encoding putative MYB transcription factors (Sb04g031030
and Sb04g031820) or MYB-related proteins (Sb04g030510
and Sb04g031110). The putative MYB transcription factor
gene (Sb04g031820) was highly expressed, but its ex-
pression level did not change after wounding stress
(Additional file 5: Table S2). Another putative MYB tran-
scription factor gene (Sb04g031030) and MYB-related
protein genes (Sb04g030510 and Sb04g031110) were bare-
ly expressed (Additional file 5: Table S2). Therefore, we fo-
cused on the Tanl (Sb04g031730) gene.
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Transcriptome analysis of sorghum exhibiting
different-colored lesions

To determine which F3°H was responsible for the pig-
mentation, we used RNA-seq to identify genes that were
differentially expressed after cutting stress of sorghum
leaves. F3’H (Sb04g024710N) was strongly induced in
sorghum lines with purple lesions and intermediately in
those with red lesions, but it was barely expressed in
those with orange lesions (Figure 4). The high level of

expression was consistent with the accumulation of
luteolinidin (Figure 1B).

We then used RNA-seq to compare the relative ex-
pression levels of F3'H genes among 50 family genes
with high levels of identity to Sb04g024710. Expression
of F3'H (Sb04g024710N) was exclusively induced in sor-
ghum with purple lesions (Figure 5). We therefore consid-
ered that expression of an F3'H gene (Sb04g024710N) is
responsible for the synthesis of luteolinidin and thus plays

Table 1 Associations of phenotypes with F3'H and Tan1 genotypes

Genotype Phenotype
F3'H Tan1 Color of leaf lesion Accumulation of tannin in seeds*
Nakei-MS3B F3'H/F3'H Tan1/Tan1 Purple yes
#96 F3'H/F3'H Tanl/tanl-b Purple yes
#62 F3'H/f3'h Tanl/tanl-b Red yes
#3 3'h/f3'h tanl-b/tani-b Orange no
#127 f3'h/f3'h tanl-b/tani-b Orange no
M36001 3'h/f3'h tani-b/tani-b No color change no

*Accumulation of tannin was determined by the bleach test.
F3'H: flavonoid 3'-hydroxylase; Tan1: Tannin1.



Mizuno et al. BMIC Research Notes 2014, 7:761
http://www.biomedcentral.com/1756-0500/7/761

Page 7 of 12

1 | 1 1
— Genome: Nakei-MS3B 5kb
[}
<l
2
©
gg . Sb04g024740 (predicted)
Sb04g024710N / ................. Sb04g024750
(lused F3™H) Genomic delefion™~~~..._ i (F5H)
Y] Genome: BTx623 5kb
¢l ‘ |
i dals A
| “
wnas il
8
©
[s2] D | |,J |
= e ¥ - ——
$b04g024710 una:notated Sb04g024730  Sb04g024740 Sb04g024750
(F3'H) (F3'H) (predicted) (F3'H)
Figure 4 Results of mapping of short reads by using mRNA-seq at the F3'H locus. Reads from Nakei-MS3B (Nakei) and #96 were mapped
on the Nakei-MS3B genome, which has two flavanone 3'-hydroxylase (F3'H) genes (Sb04g024710N and Sb04g024750) because of the genomic
deletion. Reads from lines #62, #3, and M36001 were mapped on the BTx623 genome, which has three F3'H genes (Sb04g024710, Sb04g024730,
and Sb04g024750). Line #62 has heterozygous alleles, but only the allele derived from M36001 is shown. F3'H expression was strongly induced in
sorghum lines with purple lesions (Sb04g024710N: Nakei and #96) and intermediately in the line with red lesions (Sb04g024710: #62), but it was
barely expressed in those with orange lesions (Sb04g024710: #3) or no color change (Sb04g024710: M36001). Arrows indicate transcription from
the unannotated region between Sb04g024710 and Sb04g024730.

a critical role in color variation in B sorghicola spots on
sorghum leaves.

Discussion

We aimed to elucidate the key genes determining color
variation in sorghum infected with B. sorghicola. We
used sorghum populations derived from Nakei-MS3B
(purple lesions) x M36001 (no color change in lesions),
which showed graduated changes in lesion color. Meta-
bolic analysis suggested that the relative proportions of
the apigeninidin and luteolinidin determined color vari-
ation (Figure 1). QTL analysis (Figure 2) and genomic
sequencing (Figure 3, Additional file 3: Figure S2, and
Additional file 4: Figure S3) suggested that two loci, con-
taining the F3'H gene and the Tanl transcription factor
gene, were responsible for the color variation (Table 1).
Finally, mRNA-seq suggested that the expression of one
F3'H gene (Sb04g024710N) was particularly induced in
sorghum lines with purple lesions (Figures 4 and 5). We
therefore concluded that F3'H is responsible for synthe-
sis of luteolinidin, and that its expression level is a crit-
ical determinant of color variation in sorghum.

F3'H in the 3-deoxyanthocyanidin pathway
The difference between the chemical formulae of apigenini-
din (4'-hydroxylated) and luteolinidin (3',4'-hydroxylated)

is the hydroxylation at the 3" position of ring B in luteoli-
nidin (Figures 1 and 6). Our QTL analysis (Figure 2) and
RNA-seq (Figures 4 and 5) analysis suggested that F3'H
was responsible for the color variation. F3’H enzyme hy-
droxylates the 3’ position of the B-ring of naringenin to
produce eriodictyol [36-38]. Sorghum F3’H (Sb04g024710,
previously named SHF3’H2)-encoded proteins have F3'H
activity in vivo to produce 3’-hydroxylated flavonoids
[8,26]. Therefore, we consider that expression of F3'H
added this step of hydroxylation at the 3'-position of ring B
of naringenin; consequently, an additional step led to the
production of luteolinidin in the 3-deoxyanthocyanidin
pathway (Figure 6).

The 3-deoxyanthocyanidins luteolinidin and apigeninidin
are unique flavonoids that are not commonly found in
higher plants [4]. Sorghum accumulates 3-deoxyanthocya-
nidins synthesized from phenylalanine through naringenin
as a common intermediate of anthocyanidins (Figure 6).
Anthocyanidins are synthesized by the action of flavanone
3-hydroxylase (F3H), which in maize hydroxylates the 3
position of ring C of naringenin [36] (Figure 6). Sorghum
F3H1 (Sb06g031790.1) was not expressed in Nakei-MS3B
or M36001 (Additional file 5: Table S2), as was found in a
previous study of BTx623 [12,39]. This lack of F3H activity
is the critical determinant of the pathway to production of
the unique 3-deoxyanthocyanidin flavonoids, instead of
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used to create this heatmap (red, upregulation; green, downregulation). F3'H (arrows) expression was induced in Nakei-MS3B and lines #96 and
#62. Boxes at the bottom indicate colors of areas of each sorghum plant infected with Bipolaris sorghicola.
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anthocyanidins, in sorghum (Figure 6). We therefore
consider that naringenin is the branching point of the
metabolic pathway to apigeninidin, luteolinidin, or the
anthocyanidins.

What determines the activity of F3'H in sorghum tissues?
(1) F3'H locus

F3°H (Sb04g024710N) was highly expressed in Nakei-
MS3B exhibiting purple lesions (Figures 4 and 5). F3'H
(Sb04g024710) in M36001 and F3'H (Sb04g024750) in
both lines were also expressed, but the expression levels
were not as high as that of Sb04g024710N in Nakei-MS3B

(Figure 4). This suggests that the expression level of F3'Hs
determines the activity of F3'H in the lesions. We con-
sidered that high-level expression was related mainly to
the genomic deletion (Figure 3A), as the deletion was
commonly inherited from Nakei-MS3B (Figure 3B) and
was found in sorghum cultivars with purple lesions
(Figure 3C). In the deleted region between Sb04g024710
and Sb04g024730 in lines #3, #62, and M36001, RNA-seq
analysis revealed transcription from two unannotated re-
gions (Figure 3B). The upstream transcript had 90% iden-
tity with that encoding the DNA-binding protein of Zea
mays LOC100281685, and the downstream transcript
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Figure 6 Role of F3'H in the 3-deoxyanthocyanidin pathway. Flavonoid compounds share the same basic skeleton of a flavan nucleus
consisting of two aromatic rings with six carbon atoms (rings A and B), which are interconnected by a heterocyclic ring with three carbon atoms
(ring Q). Flavanone 3'-hydroxylase (F3'H) introduces a hydroxyl group at the 3' position of ring B of naringenin. Expression of F3'H thus adds the
step that leads to the production of luteolinidin. The expression level of F3'H matches the color exhibited on the areas of each sorghum plant
infected with Bipolaris sorghicola. High-level expression of F3'H may depend on the action of Tan1 transcription factor. Flavanone 3-hydroxylase
(F3H) catalyzes C-3 hydroxylation of the C ring of naringenin, leading ultimately to anthocyanidin production. However, F3H was not expressed in
the sorghum cultivars we studied (dotted arrow). Naringenin is the common intermediate for apigeninidin, luteolinidin, or the anthocyanidins.

encoded a heparin-a-glucosamide N-acetyltransferase-like
protein similar to that of Setaria italica (LOC101768299).
This transcription might inhibit proximal F3'H expression
in lines #3, #62 (which had heterozygous alleles), and
M36001, and the inhibition might be released by the gen-
omic deletion in Nakei-MS3B and lines #96 and #62. Nu-
cleotide substitutions or insertion/deletion, or both, in the
region upstream of F3’H (Additional file 3: Figure S2)
might affect the binding affinity of transcription factors to
the promoter of F3'H, thus also changing the expression
level of F3’H. In addition to these changes in expression
level, amino acid substitutions in the C-terminal region
of the F3'H protein (Figure 3A and Additional file 2:
Figure S1) might change the enzymatic activity of F3'H.
These factors may synergistically affect total F3'H activity
(Sb04g024710N in Nakei-MS3B or Sb04g024710 in
M36001, and Sb04g024750 in both lines) in sorghum tis-
sues and thus determine the relative proportions of api-
geninidin and luteolinidin.

(2) Tan1 transcription factor
Our QTL analysis suggested that the locus containing
Tanl was responsible for color variation (Figure 2). Tanl

regulates the expression of genes encoding enzymes in
the tannin or anthocyanin pathway, or both pathways, in
the sorghum seed coat; these enzymes include CHS,
CHI, F3H, DFR, ANS (anthocyanin synthase), and LAR
(leucoanthocyanidin reductase) [34]. We hypothesized
that Tan1 also controls the expression of F3'H (Figure 6).
Expression of F3'H (Sb04g024750; this gene is common
to all the sorghum lines used in this study) was higher in
Nakei-MS3B (Tanl/Tanl) and #96 (Tanl/tanl-b) than
in #3 and #127 (both of which had the tani-b/tani-b al-
lele; Table 1, Additional file 5: Table S2); several lines
(f3°h/ f3°h, Tanl/Tanl; data not shown) had reddish le-
sions, unlike the orange lesions in #3 and #127 (f3'h/ f3’
h, tanl-b/tanl-b). This suggests that Tanl enhances the
expression of F3'H in the leaf. Tanl (Sb04g031730) was
expressed in all sorghum lines used in this study (RPKM:
3.0-10.6; Additional file 5: Table S2), but the 10-bp in-
sertion (CGGGCAGCGG) in the exon region of the
tanl-b allele caused a frame shift in the encoded protein
(Additional file 4: Figure S3). BTx623 [34], M36001,
#127, and #3 (all of which had the tani-b/tanl-b allele)
did not accumulate tannin in their seeds (Table 1), sug-
gesting that this insertion is a common feature of the
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alleles encoding non-functional Tanl transcription fac-
tors. As F3'H (Sb04g024710) was slightly expressed in
M36001, #127, and #3 (Figure 4), Tanl is not essential
for F3'H expression in the leaf. We therefore consider
that although the Tanl allele is not essential for F3'H
expression, Tanl enhances F3'H expression and thus
contributes to the generation of color variation in sor-
ghum leaves.

Tanl is a WD40-repeat protein. As the expression of
anthocyanin biosynthetic genes is regulated through a
complex of WD40-repeat proteins, MYB transcription
factors (TFs), and basic helix-loop-helix (bHLH) TFs
[40], Tanl may form a complex with MYB TFs and
bHLH TFs. Sorghum F3°H is regulated by a MYB pro-
tein encoded by yellow seedl (yI) in the seed coat [41],
an ortholog of maize pericarp colorl (pI) [42,43]. P1
protein binds the cis-regulatory elements CCTACC
(=614 to —553) and CCAACC (-83 to -78) and controls
F3’H expression in maize [43]. However, in sorghum the
promoter of F3'H (Sb04g024710N in Nakei-MS3B or
Sb04g024710 in M36001) does not contain the consen-
sus sequence (Additional file 3: Figure S2), suggesting
that sorghum requires other MYB transcription factors
for the color variation of leaf caused by infection with
B. sorghicola.

Diversity of F3'H genes
Cytochrome P450 participates in metabolic networks such
as those involving anthocyanins, tannins, flavones, and
isoflavonoids [44,45]. Cytochrome P450 domain—contain-
ing genes are abundant in sorghum: 326 genes encoding
cytochrome P450 enzymes are annotated in sorghum
BTx623, including the longest tandem gene array (15
genes) [10]. Our combination of QTL analysis (Figure 2)
and transcriptome analysis (Figures 4 and 5) was a power-
ful tool for identifying the key genes expressed among fam-
ily members—particularly an F3'H gene (Sb04g024710N)
expressed among P450 family members (Figure 5).
Sb04g024710 (SbF3°H2) expression is also involved in
pathogen-specific 3-deoxyanthocyanidin synthesis in sor-
ghum mesocotyls [26]. Even though the downstream hom-
ologous gene Sb04g024750 (SPEF3'H1) was also expressed
in our study, its expression level was not as high as that of
Sb04g024710N (Figure 4). Sb04g024750 (SbF3'HI) is
expressed during light-specific anthocyanin accumulation
[26]. Sb09g022480.1 had 72.3% amino acid identity to F3~
H (Sb04g024710.1), but its expression pattern was differ-
ent from that of F3'H (Sb04g024710.1) (Figure 5). In sor-
ghum, these duplications have resulted in diversity of both
genomic sequences and gene expression; homologous
genes have thereby developed different functions on an
evolutionary time scale.

In other plants, mutants in which coloration is affected
are also deficient in F3'H. The #£7 mutation in Arabidopsis,
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which makes the seeds pale brown, is caused by a single
base transition generating a stop codon [46]. The ¢t mutant
in soybean, which affects pigmentation in the seed coat
and trichome hairs, is caused by a frameshift mutation
[47,48]. Of three spontaneous mutations in morning glory
species, that on the magenta allele is a nonsense mutation
generating a stop codon; pink mutants carry an insertion
of the Ac/Ds superfamily transposable element; and the
fuchsia allele is a single T insertion generating a stop
codon [49]. All of the F3'H genes on mutated alleles in
Arabidopsis, soybean, and morning glory encode non-
functional proteins. We consider that both of our F3'H al-
leles (Sb04g024710N and Sb04g024710) were functional,
as encoded proteins fully complement the #£7 mutation in
Arabidopsis [26]. Thus, the expression levels of F3'H genes
are important for the gradual variation in color in disease-
affected sorghum leaves. Coloration by flavonoids protects
leaf cells from photooxidative damage, thus enhancing the
efficiency of nutrient retrieval during senescence [50], and
is responsible for a visual signal that attracts pollinators
[37,51]. Even though luteolinidin is toxic towards fungi
and sorghum lines resistant to the fungus accumulate
luteolinidin at higher levels than apigeninidin [8,52], the
biological importance of the coloration itself to the defense
response against fungi remains to be elucidated.

Conclusions

Expression of F3°H is responsible for the synthesis of
luteolinidin; the level of expression of F3'H is thus a
critical determinant of color variation in sorghum leaves
infected with B. sorghicola.

Additional files

Additional file 1: Table S1. Primers used.

Additional file 2: Figure S1. Comparison of amino acid sequences

of F3'H from Nakei-MS3B and BTx623. The F3'H gene of Nakei-MS3B
(Sb04g04710N) is the fused gene of Sb04g04710 and Sb04g04730 shown in
Figure 3A; that of BTx623 is Sb04g024710, which is annotated in Phytozome.
Two amino acids (red) are substituted in Nakei-MS3B.

Additional file 3: Figure S2. Comparison of upstream regions of F3'H.
Upstream regions (1000 bp) of F3'H in BTx623 (Sb04g04710, upper) and
Nakei-MS3B (Sb04g04710N, lower) are compared. Two nucleotide
substitutions (at positions —144 and —664), and one insertion/deletion (at
position —661) are shown in red. Nucleotide positions are counted from
the transcription start site (position 1).

Additional file 4: Figure S3. Nucleotide polymorphisms in Tan1
(Sb04g031730), and the deduced amino acid sequences. TanT of Shan
Qui Red sorghum encodes a functional WD40 protein [34]. A 10-bp
insertion in the exon causes a frame shift in M36001 and BTx623
sorghum. Nucleotide positions are based on the Shan Qui Red tan! gene
(accession number JX122967).

Additional file 5: Table S2. Fxpression ratios and description of
transcripts. Transcript ID (Transcript), gene ID (Gene), chromosome
number (Chromosome), start position (Start), end position (End), strand
direction (Strand), description in Phytozome (Description), pfam ID (Pfam),
reads per kilobase of exon model per million mapped reads (RPKM)
before (before) or after (after) cutting stress, and calculated ratio of RPKM
(Fold change) in each line are listed.
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