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Abstract

Background: The field of population genetics use the genetic composition of populations to study the effects of
ecological and evolutionary factors, including selection, genetic drift, mating structure, and migration. Until recently,
these studies were usually based upon the analysis of relatively few (typically 10–20) DNA markers on samples from
multiple populations. In contrast, high-throughput sequencing provides large amounts of data and consequently very
high resolution genetic information. Recent technological developments are rapidly making this a cost-effective
alternative. In addition, sequencing allows both the direct study of genomic differences between population, and the
discovery of single nucleotide polymorphism marker that can be subsequently used in high-throughput genotyping.
Much of the analysis in population genetics was developed before large scale sequencing became feasible. Methods
often do not take into account the characteristics of the different sequencing technologies, and consequently, may
not always be well suited to this kind of data.

Results: Although the FlowSim suite of tools originally targeted simulation of de novo 454 genomics data, recent
developments and enhancements makes it suitable also for simulating other kinds of data. We examine its application
to population genomics, and provide examples and supplementary scripts and utilities to aid in this task.

Conclusions: Simulation is an important tool to study and develop methods in many fields, and here we
demonstrate how to simulate a high-throughput sequencing dataset for population genomics.
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Background
Simulation is an important tool for developing and
experimenting with methods for analysis of sequencing
data. Several simulators exist, usually targeting spe-
cific data types or analyses. For instance, MetaSim [1]
targets metagenomic samples, and SimSeq (St. John,
unpublished) and Wgsim [2] target Illumina sequences.
As implied by the name, FlowSim [3] was originally

developed for simulation of de novo genomics data on
the 454 platform. Since its inception, it has grown into a
flexible suite of tools that can be applied to a number of
different uses, and here we demonstrate how it can simu-
late a population genomics data set consisting of Illumina
reads.
A sequencing dataset for population genomics typically

consists of reads from pools of individuals from a species,
where each pool is taken from a specific populations or
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subpopulation of interest. By identifying and quantify-
ing variants in the different pools, one can calculate the
degree of divergence and population structure between
the populations. In turn, this information can be used
to study evolution [4,5], quantitative traits [6], and also
constitutes an important tool for estimating biological
diversity.

The FlowSim suite
The current version of FlowSim (0.3.5) consists of sev-
eral independent components, as illustrated in Figure 1.
Each component is implemented as a separate tool, using
FASTA-formatted sequences for input and output. (The
exception is flowsim, which outputs the native SFF
file format. FASTA-formatted sequence can be trivially
extracted, e.g. using the flower [7] tool). This makes it
easy for the user to construct a custom simulation pipeline
tailored to his or her needs. Here, we will make use of
clonesim to generate sets of reads, mutator to sim-
ulate genetic divergence in the form of SNPs as well as
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Figure 1 Components of the FlowSim pipeline. For a typical 454
sequencing simulation application, first the clonesim component
takes a FASTA-formatted input genome and extracts random
fragments representing the clones to be sequenced. The user can
specify the statistical distribution to use for clone lengths.
gelfilter then simulates filtering by sequence length
(i.e. molecule size). kitsim simulates the attachment of 454-specific
adapters, synthetic sequence fragments that are used in the
sequencing process. mutator introduces random substitutions and
indels into sequences. duplicator randomly increases the
multiplicity of sequences, simulating the artificial duplicates that
occur with most second generation technologies. Finally, flowsim
simulates the 454 pyrosequencing process, and generates the final
SFF file.

simulating sequencing errors in the simulated reads, and
duplicator to introduce artificial duplicates.

Methods and results
Under the current simulations, a population consists of
a number of individuals with specific genetic variations.

For simplicity, we will consider our populations as a sets
of genome sequences, each similar to a reference genome,
but differing in a set of locations with unique substitu-
tions. We will refer to these genomes as the haplotypes
of the population. Each haplotype (and thus its specific
genomic variants) occurs with a specific frequency in the
population as a whole.
Starting with a single haplotype (i.e., a reference genome

or chromosome), we generate the new haplotypes by
introducing random mutations. The mutations are iden-
tified, and noted separately. The resulting haplotypes are
then concatenated in desired multiplicities into a com-
bined genome representing each population, and sets of
simulated reads are generated by selecting fragments ran-
domly from the the population genomes. Finally, to sim-
ulate sequencing errors, artifacts [8], and the occurrence
of rare variants [9], the reads have additional variations
introduced. Also, a random selection of reads are out-
put multiple times in order to simulate the occurrence of
artificial duplicates [10,11].

Implementation
We will presume that our reference genome exists in a
file called genome.fasta. First the set of haplotypes are
generated by using mutator to randomly introduce on
average five mutations per kilobase, using the option -s
0.005. To simplify analysis, we do not introduce indels
(-i 0). The following script implements the analysis.

Although here we generate intermediate files, each step
can also read from standard input and write to stan-
dard output. Thus, intermediate files can be omitted using
UNIX pipes.
The next step simply concatenates the haplotypes in dif-

ferent proportions to construct the population genomes,
p1.fasta and p2.fasta. Here, we combined the three
haplotypes H1, H2 and H3 in proportions of 1:2:3 in
population P1, and 3:2:1 in population P2, as shown
in Figure 2. As a result, an allele present in H1 (i.e.,
H1.fasta) will have a minor allele frequency of 0.167 in



Malde BMC Research Notes 2014, 7:68 Page 3 of 4
http://www.biomedcentral.com/1756-0500/7/68

population P1, and 0.5 in P2, giving it an a priori FST of
0.125, while variant alleles in H2 will occur with an equal
minor allele frequency (of 0.333) in either population,
resulting in an Fst of 0.
In step three, we can use clonesim to generate reads

by extracting 20 M (-c 2000000) random fragments
of exactly 100 bp length (using the -l option to set the
length distribution to Uniform 100 100). The gener-
ated reads are exact copies of fragments of the reference
genome, and in order to simulate sequencing errors and
rare variants, in step four we again apply mutator,
this time allowing indels as well as substitutions. Finally,
we randomly duplicate some of the reads, using the
duplicator tool.

Additional analysis
FlowSim provides the basic building blocks for simulat-
ing the sequencing process, but analysis often depends on
additional information, and sometimes requires interme-
diate steps to adapt the data.
A natural step in the analysis of sequence reads, simu-

lated or otherwise, is to map them to a reference genome.
This is also useful to verify that the data exhibits the
expected properties, like coverage distribution or error
rates. The simulation here produces FASTA sequences,
but most short read mapping software accept FASTQ as
input. Converting from FASTA to FASTQ is a simple task,

H1 H2 H3

P1 P2

genome

mutation

composition

Figure 2 Generating population genomes from haplotypes.
Three different haplotypes (labeled H1, H2, and H3) are generated
from the reference genome by applying randommutations. The
haplotypes are then concatenated in appropriate multiplicities so
that mutations specific to each haplotype will occur with known
frequencies in the population genomes (labeled P1 and P2).

here a small tool (called fasta2fastq) was written to
perform this conversion.
To separate the haplotype variants from simulated

sequencing errors, another small tool (snplist) were
written to generate the list of variants per haplotype. This
compares each haplotype with the reference genome, and
outputs a list of the variant positions with reference and
alternative allele. To simplify this process, it is conveneint
to add the variants identification to e.g. the output from
VCFtools [12] or similar variant callers, the following
script can be used for this purpose:

Discussion and conclusion
As FlowSim is primarily targeted at accurate simulation
of 454 sequencing, in the present study, we have applied
a simplistic model for Illumina sequences. For instance,
the probability of error is uniform along each read, and
independent of base, and factors that can cause sequenc-
ing bias, like e.g. the read’s GC content [13] or strand [14],
are not taken into account. Sometimes a simple model
suffices, and it can also make analysis simpler. How-
ever, the individual components of FlowSim can easily be
replaced by custom tools, and if a more accurate sequenc-
ing model is required, it can be implemented separately,
and integrated into the simulation pipeline.
Similarly, we could conceive of a more realistic model

for the reference genome, in order to explore proper-
ties likely to affect our analysis. For instance, repeats
caused by recent duplications (common in many plants
and teleosts), transposons, or low complexity regions
could have dramatic impacts on analysis. Also artifacts of
the reference assembly, where chimeric contigs, collapsed
repeats, and contamination could have substantial effects
on the result. Again, the user is free to implement appro-
priate designs and insert them as separate stages in the
simulation pipeline.

Table 1 On-line resources and supportingmaterials

FlowSim source http://malde.org/~ketil/biohaskell/flowsim
code repository

Documentation http://biohaskell.org/Applications/FlowSim

Supporting scripts http://malde.org/~ketil/flowsim-extras

http://malde.org/~ketil/biohaskell/flowsim
http://biohaskell.org/Applications/FlowSim
http://malde.org/~ketil/flowsim-extras
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Here we have explored the use of FlowSim for a popu-
lation genetics study. A similar approach would also allow
it to be used for shotgun metagenomics. In that case,
the populations would consist of genomes (haplotypes)
from different species, instead of originating in a sin-
gle reference genome. One might also consider mutations
of haplotypes in more complex arrangements to emulate
evolution of closely related species.

Availability and requirements
All materials are available on-line, see Table 1 for details.
The scripts as well as other tools mentioned are released
into the public domain. The documentation for the
FlowSim pipeline is available from the Biohaskell Wiki.
FlowSim itself is available as Open Source software under
the General Public License (GPL) version 2.0.
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