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granules.

Background: Natural accessions of Arabidopsis thaliana are a well-known system to measure levels of intraspecific
genetic variation. Leaf starch content correlates negatively with biomass. Starch is synthesized by the coordinated
action of many (iso)enzymes. Quantitatively dominant is the repetitive transfer of glucosyl residues to the non-
reducing ends of a-glucans as mediated by starch synthases. In the genome of A. thaliana, there are five classes of
starch synthases, designated as soluble starch synthases (SSI, SSII, SSIII, and SSIV) and granule-bound synthase
(GBSS). Each class is represented by a single gene. The five genes are homologous in functional domains due to
their common origin, but have evolved individual features as well. Here, we analyze the extent of genetic variation
in these fundamental protein classes as well as possible functional implications on transcript and protein levels.

Findings: Intraspecific sequence variation of the five starch synthases was determined by sequencing the entire
loci including promoter regions from 30 worldwide distributed accessions of A. thaliana. In all genes, a considerable
number of nucleotide polymorphisms was observed, both in non-coding and coding regions, and several amino
acid substitutions were identified in functional domains. Furthermore, promoters possess numerous polymorphisms
in potentially regulatory cis-acting regions. By realtime experiments performed with selected accessions, we
demonstrate that DNA sequence divergence correlates with significant differences in transcript levels.

Conclusions: Except for AtSS/, all starch synthase classes clustered into two or three groups of haplotypes,
respectively. Significant difference in transcript levels among haplotype clusters in AtSSIV provides evidence for cis-
regulation. By contrast, no such correlation was found for AtSSI, AtSSIl, AtSSII, and AtGBSS, suggesting trans-
regulation. The expression data presented here point to a regulation by common trans-regulatory transcription
factors which ensures a coordinated action of the products of these four genes during starch granule biosynthesis.
The apparent cis-regulation of AtSSIV might be related to its role in the initiation of de novo biosynthesis of
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Background

Arabidopsis thaliana accessions are naturally occurring and
essentially homozygous inbred lines that are frequently
used to investigate genetic and/or metabolic variations
[1-4] and to identify genes relevant for intraspecific adapta-
tion phenomena in plants [5-7]. Due to intraspecific genetic
variation, many A. thaliana accessions differ in growth and
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development even when grown alongside under the same
conditions [8,9]. Since their divergence from A. lyrata 5-10
million years ago, A. thaliana accessions possess a long
evolutionary history of intraspecific diversification [10,11].
Genetic variation leads to nucleotide polymorphisms in
both coding and noncoding gene regions. Nonsynonymous
substitutions locally alter the amino acid sequence of either
the transit peptide or the mature protein at the level of
translation and, thereby, potentially may affect protein-
related functions. Synonymous substitutions do not alter
the amino acid sequence but may affect level and/or stabi-
lity of the transcripts as well as the rate of translation.
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Thereby, they might indirectly alter the level of a given
protein. Likewise, variation in noncoding regions is not
translated into amino acid polymorphisms, but can exert
diverse effects, such as alternative splicing, introduction of
premature stop codons of transcription or translation,
altered transcripts stability and/or rate of gene expression
[12]. Thereby, it indirectly may also affect level and/or
amino acid sequence of a given protein.

To a large extent, regulation of gene expression is based
on the action of regulatory elements that are located in
positions designated as cis (i.e. close to the target gene) or
trans (i.e. distant from the gene) [13,14]. In summary,
genetic diversity may affect phenotypic traits by acting on
different levels ranging from gene expression to transcript
level and altered features and/or functions of the protein.

In many A. thaliana accessions studied so far, vegetative
biomass is negatively correlated with leaf starch content
[15]. Therefore, intraspecific genetic variation appears to
massively affect the central carbon metabolism and
growth of the entire plant. In A. thaliana, as in many
other plant species, transitory starch is a major product of
photosynthesis which is deposited in the stromal space of
the mesophyll chloroplasts as water-insoluble particles
(i.e. granules). They possess a strictly defined and
evolutionary conserved (inter)molecular order [16,17]
and consist of two types of polyglucans, amylopectin
and amylose. Amylopectin is a large, highly branched
polyglucan representing the main constituent of the
granule. By contrast, amylose is a polydispers and
essentially unbranched biopolymer that, in most cases,
is a minor starch compound and contributes little to
the (inter)molecular organization of the entire starch
particle [17].

Starch biochemistry is based on the coordinated and
evolutionary conserved action of 30 to 40 (iso)enzymes and
is more complex than the classical glycogen metabolism
[18]. Massive starch biosynthesis proceeds by a repetitive
glucosyl transfer from an appropriate donor (such as
ADPglucose) to non-reducing ends of oligo- or polyglucans
[19]. ADPglucose-dependent chain elongation is mediated
by at least five classes of starch synthases (ADP-Glc: a-1,4
glucan a-4-glucosyl transferase; EC 2.4.1.21). In A. thaliana,
each class is represented by only a single gene. Based on
sequence similarity, kinetic properties, and the occurrence
of consensus motifs, they are all related to the glycogen
synthases from both prokaryotes and eukaryotes and are
members of the glucosyl transferase family 5 (GT5).

The five starch synthase classes comprise four soluble
synthases (SSI to SSIV) and one granule-bound starch
synthase (GBSS). The five classes are conserved in green
algae and higher plant species (Table 1). Soluble starch
synthases (SS) occur in the stromal space of plastids, but
a proportion is often found tightly associated with native
starch. By contrast, granule-bound starch synthase
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Table 1 Number of genes encoding each starch synthase
class in different plant species

SSI SSII SSHI SSIV GBSS references

Chlamydomonas 2 1 2 1 2 [22]
reinhardtii

Volvox carteri 1 2 1 2 1 [22]
Ostreococcus tauri 1 1 3 - 1 [22]
Ostreococcus lucimarius 1 1 3 1 1 [22]
Arabidopsis thaliana 1 1 1 1 1 [22]
Solanum tuberosum 1 1 1 - 1 [18,23]
Zea mays 1T 2 1 1 1 [18]
Oryza sativa 1 3 2 2 2 [18,23,24]

(GBSS) is essentially entirely integrated into the starch
granules [20]. Most SS classes catalyze distinct steps
within the amylopectin biosynthesis [17,21]. A. thaliana
mutants in which a single SS class is not functional show
specific starch-related phenotypes (such as alterations in
the number and/or the size of starch granules or the
chain length pattern within the amylopectin mole-
cules). Because of the distinct phenotype of these
mutants, SS classes are unlikely to possess fully redundant
functions in vivo, but exhibit class-specific features
(subfunctionalization) [11,17,21].

Unlike in A. thaliana, in some lower and higher plants
starch synthase classes are represented by more than a sin-
gle gene. Complexity of the starch synthase classes tends to
increase if cells or tissues are capable of metabolizing vari-
ous starch pools (such as transitory and reserve starches)
that are spatially and/or temporarily separated (Table 1).

The five SS classes (and the glycogen synthases as
well) share a core region of approximately 60 kDa that is
indispensable for catalytic activity and consists of two
conserved domains often designated as GT5 (glycosyl
transferase family 5) and GT1 (glycosyl transferase
family 1). Both domains are separated by a short and more
variable linker region. The GT5 domain is typical for
glucosyl transferases following a retaining mechanism
[25]. GT1 is consistently located close to the C-terminus
of the starch/glycogen synthases and is frequently found
in glycosyl transferases mediating an inverting mode of
glycosyl transfer [26]. In all starch synthases, both the
GT5 and GT1 domain are involved in binding of the
glucosyl donor, ADPglucose, and together they form the
catalytically active region of starch synthases.

A scheme of the domain structure of the five A.
thaliana starch synthases and of three prokaryotic glyco-
gen synthases is presented in Figure 1. AtGBSS largely
consists of the core region containing the two domains
GT5 and GT1 and possesses only a short additional
sequence at the C-terminus. The size of AtGBSS is similar
to that of the prokaryotic glycogen synthases. All soluble
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Figure 1 Domain structure of the five starch synthase proteins from A. thaliana. The starch synthases from A. thaliana are the granula-
bound starch synthase (AtGBSS) and four soluble synthases (AtSSI to AtSSIV). For comparison, three prokaryotic glycogen synthases [from
Pyrococcus abyssi (PaGS), Agrobacterium tumefaciens (AtuGS) and Escherichia coli (EcGS)] were included. The N-terminus of the starch/glycogen
synthases is at the left, the C-terminus (black) is at the right. The conserved domains of the glycosyl transferase family 5 (GT5) and the glycosyl
transferase family 1 (GT1) are given in white. The linker region between GT5 and GT1 (dark gray) and C-terminal extensions (black) are indicated.
The red line at the N-terminal region of GT5 marks the position of the highly conserved motif KXGGL. The N-terminal extension of AtSSII contains
a serine-rich (Ser-rich) region and three conserved carbohydrate binding modules of family 25 (CBM 25). For all starch synthases, the N-terminal
transit peptides are given in grey.

starch synthases (AtSSI to AtSSIV) carry a N-terminal
extension that might modulate catalytic activity. The
length of the extension strongly varies both among SS
classes of a given plant species and between species. A
unique feature of the N-terminal sequence of AtSSII is a
serine-rich region of uncertain function. AtSSIII and
AtSSIV possess large N-terminal extensions that are
similar in size, but diverse in amino acid sequence.
The N-terminal sequence of AtSSIII contains three re-
peats of a distinct carbohydrate binding module (CBM25)
[27,28] that are not present in AtSSIV (Figure 1).

In previous studies, AzSSI has been localized in one of
the few genome regions that possess a high intraspecific
variability [29]. Here, we used 30 A. thaliana accessions
and sequenced genes encoding the five starch synthases
including their promoter regions. Accessions were
selected on the basis of both largely different climates at
their original habitats and wide geographic distribution
of the natural populations. The objective was to estimate
the gene-specific level of variation as well as possible
implications for gene expression and protein structure.
Specifically, we were interested in: (i) whether genes of
the five starch synthase classes exhibit a similar degree
of both synonymous and nonsynonymous variation, (ii)
whether specific gene trees of the five starch synthase
classes show the same pattern of haplotype clustering
across accessions, (iii) whether selection can be inferred
to act on genes and/or single polymorphic sites, (iv)
whether polymorphisms across accessions and starch
synthase classes have functional implications, and (v)

whether there is a relationship between genomic variation
and transcript levels in starch synthases.

Findings

Nucleotide polymorphisms in genes of the five starch
synthase classes

For 30 A. thaliana accessions, genes encoding four soluble
starch synthases (AtSSI: At5g24300; AtSSIL: At3g01180;
AtSSIIL: Atlgl1720, and AtSSIV: Atdg18240) and the gran-
ule bound starch synthase (AtGBSS: At1g32900) were
sequenced and analyzed regarding intra- and interspecific
genetic variation (as compared to A. lyrata). In all starch
synthase genes, coding regions have higher GC contents
(40-45%; Table 2) than noncoding regions (30-35%), a
general feature of eukaryotic genes [30]. The relative
frequency of nonsynonymous substitutions ranged from
0.46% (AtSSI) to 1.10% (A£SSIII).

Among the accessions studied, AtSSI possesses the
highest overall nucleotide diversity. Substitutions are
unevenly distributed along the gene, as most of them
occur between position 2,300 and 3,700 (Additional file 1:
Figure S1A). The majority of substitutions are found in a
distinct subset of accessions (An, Bur, Can, Cvi, El, Gre,
Ler, and Sha; Additional file 1: Figure S2A) which form a
separate cluster in the AtSSI gene tree (Figure 2A). AtSSII
shows a lower degree of nucleotide diversity (Table 2) with
most substitutions being located between position 1,100
and 2,200 (Additional file 1: Figure S1B). Unlike A£SSI,
there was no division into haplogroups (Figure 2B,
Additional file 1: Figure S2B), as substitutions occur
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Table 2 Sequence comparison of starch synthases from 30 accessions of A. thaliana

Domain Sites S n Nonsyn Indels h Hd m GC content
AtSSI gene 3946 126 128 9 26 21 0.966 0.0112 0.396
exons 1959 30 30 9 - 8 0.584 0.0047 0467
introns 1987 96 98 - 26 21 0.966 0.0180 0321
promoter 1422 68 71 - 24 22 0972 0.0151 0.309
cTP 147 2 2 0 - 2 0405 0.0055 0.515
GT5 780 8 8 4 - 4 0.499 0.0024 0470
GT1 510 13 13 2 - 3 0421 0.0097 0474
AtSSlI gene 3226 31 31 13 3 12 0.841 0.0014 0423
exons 2379 19 19 13 - 10 0.782 0.0012 0451
introns 847 12 12 - 3 7 0.611 0.0019 0.341
promoter 855 26 26 - 13 14 0913 0.0063 0304
cTP 165 4 4 3 - 3 0.131 0.0016 0491
GT5 732 8 8 4 - 8 0.749 0.0025 0444
GT1 495 0 0 0 - 1 0.000 0.0000 0467
AtsSlil gene 4358 105 106 34 1 17 0.929 0.0056 0403
exons 3099 63 64 34 1 14 0.899 0.0047 0422
introns 1259 42 42 - 10 10 0.811 0.0078 0357
promoter 937 8 8 - 4 7 0.676 0.0016 0.356
cTP 60 0 0 0 - 1 0.000 0.0000 0.517
GT5 597 15 15 [§ - 6 0.680 0.0057 0406
G 528 Il 1 2 - 3 0.297 0.0047 0444
AtSSIV gene 4874 72 73 17 15 23 0.977 0.0028 0.379
exons 3123 31 31 17 - 15 0.839 0.0018 0413
introns 1751 41 42 - 15 18 0.952 0.0047 0316
promoter 547 30 30 - 8 12 0.834 0.0125 0.366
cTP 126 2 2 2 - 3 0.393 0.0033 0443
GT5 726 3 3 2 - 4 0251 0.0004 0429
GT1 525 2 2 1 - 3 0.246 0.0005 0411
AtGBSS gene 2989 53 53 12 10 17 0.945 0.0045 0403
exons 1833 28 28 12 - 14 0.857 0.0042 0452
introns 1156 25 25 - 10 16 0.903 0.0050 0319
promoter 906 37 38 - 1 15 0.894 0.0078 0.356
cTP 237 15 15 9 - 5 0.499 0.0223 0406
GT5 786 7 7 3 - 8 0.630 0.0017 0442
GT1 411 4 4 0 - 5 0.575 0.0019 0486

Promoter = either the complete intergenic region or about 1 kb upstream the coding region; cTP = chloroplast transit peptide; GT5 domain = starch synthase
catalytic domain; GT1 domain = glucosyl transferase group 1; S = polymorphic sites; n = total number of mutations; nonsyn = nonsynonymous sites; indels =
number of insertions/deletions; h = number of haplotypes (=alleles); Hd = haplotype diversity; m = nucleotide diversity.

randomly across accessions. AtSSIII possesses the highest
number of polymorphisms (Table 2), most of which are ob-
served between position 1,000 and 4,300 (Additional file 1:
Figure S1C). They exist in the same subset of accessions
(C24, Can, Ct, and El; Additional file 1: Figure S2C) which
form cluster II in the gene tree (Figure 2C). However, the
clustering of AtSSIII deviates from that of AtSSI (Figure 2A)

with regard to the assignment of accessions. Further-
more, we observed a 21 bp indel (= 7 amino acids) in
the coding region (exon 1) of C24, Can, Ct, and El
that is also present in the closest relative A. lyrata. AtSSIV
exhibits an intermediate degree of nucleotide diversity
(Table 2, Additional file 1: Figure S1D). Accessions can be
assigned to cluster I or III by means of their substitution
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in transcript levels among accessions.

Figure 2 Clustering of A. thaliana accessions and their corresponding transcript levels. A: AtSS/; B: AtSSIl; C: AtSSIll; D: AtSSIV: E: AtGBSS. Left:
Unrooted maximum likelihood tree among accessions based on promoter and gene sequences. The clusters for each gene, except AtSSI, are
highlighted with circles. Right: TukeyHSD test for verification of significant differences in transcript levels among accessions. Six accessions
representing different clusters of respective starch synthase were used for Realtime PCR analysis and are marked with the same color in the left
and right panel. Pairwise comparisons of transcript levels with confidence levels of 95% that are different from zero indicate significant differences

pattern within the gene (Figure 2D). However, when
sequences of the promoter region and the gene are
combined, an additional intermediate haplotype arises
(cluster II; Figure 2D). In A¢GBSS highly diverse regions are
found both between position 1 to 300, encoding the transit
peptide, and in the sequence in close N-terminal vicinity of
domain GT5 (Additional file 1: Figure S1E). Many of these
substitutions are found in the two haplogroups as inferred
by phylogenetic analysis (cluster I and II; Figure 2E;
Additional file 1: Figure S2E).

The interspecific diversity (as determined by comparing
the analyzed A. thaliana accessions and A. lyrata) vastly
exceeds the intraspecific diversity. The two Arabidopsis
species are clearly separated evolutionary lineages, although
accessions represent individual haplotypes that are more
alike the published A. lyrata sequence than the A. thaliana
reference Columbia-0 (Additional file 1: Figure S2).

Amino acid substitutions

We inferred numerous amino acid substitutions in starch
synthase genes (Tables 2 and 3; Additional file 1: Figure
S2). Some of these substitutions are located in functionally
essential regions, i.e., transit peptides and catalytical core
regions (Table 2, Additional file 1: Figure S2). In order to
classify nonsynonymous substitutions with respect to
protein functions, we considered the affected amino
acids and checked for conservation of this position
among plant species.

Transit peptide

Starch synthases are posttranslationally imported into the
plastid and possess an N-terminal transit peptide whose
size considerably varies between the five classes, AtSSI: 49

amino acids (aa), AtSSIL: 55 aa, AtSSIII: 20 aa, AtSSIV: 42
aa, AtGBSS: 79 aa [31]. Among the analyzed accessions,
neither AzSSI nor AtSSIII have any alterations in the amino
acid sequence of the transit peptide, but the three other
classes possess several nonsynonymous substitutions (ns):
3 ns in A£SSI, 2 ns in AtSSIV, and 9 ns in AtGBSS.

Catalytic core region

In all five starch synthases, nonsynonymous substitutions
occur in the GT5 domain (Tables 2 and 3). They are less
frequent in AzSSI as only two accessions are affected
(A191T: Ws; K309N, E326D, P327S: Bl; Table 3). K309N
is situated in the azPBg-loop of the secondary protein struc-
ture [32]. In SSI from different plant species, this loop has
been reported to contain either arginine or lysine residues.
In accession Bl, E326D at position 326 was found. As
revealed by an interspecific comparison, at this position
glutamic acid is highly conserved among higher plants
SSI. However, glutamic acid and aspartic acid have similar
biophysical properties [33]. Another nonsynonymous sub-
stitution in this accession, P327S, is putatively affecting
the secondary structure of AtSSI [33]. As revealed by
interspecies sequence comparison, this position is highly
conserved for proline [33]. In AtSSII, several accessions
possess nonsynonymous substitutions in the GT5 domain,
all of which are shared among several accessions analyzed
(S329A: Bl, Can, Cvi, Ra, Rsch, Van, Yo; M369T: Rsch,
Van, Yo; F374Y: Can, Ra, Van, Yo; S392R: Bsch, Edi, Ler,
Ra, Te; Table 3). Sequence comparisons between different
higher plant species have shown that in SSII alanine is
common at position S329A but serine is unusual. M369T
is situated in the Bs-sheet (EVMYFHA) [32] and this pos-
ition is not conserved in SSII isoforms among higher

Table 3 Nonsynonymous substitutions in starch synthases of A. thaliana accessions

Nonsynonymous substitutions

N68D, DI2N, M1971, T2791, R321T, T326A, N352D, G363R, F392V, L393M, G398S, Q408R, L410I, N421D, R425K, D430E, R431K, M438T,

AtSSI S57F, Q89ED, A191T, K309N, E326D, P327S, S506N, T584A
AtsSll S29F, H34P, P37A, 1138M, D197Y, V198E, E290V, $329A, M369T, F374Y, S392R, R765T, T769S
AtSSlIl

E451K, L484F, G502V, T522A, E525GV, I571F, V616, 1623L, V6711, F697Y, Q722H, A773P, H779Y, 1844V, D875E
AtSSIV 118F, P34H, 167F, L84P, 1144V, A146T, 1150V, K156Q, 1180V, N228S, G310S, 1377L, L499l, I1516T, E604D, Q767H, H857L
AtGBSS NO9H, H20Q, V28L, A29S, G35A, N51K, S66L, R68G, V72G, V1401, M256l, F291L

Protein sequences were compared to those from Oryza sativa, Zea mays, Solanum tuberosum, Populus trichocarpa, Hordeum vulgare, Phaseolus vulgaris, Triticum
aestivum and Physcomitrella patens (sequences available in Genbank). Substitutions among A. thaliana accessions which affect positions that are usually highly

conserved among plant species are printed bold.
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plants. In F374Y tyrosine is common in SSII isoforms,
while phenylalanine is rarely found. S392R is an alteration
frequently observed among plant species. However,
analyses of the starch synthase Ila in maize revealed that
specific arginine residues are important for both protein
stability and the interaction with the glucosyl acceptor
[23]. The GT5 domain of AzSSIII exhibits several poly-
morphisms (Table 3) that all co-occur in the accessions
C24, Can, Ct, and El (V616l, 1623L, V6711, Q722H). A
further substitution (F697Y) is restricted to Yo. Typically,
dicotyls (Solanum tuberosum, and Solanum lycopersicum)
exhibit a phenylalanine residue at this position, while
monocotyls (Oryza sativa, and Zea mays) have serine.
Tyrosine, as in the accession Yo, is a rare residue at this
position. Busi et al. [34] described by comparative analysis
between glycogen synthases of Agrobacterium tumefaciens
and ATSSIII specific residues that are involved in the
binding of ADP-glucose and glycogen/starch-derived
a-glucan chains. All residues are conserved in the ana-
lyzed accessions. In the GT5 domain of AzSSIV; two subs-
titutions exist that are observed in only a single accession
(E604D: Bur, Q767H: Gre; Table 3). Both sites are known
to be variable among plant species. In AtGBSS, the GT5
domain exhibits three polymorphisms (Table 3). V1401
(in Tsu) is located in an otherwise conserved region.

In the GT1 domain of AzSSI, AtSSIII, and AtSSIV, amino
acid sequence variation occurs less frequently. In AtSSI,
we identified only two nonsynonymous substitutions
(S506N: Sha; T584A: An, Bur, Can, Cvi, El, Gre, Ler, Sha).
Both positions are variable among higher plant species
(Table 3). The GT1 domain from AtSSIII exhibits two
nonsynonymous substitutions (I844V: Rsch, D875E: Can,
Ct, El, C24). As revealed by interspecific comparison, both
positions are highly conserved for isoleucine and for
aspartic acid, respectively. The GT1 domain from AtSSIV
is affected by a single nonsynonymous substitution
H857L. This exchange is restricted to accession Tsu and is
unusual among plants. AtSSII and AtGBSS possess no
polymorphisms in the GT1 domain.

In summary, GT5 is more variable than GT1 regarding
the number of both nonsynonymous substitutions and ac-
cessions affected. Most amino acid substitutions exist at
sites known to be variable but we also identified several
unusual substitutions at otherwise highly conserved sites.

Signs of selection

All tests of gene-wise selection for AtSSI, AtSSIII, AtSSIV,
and AtGBSS revealed a statistically significant pattern for
purifying selection acting on each starch synthase (Table 4).
Purifying selection for AzSSII was not significantly
supported and, therefore, the null hypothesis of neutral
evolution cannot be statistically rejected. However, the
statistical power of this particular test is limited because of
the very low diversity in the coding region of AtSSII
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Table 4 Selection tests of starch synthases in A. thaliana

Positive selection  Purifying selection Tajima’s D

Z statistic p value Z statistic p value D value p value

AtSSI —4.150 1.000 4.244 0.000 0.757 p>0.10
AtSSlII —-0.706 1.000 0.721 0.236 -1386 p>0.10
AtsSlll - -2.870 1.000 2811 0.003 -0357 p>0.10
AtSSIV. —1692 1.000 1.758 0.041 -0992 p>0.10
AtGBSS -2.644 1.000 2497 0.004 0.309 p>0.10

Z-test of selection with null hypothesis (Ho: dN = dS) was tested with two
different alternative hypothesis such as positive selection (Ha: dN > dS) and
purifying selection (Ha: dN < dS). Z statistics and Tajima’s D as well as
significance values (p value) were calculated with coding sequences (CDS) of
each starch synthase.

(m=0.12%; Table 2). We also calculated Tajima’s D, a
commonly used selection test often applied in A. thaliana,
but obtained no significant support for selection. Further-
more, we searched for positively selected sites (PSS) using
PAML but no nonsynonymous substition was inferred to
be under positive selection.

Sequence comparison between A. thaliana and A. lyrata
A. lyrata is a close relative of A. thaliana and, there-
fore, permits the identification of putatively ancestral
states of polymorphisms in A. thaliana. In Additional file 1:
Figure S2, the nucleotide substitutions shared with A. lyrata
are marked. The accession used as reference, Col-0, (see
above) deviates frequently from A. lyrata but some A.
thaliana accessions are more similar to A. lyrata. This is
particularly evident in those genes forming two haplo-
groups (AtSSI, AtSSIII, AtSSIV, AtGBSS; cf. Figure 2,
Additional file 1: Figure S2). In the most variable starch
synthase, AtSSIII, more than half of the substitutions
(25 out of 46) observed in C24, Can, Ct, and El also
occur in A. lyrata. In addition, an indel consisting of
seven amino acids in the D2 motif of the large N-terminal
extension is present in C24, Can, Ct, El, and in A. lyrata
as well but absent in Col-0 (Additional file 1: Figure S2D).
In AtSSIII, there are particularly many sites where some A.
thaliana accessions share a polymorphism with A. lyrata.
However, the overall identity of their coding sequence is
lower (0.953) as compared to Col-0 (0.976), because of
fixed differences among the two Arabidopsis species. All
starch synthase genes consistently show such a pattern of
lower intra- () than interspecific variability (K) (Table 5).

Analyses of promoter elements

In A. thaliana, expression of each starch synthase class has
been reported to vary across plant organs and developmen-
tal stages [35-37]. AtSSI appears to be the major expressed
isoform in roots, leaves, flowers, and immature fruits under
long day conditions. By contrast, the expression of the
other isoforms is lower according to the order AzSSII>
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Table 5 Intra- and interspecific variation of starch synthases in A. thaliana and A. lyrata

Number of fixed differences

Number of polymorphic sites

n K n/K ratio total syn nonsyn total syn nonsyn
AtSS] 00115 0.0152 0.7551 203 62 21 110 21 9
AtSSII 0.0014 0.0049 0.2895 162 52 38 30 [§ 13
AtSSlI 0.0056 0.0085 0.6580 175 53 31 106 30 34
AtSSIV 0.0028 0.0069 04128 274 87 43 68 14 17
AtGBSS 0.0045 0.0077 0.5822 134 37 14 49 16 12

Measures for complete gene sequences (exons and introns). 1= nucleotide diversity within accessions of A. thaliana; K = nucleotide divergence between A.
thaliana and A. lyrata; /K = ratio of diversity and divergence. Number of fixed differences between A. thaliana and A. lyrata, as well as number of polymorphic
sites among A. thaliana accessions, both subdivided into total, synonymous (syn), and nonsynonymous (nonsyn) substitutions.

AtSSIV > AtSSIII [35]. To determine polynucleotide substi-
tutions within the promoter regions, we sequenced an
approximately 1 kb large promoter region for each starch
synthase. Subsequently, regulatory elements were identified
by using the plant promoter database (PPDB; [38]).

For AtSSI, AtSSIII, and AtSSIV, there were no
comparative data available for cis-regulatory elements in
PPDB. In the promoter of AzSSI, a single area (-468 to -
458; GTGGCCCAAAT) is described to contains four pu-
tative cis-regulatory elements (AtREG445: -468 to -461,
AtREG420: -467 to -460, AtREG373: -466 to -459,
AtREG421: -465 to -458). All elements are found in light-
induced promoters (often designated as SORLIPs). In Ra,
Rsch, Van, and Yo, this region (GTGGCCCAAAT) is
affected by three substitutions and one deletion (leading
to the sequence -—TCGATAT). In PPDB, two regions in
AtGBSS (-234 to -247 and -446 to -453) are described
containing conserved cis-regulatory elements. The former
contains a bZIP-binding motif, while the function of the
latter is unknown. Both regions are highly conserved. By
using PPDB, we could identify a cis-regulatory element in
AtSSII that appears to be involved in gene regulation.
However, this assessment is preliminary, as PPDB does
not provide full informations for the genes analyzed here.

Expression analyses
Despite the fact we could not identify cis-regulatory ele-
ments in all starch synthase genes, we searched for differ-
ences in transcript levels among accessions and for
correlations with haplotype clusters identified by respective
gene trees. Based on the phylogenetic gene tree of the com-
bined promoter and gene sequence, we selected six out of
30 accessions for each starch synthase. These accessions
were selected such that they represent the different clusters
identified for a particular gene (colored in Figure 2).
Transcript levels of starch synthases were tested for
significant differences using one-way ANOVA. We found
significant differences in expression levels across acces-
sions for all starch synthases (A£SSL: 9.46-107°, AtSSIL:
84310, AtSSIIE: 2.58-10°%, AtSSIV: 5.21.10%%, AtGBSS:
4.8810%). For the evaluation of pairwise differences in

transcript levels, we used the post-hoc TukeyHSD test to
estimate 95% confidence intervals. If these intervals do
not include zero, transcript levels are significantly different
in the respective pair of accessions (Figure 2).

Pairwise comparisons among 6 accessions revealed for
AtSSI no differences in transcript levels between Gre,
Sha, and Wil (Figure 2A), all of which assigned to cluster
I in the gene tree. By contrast, accessions from cluster II
showed significant differences in transcript levels in the
order Edi<Bl< Can. In addition, their transcript levels
also differed from cluster I accessions. For AtSSII, we
identified two groups with similar transcript levels (group
1: Col, and Mt; group 2: Ct, Tsu, and Van; Figure 2B).
Group 2 accessions had a significantly higher expression
than group 1 accessions, while Can was intermediate.
However, there was no correlation between gene tree and
transcript levels. For AtSSIII, the transcript levels were
similar among the accessions studied (Figure 2C), despite
the occurrence of two distinct haplogroups (cluster I and
II). The phylogenetic analysis of AtSSIV sequences re-
vealed at least three haplogroups (Figure 2D). Accessions
from cluster I (Er, Gre, and Ws) had similar transcript
levels. The same holds true for accessions from cluster III
(Can, and Cvi). Pairwise comparisons of either Can or Cvi
(cluster IIT) and cluster I accessions revealed the most
significant differences. The position of the analyzed
accessions in the gene tree exactly correlates with the
differences in the transcript levels among the analyzed
accessions. In AtGBSS, transcript levels do not correlate
with haplogroups (Figure 2E). Ct, Edi, Mt, and Rsch
have similar transcript level, while Tsu and Van exhibit
significantly higher expression levels.

Discussion

Primary metabolism has been defined as ‘those essential
reactions involving compounds that are formed as part of
the normal anabolic and catabolic processes, which result
in assimilation, respiration, transport, and differentiation
processes that take place in most, if not all, cells of an
organism’ [39]. It has been assumed that genes involved in
primary metabolism are more conserved than secondary
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metabolism genes because of their essential function [40].
For this reason, gene-specific investigations of intra-
specific variability among accessions of A. thaliana were
largely performed with secondary metabolism genes
[41-49]. Currently, numerous whole genomes become
available as part of the 1,001 genomes project [50] become
available. However, with these whole-genome approaches
subtle differences within and across highly homologous
gene loci can be overlooked and are easier detectable
when targeting specific genes and their adjacent genomic
regions [51]. Here, we demonstrate that genes encoding
the starch synthases and exert essential functions in the
plant primary metabolism possess high levels of nucleo-
tide diversity as genes related to the secondary metabolism
[41-49]. Furthermore, we show that transcript levels of
starch synthases vary among accessions in all starch
synthases, but both amount and pattern of variation differ
between starch synthases. Variation was minor in A¢SSI,
AtSSII, and AtGBSS, but higher in AtSSI, and AtSSIV.
The differences in transcript levels clearly correlate with
the gene tree in AtSSIV. We argue that such a strict
correlation between combined promoter/gene sequences
and transcript levels is indicative of cis-regulation. Such
correlation was absence in AtSSI, AtSSII, AtSSIII, and
AtGBSS, indicating trans-regulation is the major regula-
tory mechanism in these genes.

Obviously, functional analyses are expected to be more
complete if the genetic variations were compared with
the total starch synthase activity and/or the zymograms
obtained for the various accessions. Unfortunately, this
approach is not possible. Some starch synthases apparently
contribute very little to the total enzyme activity measured
in crude extracts. Furthermore, in zymograms performed
with leaf extracts some AtSS isozymes are recovered as
multiple bands but products of other AtSS genes are not
detectable at all (although the respective recombinant
proteins exhibit enzyme activity). Thus, zymograms do not
reflect the genetic complexity of the starch synthases [52].

With regard to the specific pattern of variation, our
study is able to address the following questions:

(i) Do genes of the five starch synthase classes exhibit a
similar degree of both synonymous and nonsynonymous
variation?

The five starch synthases exhibit different degrees of
both synonymous and nonsynonymous variation. AtSSI,
AtSSIII, and AtGBSS are the most variable genes exhi-
biting similar nucleotide diversities. AtSSII and AtSSIV
possess the lowest nucleotide diversity. We confirm that
AtSSI is highly diverse [29]. Presumably, nucleotide diver-
sity correlates with the in vivo function of the protein. As
outlined above, the five starch synthase classes are likely
to exert non-identical in vivo functions. SSI to SSIII
classes are involved in amylopectin biosynthesis, whereas
GBSS is essential for the biosynthesis of amylose. AtSSIV
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appears to be essential in one route of the initiation of
starch granule biosynthesis [30,31]. Mutants from A.
thaliana lacking functional AtSSIV possess only a single,
enlarged granule per plastid of the mesophyll cells [31].
Furthermore, overexpression of ASSIV leads to increasing
levels of both transitory and storage starch [32]. This
specific function might be the reason for the lower
nucleotide diversity in A£SSIV. Knockout mutants of AtSSII
are deficient in intermediate a-glucan chain length with DP
(degree of polymerization) of 12—25 [21]. This is compared
to AtSSI (DP 8-12; [21]) and ASSIH (DP 14-20; [53]) a
broader spectrum. The lower level of genetic variation in
AtSSII might be due to the partly overlapping function, by
which AtSSII can substitute either AtSSI or AtSSIIL. How-
ever, the reason for the relatively high level of nucleotide
diversity in AtGBSS is not clear, as its ability to synthesize
amylose is an important biological function [17].

(ii) Do specific gene trees of the five starch synthase
classes show the same pattern of haplotype clustering
across accessions?

One could assume that functionally (originated from an
ancestral gene) related genes exhibit similar gene trees. In
general, starch synthases show at least two haplogroups,
except for AtSSII. The existence of diverse clusters of
haplotypes has also been reported from Rubisco genes [51].
These divergent haplogroups are indicative of a relatively
large long-term effective population size of the species and
are likely to comprise ancient standing variation, rather
than in situ divergence among accessions. As in Rubisco
[51], the phylogenetic trees of the different starch synthase
genes are neither congruent with one another nor do they
reflect any geographical or ecological pattern. Because
accessions are mainly homozygous inbred lines and, due to
the local distance between naturally occurring populations,
any exchange of gene variants between accessions is
unlikely to occur. The incongruent phylogenetic pattern,
however, could be indicative of relatively frequent
recombination across accession (on an evolutionary
timescale), by which gene tree and species/accession
tree are disentangled. Only if many loci in combination or
even whole genomes are phylogenetically analyzed, a
reliable phylogeographic pattern can be detected among
A. thaliana accessions [54,55].

(iii) Can selection be inferred to act on genes and/or
single polymorphic sites?

The Z-tests revealed purifying selection is acting on
AtSSI, AtSSIII, AtSSIV; and AtGBSS. Previous studies on
AtSSI yielded significant positive values for Tajima’s D,
interpreted as indication for balancing selection [29,56].
We also obtained positive (yet statistically not significant)
D values for AtSSI. Because A. thaliana accessions
comprise essentially homozygous inbred lines, we argue
that such positive selection across accessions (as indicated
by positive D values) should be interpreted as disruptive
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selection, i.e., divergent evolution among evolutionary
lineages. As all the different accessions — because of their
different geographic origin and a high level of selfing - very
likely do not contribute to a single common gene pool,
negative frequency-dependent (= balancing) selection
across accessions (as postulated in [56]) appears less likely
to us. Otherwise, a scenario of divergent evolution at AzSSI
fits well the description of two haplotypes [56], a Col-0 type
(designated as A type) and the Ler type (B type). According
to our analysis, these groups are separated by 105 SNPs
(thereof 21 in coding sequences) in AtSSI.

(iv) Do polymorphisms across accessions and starch
synthase classes have functional implications?

Several nonsynonymous substitutions were found in each
of the starch synthases, some of which located at positions
that are highly conserved among plant species. For each
starch synthase, several amino acids have been identified
that are of particular functional importance [27,28,34,57].
Furthermore, we performed an interspecies comparison
and searched for polymorphisms at sites that are involved
in ADP-glucose binding as well as catalysis by generating
an alignment including protein sequences of all available
starch synthases from maize, rice, and A. thaliana. None of
those highly conserved sites were substituted in any of the
accessions analyzed in this study. During starch biosyn-
thesis many enzyme activities closely cooperate and, there-
fore, any disturbance of this concerted action may result in
complex alterations of the starch structure. Several starch-
related enzymes are likely to undergo protein-protein inter-
actions in vivo and, therefore, may exert their biochemical
functions mainly (or exclusively) as constituent of a protein
complex rather than as a single catalyst [58,59]. For hetero-
trophic tissues starch-related protein complexes have been
described that consist of distinct starch synthases and
branching enzyme (and the plastidial phosphorylase as well)
and the formation of these high molecular weight
complexes appears to be controlled by covalent protein
modifications [58,59]. If a given enzyme is inefficient or
even not functional due to amino acid substitutions, the
resulting functional implications may reflect not only that
of a single enzyme, but rather that of the respective protein
complex. The lack of polymorphism at functionally crucial
sites and the inferred pattern of purifying selection hence
underline the functional importance and evolutionary
conservation of these genes. It is highly unlikely that
new mutation will be positively selected, although
such mutations could — in theory - establish partly or
completely novel complexes or functionalities.

The promoters of starch synthases exhibit numerous
polymorphisms and indels, which potentially influence
the transcript level. We found significant differences in
transcript levels among accessions for each starch syn-
thase. In AtSSIV, the only starch synthase gene inferred
to be cis-regulated (see above), we found several
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positions in the promoter region which show a diversity
pattern congruent with haplogroup assignment and tran-
script level. However, these motifs could not be assigned
to any known regulatory element in the PPDB.

(v) Is there a relationship between genomic variation
and transcript levels in starch synthases?

Analyses of differences in transcript levels between acces-
sions and their position in the combined promoter and
gene phylogenetic tree revealed different kinds of relation-
ships. In AtSSII, AtSSIII, and AtGBSS, we were unable to
detect a tight correlation between genetic variation and
transcript levels. We propose that trans-regulation is the
major actor in these genes, because the polymorphisms that
are responsible for differences in gene expression are appar-
ently far away from the gene [13,14]. By contrast, in AzSSIV,
we found a clear correlation between genomic polymor-
phisms and transcript levels. For this reason, we propose
cis-regulation as a major actor in AtSSIV expression
[13,14]. AtSSI is somehow peculiar. We could not detect
any differences in transcript levels among accessions
representing haplotype cluster I. It seems that none of the
polymorphisms found in the promoters of these accessions
occurred in functionally relevant cis-elements. In contrast,
in accessions of cluster II cis-regulatory elements might be
affected by polymorphisms, because we could detect
expression variation among them. We assume that both
cis- as well as trans-regulation are active in the regulation
of the expression of AtSSI.

AtSSI, AtSSII, and AtSSIII are important for building the
amylopectin chains. They possess partly overlapping, but
also individual properties in a-glucan chain elongation,
while GBSS is mainly responsible for amylose synthesis
[17,21,30,53,60].

Conclusions

While screening 30 accessions of A. thaliana gene
specifically, we detected several nonsynonymous substi-
tutions in each of the five analyzed starch synthases
(AtSSI, AtSSII, AtSSIII, AtSSIV; AtGBSS). Gene trees for
single genes often revealed a clear-cut clustering of
accessions, which is — however — not consistent across
different starch synthase genes. Our results are compatible
with previous findings that two haplogroups might adap-
tively (by positive selection) diverge in AtSSI. In general,
we identified amino acid substitutions in the catalytic
glucosyl transferase domains (GT5, GT1) in almost all
enzymes. Some of these observed amino acid substitutions
affect sites known to be highly conserved across different
plant species. Transcript analyses revealed significant
differences in all starch synthases, although the extent
varies among them. Comparison of haplotype clustering
and transcript levels of starch synthases is indicative of
both trans- and cis-regulated genes. AtSSI, AtSSII,
AtSSIIL and AtGBSS are important for chain elongation of
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amylopectin and amylose, respectively. The corresponding
genes are mainly globally regulated by tramns-regulation,
whereby elongation of a-glucan chains might be coor-
dinated in concert. AtSSIV has exclusive and far
reaching function and a separate regulation by indi-
vidual cis-regulatory transcription factors — as inferred
by our analysis - appears reasonable.

Methods

Plant materials and cultivation

Arabidopsis accessions were kindly provided by Prof.
Altmann (IPK Gatersleben, Germany). Prior to germi-
nation, seeds were kept for at least 2 days at 4°C. Seedlings
and plants were grown in 1:1 (w/w) mixture of GS 90 soil
and vermiculite.

For sequencing the plants were grown under con-
trolled short day conditions (12 h light [120 pE m™ s™'],
20°C; 12 h dark, 18°C). Leaves were harvested after four
weeks. For Realtime experiments, plants were grown for
four weeks under controlled long day conditions (16 h
light [120 uE m™ s'], 21°C; 8 h dark, 18°C). Leaves at
vegetative stage of the plants were harvested at middle
of light period (after 8 h light).

DNA isolation, PCR amplification and sequencing
Genomic DNA was extracted from a pool of leaves from
three plants per accession using a modified CTAB
procedure [61]. Primers for starch synthases AzSSI
(At5¢24300), AtSSII (At3g01180), AtSSIII (Atlgll1720),
AtSSIV (At4g18240), and granule bound starch synthase
AtGBSS (At1g32900) were designed based on the Col-0
sequence. For amplification and sequencing of the entire
gene, primers were designed about 50 to 200 bp
upstream and downstream the coding region. For
analysis of the promoter region, primers were placed about
1.0 to 1.5 kb upstream the start codon. The fragments of
30 worldwide distributed accessions (An-2, Bl-1, Bsch-2,
Bur-0, C24, Can-0, Cha-0, Col-0, Ct-1, Cvi-0, Edi-0, EI-0,
Er-0, Est-1, Gre-0, Ler-1, Mt-0, Nok-2, Oy-0, Ra-0, Rsch-0,
Sap-0, Sha(kdara), Stw-0, Te-0, Tsu-1, Van-0, Wil, Ws-3,
Yo-0) were amplified with the proof-reading polymerase
Phusion (Finnzymes) and purified enzymatically by using
Exonuclease I and Antarctic Phosphatase (New England
Biolabs). The templates were directly used for sequen-
cing on an ABI 3130x] automated sequencer (Applied
Biosystems), using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems).

RNA isolation, cDNA synthesis and realtime PCR

RNA was isolated with Invitrap® Spin Plant RNA Mini
Kit (STRATEC Molecular) using the DCT lysis solution.
For each accession, three independently isolated RNA
preparations (three biological replicates) were performed
and 2 ug were reversely transcribed using the RevertAid™
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First Strand ¢cDNA Syhthesis Kit (Fermentas). For each
starch synthase, 6 out of 30 accessions were selected for
Realtime experiments. Accessions were selected such that
they represented all haplotype clusters identified in the
maximum likelihood phylogenetic analysis with combined
promoter and gene sequences. cDNA was used at 0.2 pl
per Realtime-PCR run in a 10-ul reaction volume using
SensiMix” SYBR Low-ROX (Bioline) and a LightCycler®™
480 (Roche). For each biological replicate, three technical
replicates were performed. Expression was normalized to
Ubiquitin (LUBC21, At5¢25760). Primer sequences were as
follows: 5-TTCACGTTACTTTGCCATGC-3" and 5-AC
TTTGCGGCCAAAAGTATG-3' for AtSSI, 5-CCTGAAT
TTCGGCATCTGAG-3' and 5-AAGCCAAATTTCCAT
CACCA-3" for AtSSIl, 5-CGGAATGGACAGGTTGTC
TT-3" and 5-CCCCAGCATAAATCAAATGG-3' for
ASSII, 5-CTGGCAAACAGCTTTTGTTG-3 and 5-T
GATCCTGCATTCTGTCTGG-3' for AtSSIV, 5-CAAAC
GAGGAGTTGATCGTG-3' and 5-AACTGAACCGGAG
TTGGTTG -3’ for AtGBSS, and 5-CTGCGACTCAGGG
AATCTTCTAA-3" and 5-TTGTGCCATTGAATTGAAC
CC-3/ for UBC21.

Data analysis

Alignment

Sequences were assembled with BioEdit version 7.0.5 [62]
and for each accession all variable sites were checked
manually during the construction of a sequence contig.
All sequences were manually aligned to the reference
sequence of Col-0.

Estimation of nucleotide polymorphism

By using DnaSP version 5 [63], both intra- and interspecific
analyses of nucleotide polymorphism were performed. For
multidomain analyses we estimated the number of poly-
morphic sites (S), the total number of mutations (), the
number of insertions/deletions (indel), the number of
haplotypes (%), haplotype diversity (Hd), nucleotide diver-
sity (11), nucleotide divergence (K) between A. thaliana and
A. lyrata, and the GC content, separately for promoters,
exons, and introns (see [64] for diversity measures).
A. lyrata sequences were obtained from the DOE
Joint Genome Institute [65].

Evaluation of gene-wise selection

To test for natural selection, the frequencies of synonymous
substitution per synonymous site (dS) were compared
relative to those of nonsynonymous substitution per
nonsynonymous site (dN), as implemented in MEGA ver-
sion 4 [66]. The nonsynonymous to synonymous substitu-
tion rate ratio (w) was calculated according to the modified
model of Nei & Gojobori [67] with the correction of Jukes
and Cantor [68] for saturation/multiple hits. With a Z-test,
we assessed the likelihood of the null hypothesis of neutral
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evolution (Hy: dy=ds), relative to two alternatives, i.e.,
purifying selection (dy < ds) and positive selection (dy > ds).
We also calculated Tajima’s D [69] which is an often
used selection test based on the difference between
two estimates of the amount of nucleotide variation.
One estimate is obtained from the number of segregating
sites [70] and the other is based on the average number of
pairwise differences.

Selection at particular codons

Within a codon for a single amino acid, the ratio of
nonsynonymous to synonymous substitution rate (w) can
be used for assessing selection, as values for o <1, =1,
and >1 are indicative of purifying selection, neutral evolu-
tion, and diversifying (= positive) selection, respectively.
Positive selected sites (PSS), suggested by w>1, were
searched for by using maximum-likelihood-based random-
sites model analysis implemented in PAML 3.14 package
[71,72]. For each starch synthase gene, analyses for each
starch synthase gene were performed using run code “user
tree” in codeml. The utilized maximum likelihood trees
were constructed by RAXML 7.0.4 [73] under the GTR +
G + I model with 1,000 bootstrap replicates. We performed
one Likelihood Ratio Test (LRT) for positive selection
(M7-8). M7 (beta) assumes a beta distribution of w over
sites, whereas model M8 (beta & ) adds an additional site
class (free w ratio) which is estimated from the data set
[72]. Occasions where the alternative model M8 is
fitted better (p < 0.05) than the compared null model were
considered as being positive selected.

Maximum likelihood gene tree

Using RAXML 7.0.4 [73] we constructed maximum like-
lihood gene trees for the combined promoter and gene
data set of each starch synthase gene. The trees were
generated under the GTR+ G +1 model of sequence
evolution with 1,000 bootstrap replicates.

Promoter analyses

We sequenced the promoter region of about 1.0 kb for
starch synthases to check if polymorphic sites affect ‘func-
tionally important elements’ according to the plant
promoter database PPDB [38] which we searched for
regulatory elements and other important promoter
regions, like TATA box.

Estimation of differences in expression levels among
accessions

Expression levels were tested for significant differences
in mean values among accessions using one-way ANOVA
implemented in R [74]. In case of significant differ-
ences, the post-hoc pairwise comparison TukeyHSD
test (implemented in R) was performed and confidence
intervals of 95% were plotted.
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Additional file

Additional file 1: Figure S1. Position specific nucleotide diversity. Exons
are marked grey; the regions containing exon sequences for the
chloroplast transit peptied (cTP) as well as for the domains GT5 and GT1
are indicated. A: AtSSI; B: AtSSI; C: AtSSIll; D: AtSSIV; E: AtGBSS. Figure S2.
Nucleotide polymorphisms in the coding sequence of starch synthases
among A. thaliana accessions. Dots indicate identity to the reference Col-
0. Nucleotide substitutions shared with A. lyrata are marked with asterisks
above the position. Amino acid sustitutions are shown in the lower part
of the column. The upper symbol indicates the amino acid in Col-0,
while the lower is the substituted one. The GT5 and GT domains as well
as the starch synthase Il specific domains D1, D2, and D3 (see text) are
highlighted in grey. A: AtSSI; B: AtSSII; C: AtSSIll; D: AtSSIV: E: AtGBSS.
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