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Abstract

Bodies, rely on cytoplasmic autophagy.

mid-senescence leaves.

Background: Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of
the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the
chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing

Results: In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and
Rubisco activase) and one thylakoid protein (the major light harvesting complex protein of photosystem Il) were
measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg’).
Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in
the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from

Conclusions: These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins,
but does not play a major degenerative role. In addition, support for in organello degradation is provided.
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Background
Stromal proteins in C3 mesophyll chloroplasts contain
approximately 55% of total cellular nitrogen, mostly in the
form of ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco), while approximately 20% of total nitrogen is
allocated to thylakoid proteins [1]. During senescence
most of the nitrogen from these two sources is exported
from the aging leaf [2,3], but the proteolytic process is not
well understood [4-6]. Genetic approaches towards under-
standing senescence have focused on the isolation of stay-
green mutants, and these studies have shown that stromal
and thylakoid proteolysis can be uncoupled. One class of
stay-green mutants, nonfunctional type C, retain thylakoid-
localized light harvesting complex proteins while stromal
proteins are degraded [7,8].

The high nitrogen content of stromal proteins has led
to extensive investigation of their proteolysis during leaf
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senescence. No chloroplast proteases specifically involved
in Rubisco or other stromal protein degradation have been
identified to date [9]. A Zn-dependent EP1 protease acti-
vity was partially purified [10], but no corresponding gene
or gene product has been reported. Chloroplast stromal
Clp proteases are likely candidates for stromal protein
degradation during senescence, however the protein levels
of the catalytic ClpP subunit were observed to be greatly
diminished in older leaves [11].

Active oxygen treatment led to Rubisco cleavage in iso-
lated chloroplasts [12] and in chloroplast lysates [13,14].
These findings suggested that stromal protein degradation
could occur within chloroplasts with high levels of free
radicals, a likely condition during the later stages of senes-
cence. However, Rubisco degradation begins during the
earliest stages of senescence [4] when photosynthesis is
still occurring and free radicals are actively scavenged. For
this reason, purified, intact chloroplasts were incubated in
the dark to determine if stromal protein degradation could
occur in the absence of free radical formation. These
chloroplasts were re-purified to be certain they remained
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intact during the incubation period [15] and four stromal
proteins were found to be degraded within intact plastids
[16]. Thus, numerous lines of evidence suggest that stro-
mal protein degradation can occur within chloroplasts.
However, a cysteine protease inhibitor (cystatin) predo-
minantly expressed in tobacco cytosol inhibited Rubisco
degradation in older leaves suggesting that stromal protein
degradation is occurring outside of the plastid as well [17].

Although chloroplast numbers only decrease slightly
during natural senescence [18], whole chloroplast en-
gulfment via autophagy (chlorophagy) has been observed
in individually darkened leaves [19]. The dependence on
autophagosome formation was demonstrated by the lack
of chlorophagy in the Arabidopsis atg4a4b double mu-
tant, however, Rubisco protein levels were found to de-
crease similarly to wild type in individually darkened
leaves of atg4a4b mutants [19]. Thus the contribution of
chlorophagy to total stromal protein degradation is likely
minimal. As most chloroplasts remain intact until the final
stages of senescence, extra-plastidic pathways specific to
the disposal of stroma proteins have been identified. There
have been numerous reports of plastid protuberances that
contain Rubisco [20-22], and two distinct entities, Rubisco
Containing Bodies (RCBs) and Senescence Associated
Vacuoles (SAVs), have been identified.

RCBs are 0.5 to 1.5 um in diameter, cross-react with
antibodies to Rubisco LSU, SSU and chloroplast gluta-
mine synthase (GS2), and have multiple membranes
[23]. Stromal-targeted GFP lines have been used to de-
tect RCBs within vacuoles of concanamycin-A treated
cells in which vacuolar proteolysis has been prevented
due to inhibition of vacuolar-H* ATPases [24]. RCBs ap-
pear as Rubisco levels decline in the primary leaves of
wheat and are not formed in Arabidopsis atg5 mutants
[25]. ATGS5 is required for ATG8 lipidation, and atg5
mutants cannot form autophagosomes [26,27]. A further
connection between autophagy and RCBs is the colocali-
zation of stromal-targeted DsRed and GFP-ATGS, the
molecule that coats the autophagosome [28,29]. The
presence of RCBs is inversely correlated to starch levels
[30], but how this correlates to Rubisco levels is not
clear. The decline in Rubisco during natural senescence
was measured with RBCS-mREFP fusions, and 10% of the
transgenic fusion protein degradation was estimated to
be autophagy-dependent [31].

SAVs are 0.5 to 0.8 pm in diameter and were first
detected by R-6502, a cysteine protease substrate that
becomes fluorescent upon cleavage [32]. Senescent-specific
SAVs are acidic compartments that stain with Lysotracker
Red and harbor SAG12, a senescence-specific cysteine pro-
tease. SAV membranes contain vacuolar H'-ATPases, and
thus SAVs are considered to be vacuolar compartments.
SAVs have also been detected in the atg7 mutant (which is
inhibited at a similar phase of autophagosome formation
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as atg5 [33]) indicating SAV formation is not dependent
on functional autophagy. SAVs purified on sucrose gradi-
ents contained stromal proteins, but not thylakoid pro-
teins, and slow degradation of Rubisco LSU was observed
in the isolated SAVs [34].

Nitrogen remobilization efficiency (NRE) was mea-
sured in three different Arabidopsis autophagy mutants
(atg5, atg9 and atgl8RNAI) by a '°N pulse treatment of
leaves and then subsequent transfer of °N into seeds
during plant growth [35]. NRE was significantly lower in
all autophagy mutants suggesting that autophagy does
contribute to nitrogen remobilization. In this study, le-
vels of three native stromal proteins were measured du-
ring natural senescence in two autophagy mutants, atg5
and atg7, in order to directly assess the contribution of
autophagy towards stromal protein degradation. In ad-
dition, degradation of stromal proteins was evaluated in
chloroplasts isolated from fully-expanded mid-senescent
leaves. Our data provide supporting evidence that auto-
phagy does contribute to stromal, but not to thylakoid,
protein degradation, and that stromal proteins might be
degraded in organello.

Results and discussion

Stromal protein degradation is incomplete in autophagy
mutants

Antibodies to three stromal proteins, Rubisco large sub-
unit (a-LSU), glutamine synthase 2 (a-GS2) and Rubisco
activase (a-RCA) as well as one thylakoid-localized pro-
tein, PSII light harvesting complex protein 1 (a-Lhcbl)
were tested against a two-fold serial dilution of total
green leaf protein to determine if protein levels could be
reliably quantified by immunoblot. Immunoblots and
the corresponding quantitation are shown in Figure 1.
Proteins recognized by each antibody were found at
expected sizes (55 kD for LSU, 42 kD for GS2, 46 kD
and 43 kD for RCA and 27 kD for Lhcbl, Figure 1A).
Each antibody had its own avidity to its target, for in-
stance a-RCA gives the strongest signal even though
LSU is a more abundant protein, yet for all antibodies,
signal could be detected at a 1:32 dilution, but not at a
1:64 dilution. Pixel quantitation revealed that a-Lhcbl
was nearly linear (Figure 1E) while the three stromal
protein antibodies decreased only slightly for a 1:2 dilu-
tion, but demonstrated a steep drop-off at approximately
20% of green leaf protein levels (Figure 1B-D).

To evaluate stromal protein levels in senescing leaves,
leaf disks were harvested from mature rosette leaves at
different stages of yellowing, and designated as zone 3
(green), zone 2 (yellow-green) and zone 1 (yellow).
Chlorophyll per leaf disk was similar for each zone indi-
cating that tissues from different lines were at equivalent
stages of chlorophyll loss (Figure 2A). Autophagy
mutants become chlorotic at an earlier age than WT
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Figure 1 Antibody detection of two-fold serial dilution of total leaf protein. A) undiluted and two-fold serial dilutions were detected with
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due to early activation of the salicylic acid (SA) signaling
pathway [26,36,37], so senescent leaf samples were nor-
malized to chlorophyll levels and equal leaf area, and
not leaf age. Equal volumes of protein extract from the
leaf disks were used in the immunoblots shown in
Figure 2B, and band intensity values of three biological
replicates are shown in Figures 2C-G. Lhcb1 and chloro-
phyll levels were similar, as was expected since the light
harvesting proteins bind chlorophylls which mutually
stabilize one another [38] and are coordinately catabo-
lized [7,39,40]. Only a small change in stromal protein
levels was detected between zone 3 and zone 2 for WT
and the two autophagy mutants. This is likely a result of
non-linearity of antibody binding since chlorophyll and
total protein levels have been shown to decrease in par-
allel in senescing Lolium temulentum [8]. Differences

between WT and the two autophagy mutants were
clearly seen for zone 1 (yellow) tissue in which all three
stromal proteins were undetectable for WT, but still de-
tectable for both atg5 and atg7. The retention of the
three stromal proteins in yellow tissue of the autophagy
mutants suggests that complete degradation of these
proteins is autophagy-dependent. Previously, detached
leaves from the afg7 mutant were subject to dark-
induced senescence, and Rubisco LSU was found to de-
crease faster in the atg”7 mutant [33]. However, in this
experiment comparisons at similar stages of senescence
were not made and the WT samples did not complete
senescence since Rubisco LSU levels were still detectable
at the last time point. In addition, the molecular process
of dark-induced senescence is known to differ from that
of natural senescence [41].
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Concern exists that the higher stromal protein levels
in the younger atg tissue resulted from less time for stro-
mal protein degradation and were not related to the loss
of autophagy. Double mutants have been constructed
between atg5 and NahG as well as sid2 that decrease SA
levels and thus reverse the early senescence phenotype
[36]. However the prevention of SA accumulation by
NahG and sid2 does increase leaf longevity [41,42] and
thus can over-compensate for the early activation of the
SA signaling pathway since SA can never accumulate,
even at the proper developmental time. Thus an auto-
phagy mutant in a background with normal timing of
natural senescence does not yet exist. In addition, if the
retention of the three stromal proteins was a result of
faster senescence, and not the loss of autophagy, this

would indicate that autophagy plays no role in stromal
protein degradation, which would be inconsistent with
previously published results [31].

Proteolysis in isolated Arabidopsis chloroplasts

The substantial decrease in stromal protein levels in the
absence of autophagy demonstrates the existence of
autophagy-independent proteolytic pathways, and one
possibility is within the chloroplast. Previous studies
demonstrated stromal protein degradation within iso-
lated, dark-incubated, intact pea chloroplasts [16]. To
determine whether stromal protein degradation could
occur in chloroplasts isolated from senescent Arabidopsis
leaves, a Percoll gradient was used to isolate chloroplasts
which were then incubated in the dark, and subsequently
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purified again by Percoll gradient to insure that only intact
chloroplasts were analyzed. Chloroplasts were isolated
from mid-senescent (lighter green, yellow tips), mature
rosette leaves from 8.5 week old Arabidopsis plants that
had large bolts with mature fruit. Figure 3 shows that GS2
and RCA protein levels were greatly diminished after one
hour of incubation, but proteolysis continued through the
24 hour incubation period. Surprisingly, Rubisco LSU was
not degraded in these intact chloroplasts (data not
shown). Similar results were obtained in three independ-
ent experiments. Although intact isolated chloroplasts
may not mirror in planta conditions, the rapid degra-
dation of both RCA and GS2 suggests that stromal pro-
teins can be degraded within chloroplasts isolated from
older leaves using a proteolytic mechanism distinct from
cytoplasmic autophagy. The stability of Rubisco LSU is
likely an artifact of organelle isolation, as it is unlikely that
the highly abundant Rubisco is in some way sequestered
from stromal proteases.

In an effort to identify chloroplast proteases that might
contribute to stromal protein degradation, we isolated
T-DNA insertions that disrupted Az5¢11650, a gene
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Figure 3 Degradation of GS2 and RCA within isolated, intact
chloroplasts. A) Chloroplasts were isolated from wild type
Arabidopsis leaves and incubated in the dark for the indicated
number of hours. Immediately after incubation, intact chloroplasts
were purified on a Percoll gradient, and only intact chloroplasts
were used for immunoblot analysis with the indicated antibodies.
Pixels were quantified for GS2 (B) and the two RCA isoforms (C).
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encoding a serine protease that is strongly up-regulated
in senescent leaves [43]. At5¢11650 is distantly related to
pheophytinase [44], but At5¢11650 mutants display nor-
mal loss of chlorophyll in older leaves. Stromal protein
degradation was identical in chloroplasts isolated from
WT and At5¢11650 mutant chloroplasts demonstrating
that this chloroplast-localized serine protease is unlikely
to play a major role in stromal protein degradation (data
not shown).

Conclusions

Overall, our data suggest that complete degradation of
stromal proteins requires autophagy-dependent pro-
cesses, but much of stromal protein degradation relies
on autophagy-independent pathways which may include
proteolysis within the chloroplasts or SAVs.

Methods

Plant material and growth conditions

Arabidopsis plants were grown under continuous white
light (70 pumoles photons m™ sec™') at 24°C in Sunshine
Mix #1/LC1 (Sun Gro Horticulture, Inc.) and watered
weekly with diluted Gro-Power Liquid (Gro Power, Inc.).
SAIL_128_B07 (atg5-1, Col-0 ecotype, same allele used
in [25]) and SAIL_11_HO7 (atg7, Col-0 ecotype) were
obtained from the Arabidopsis Biological Resource Cen-
ter (Columbus, OH), and lines homozygous for T-DNA
were selected by PCR amplification of genomic DNA.

Chlorophyll, protein isolation and immunoblots

Two leaf disks (1/4 inch diameter) were incubated in 1.5
ml dimethylformamide for 4-24 hours in the dark at
room temperature and total chlorophyll was quantified
according to [45]. Protein was extracted from two leaf
disks in 133 pL of buffer E [46]. Ten microliters of pro-
tein extract were subject to SDS-PAGE (13% acrylamide)
and immunoblot analysis [18]. The anti-LSU antibody
was generated by Antibodies, Inc. and used at a titer of
1:1,000. Anti-GS2 and anti-Lhcb1l were obtained from
Agrisera, Inc. and used at titers of 1:5,000 and 1:10,000, res-
pectively. The anti-RCA antibody was a gift of Dr. Michael
Salvucci and used at a titer of 1:5,000. The secondary anti-
body was goat anti-rabbit coupled to alkaline phosphatase
(Millipore, Inc.). Alkaline phosphatase activity was detected
by nitroblue tetrazolium and 5-bromo-4-chloro-3’-indolyl
phosphate. Blots were scanned and pixels quantified by
NIH Image J.

Chloroplast isolation

The chloroplast isolation protocol was adapted from
techniques used in Arabidopsis [47] which was modified
from a protocol developed in Hordeum vulgare [48]. Ad-
ditional modifications were adopted from a protocol deve-
loped in pea [15,16]. 2.5-5.0 g of mature leaf tissue was
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minced with a scissors prior to homogenization with a
Omni TH tissue homogenizer (Omni, Inc.) in increments
of 1.0 to 2.0 g in 30.0 mL Grinding Buffer at 4°C (50.0 mM
HEPES-KOH, 2.0 mM EDTA-NaOH, 1.0 mM MnCl,, 1.0
mM MgCl,, 1650 mM sorbitol, 5.7 mM ascorbic acid,
0.25% BSA (w/v), final pH 7.5). Non-homogenized tissue
was allowed to float to the top while the sample stayed on
ice, then only the top 10.0 -15.0 mL was re-homogenized
to avoid disturbing existing contents. Homogenate was
then filtered through one layer of Miracloth in increments
of 5.0 mL, clearing debris from the Miracloth in between
addition of more homogenate. Filtered homogenate was
then centrifuged at 1000 x g for 8 minutes at 4°C.

The resulting pellet was resuspended in 4.0 mL of
Grinding Buffer, and loaded onto a 40-85% Percoll step
gradient in a 15.0 mL centrifuge tube loaded with 4.0 mL
85% solution and 3.0 mL 40% solution [40% solution:
40.0% Percoll (GE Healthcare Bio-Sciences), 330 mM
sorbitol, 2.1 mM MgCl,, 1.6 mM MgCl,, 50 mM HEPES-
KOH pH 7.6, 20 mM EDTA-NaOH pH 8.0, 0.1% (w/v)
BSA); 85% solution: 85.0% Percoll, 50 mM HEPES-KOH
pH 7.6, 330 mM sorbitol]. 40-85% Percoll step gradients
containing the resuspended chloroplasts were centrifuged
at 6,000 x g for 15 minutes at 4°C. Intact chloroplasts
were collected from the 85% solution surface, washed with
30.0 mL of Incubation Buffer [50.0 mM HEPES-KOH, 1.0
mM MgCl,, 1.0 mM MgCl,, 165.0 mM sorbitol, 5.7 mM
ascorbic acid, 0.25% BSA( w/v), final pH 7.5], and centri-
fuged at 1,000 x g for 6 minutes.

The chloroplast pellet was resuspended in 1.0 mL of
Incubation Buffer, and chlorophyll concentration was
adjusted to 200 pg/mL. Chloroplasts were incubated in a
foil-wrapped Oakridge tube to prevent light exposure, and
stored in a closed drawer at room temperature. Harvested
samples were immediately loaded onto a 40-85% Percoll
gradient and centrifuged for 15 minutes at 6,000 x g. In-
tact chloroplasts were collected from the 85% solution
surface, washed in 30.0 mL of Incubation Buffer and cen-
trifuged at 1000 x g for 6 minutes. The resulting pellet
was then resuspended in Incubation Buffer and stored at
-80°C for immunoblot analysis.
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