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Background: ACPYPE (or AnteChamber PYthon Parser interfack) is a wrapper script around the ANTECHAMBER
software that simplifies the generation of small molecule topologies and parameters for a variety of molecular
dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was
developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR
data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3,
and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at

Findings: We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER
topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB;
and by recalculating the structures for 5 protein-ligand complexes from the PDB.

Conclusions: ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different
formats for different molecular mechanics programmes, including calculation of partial charges, while being object
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Findings

Here we introduce ACPYPE, a tool based on
ANTECHAMBER [1] for generating automatic topolo-
gies and parameters in different formats for different
molecular mechanics programmes, including calcula-
tion of partial charges. In other to validate ACPYPE, we
verified its topologies generated in three detailed ways:
1) by comparing with default AMBER [2] topologies for
standard amino acids; 2) by generating and verifying
topologies for a large set of ligands from the Protein Data
Bank (PDB) [3]); and 3) by recalculating the structures for
5 protein-ligand complexes from the PDB. The Figure 1
summarises its resources and features, giving a general
overview of how ACPYPE works.

*Correspondence: awilter@ebi.ac.uk

1 Department of Biochemistry, University of Cambridge, 80 Tennis Court Road,
Cambridge, CB2 1GA, UK

2protein Data Bank in Europe (PDBe), EMBL-EBI, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 15D, UK
Full list of author information is available at the end of the article

( ) BiolVled Central

Background
Molecular Mechanics (MM) has evolved substantially
over the last decades, not only because of major advances
in computational power, but also due to more accurate
and diverse force field descriptions. Molecular Dynamics
(MD) and NMR Structure Calculation software (NMR-
SC) have matured in line with these advances in MM to
become more complex, faster and precise; MD and NMR-
SC software packages can now perform calculations that
were previously thought to be very difficult to handle [4].
Such calculations, however, always depend on a precise
and complete description of the topology and physical
parameters of the molecules they tackle. The methods to
obtain these descriptions are well developed for common
bio-molecular components like amino acids and nucleic
acids, but reliable and automatic procedures to obtain
this information for heterogeneous chemical compounds
are scarce. Researchers trying to address, for example,
protein-ligand complexes often have to manually create
the topologies for their ligands, a procedure which cre-
ates additional overhead and which often results in errors
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Figure 1 Workflow diagram for ACPYPE. Diagram depicting the general scheme of how ACPYPE works. Encompassed by the traced line is the
ACPYPE functionality already implemented as a web service at http://webapps.ccpn.ac.uk/acpype.

in the final coordinate files (as evidenced by many ligand
errors in entries in the PDB).

ACPYPE resulted from our need to find a solution to
this problem for NMR-SC using the CNS software [5]:
the simulated annealing (SA) and water refinement (WR)
procedures for protein-ligand complexes require a full
topological description of the ligand, including hydro-
gens to handle interatomic distance restraints from NMR.
We first explored a host of existing solutions; unfortu-
nately none of them generated the required topologies.
CNS and XPLOR (including its variant XPLOR-NIH [6,7])
have a function called LEARn that only generates param-
eter information, no topology nor charges. XPLO2D (8],
one of the first tools to address the problem of generat-
ing topological parameters for small molecules, also does
not calculate charges. Both approaches are not amenable
for the now almost mandatory final water refinement
step in an NMR structure calculation protocol. A more
recent and well-known application is PRODRG [9]. How-
ever, in order to speed up calculations PRODRG uses
the concept of “united-atoms” where no explicit hydrogen

atoms are present, and its topologies are unsuitable for
all-atom force fields and water refinement. The GlyCaNS
[10] tool generates the required topological parameters in
CNS format but has limited scope as it only works for
polysaccharides. The MKTOP program [11] can define
atom types and hence topological parameters, but it can-
not derive partial charges and only recently became able to
generate topologies for AMBERO3 [12] force field (besides
the OPLS/AA [13]). Finally, the recently developed Auto-
mated Topology Builder (ATB) [14] is limited in scope
because it only generates topologies compatible with the
GROMOS 53A6 [15] force field.

The tool we identified as having the most relevant func-
tionality was ANTECHAMBER [1]. It is the main tool
for creating variants in AMBER force fields [16], has
foundations in quantum mechanics rather than empir-
ical data, and is iteratively improved based on experi-
ence from previous force fields implementations. It is
already used to automatically generate topologies with the
General Amber Force Field (GAFF [17]), and although
AMBER force fields are ported to CNS/XPLOR [5,7], the
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ANTECHAMBER output has to be interpreted and con-
verted before it becomes useful. A similar tool called
CGenFF [18] generates CHARMM General Force Field
topology for small molecules, but is more recent and
does not have as wide a user base. We therefore chose
ANTECHAMBER as the starting point for ACPYPE, with
the aim to facilitate and automate its operation for non-
AMBER users, as well as extending its use to other Python
based applications.

ACPYPE is already successfully used in the scientific
community; it is released under the open source GNU
GPL version 3 license, is freely available, and offers a reli-
able solution for generating topologies and parameters
for small chemical compounds in all-atom force fields in
the following platforms: CNS/XPLOR, GROMACS and
CHARMM [19]. It also automates several steps necessary
to create a library for a small molecule for the AMBER
package. The topologies generated by ACPYPE can be
further used in AMBER force fields as ported to GRO-
MACS (viz. ffAMBER [20]), CNS/XPLOR, NAMD [21]
and CHARMM) without breaking the compatibility of the
force field. ACPYPE is object oriented and uses an API
library that can be easily extended, so new routines for as
yet unsupported MD packages are easily added.

Methods

Implementation

ACPYPE collects information about the molecular sys-
tem from the input molecular coordinate file and from the
topology and parameters as generated by ANTECHAM-
BER and the tleap, sleap or xleap AMBER tools. It
then creates a Python object where all this information is
combined (see Figure 1 for a general overview). ACPYPE
requires Python 2.6 (or higher) and ANTECHAMBER
(version from AmberTools12 is recommended, although
it should work with older versions). OpenBabel [22,23]
installation is optional but required for reading molecule
information from PDB-style files. Python, ANTECHAM-
BER/AmberTools and OpenBabel are freely available.

ACPYPE is executed by the command ‘acpype
[options]; where the main options are:

e -i <filename>: An input coordinate file is
required in one of the following formats: MOL2, PDB
or MDL.

e -n [int]: This option defines the net charge of the
molecule. If not given, ACPYPE will use the Gasteiger
method [24] to guess the charge. This is not a
dependable procedure, however, and might result in
an incorrect overabundancell charge.

e -a [gaff | amber]:GAFF is used by default.
Option ‘amber’ will use a set of parameters merged
from the highly developed force fields AMBER99SB
[2] for proteins and AMBER99bsc0 [25] for nucleic
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acids. In case a parameter is not found for
AMBER99SB, ACPYPE will fall back to GAFF
definitions.

e -c [becc | gas | user]:The semi-empirical
quantum chemistry programme SQM [26] is used by
default (via ANTECHAMBER) to determine the
atomic partial charges. Option ‘gas’ will use the
faster but less precise Gasteiger method, option
‘user’ will take partial charges as defined in a MOL2
file, which can be calculated using more sophisticated
methods like R.E.D. [27,28] or the YASARA
AutoSMILES Server [29] (see Additional file 1).

After successful execution, ACPYPE creates a folder that
contains several files in different formats for the chosen
MD programmes (see Figure 1). It can also fully replace
the topology file converter from AMBER to GROMACS
(amb2gmx [30,31]) with some notable differences:

e In GROMACS, torsionals (proper and improper) are
treated as Ryckaert-Bellemans potentials [32] and
amb2gmx combines multiple AMBER torsions per
quartet of atoms. ACPYPE in contrast separates
improper from proper dihedrals, and, similarly to the
fFTAMBER project approach, uses the correct AMBER
analytical function to treat proper dihedrals in
GROMACS;

e ACPYPE does not depend on the ambpdb tool,
which requires the AMBER proprietary package;

e ACPYPE reads and converts octahedron (INPCRD
box) parameters to the GROMACS file. If not
available, new box parameters will be calculated. It
also recognises TIP3P or SPC/E water types and
applies the correct parameters. This feature requires
only the Python interpreter (see Figure 1) through the
command: ‘acpype -p _prmtop. -x
_inpcrd.’.

Testing - ACPYPE topologies versus AMBER force field
Since ACPYPE relies on ANTECHAMBER for generating
topological parameters, it was possible to use a previ-
ously published validation procedure [17]. We generated
22 PDB files with PyMOL [33], each containing a tripep-
tide consisting of the same single natural amino, includ-
ing protonation variants for HIS (for more details, see
Additional file 2). GROMACS 4.5, which includes now
ffTAMBER, was then used to generate topology files for
these tripeptides with the AMBER99SB force field as ref-
erence. In all cases a single point GROMACS energy
minimisation step was performed.

Testing - Small molecules from the PDB
ACPYPE (revision 275 with AmberTools 1.3) was exe-
cuted on 8950 chemical components (ligands, small
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molecules and monomers) available from the PDB [34].
Two sets of files, one with the coordinates from the orig-
inal PDB deposition and one with the ‘ideal’ CORINA
coordinates [35,36] were written out in the MOL2 for-
mat via the CcpNmr FormatConverter [37] from the PDBe
database [38,39], totalling 17900 input files. Charges were
calculated using SQM with AM1-BC. The 17900 ACPYPE
jobs, required a total execution time of just over 16 days
on a computer using 20 AMD Opteron 2.3 GHz cores. The
cut off time of execution per job was 10 hours, any job
taking longer than that was killed.

Testing - NMR structure calculation

We recalculated 5 protein-ligand NMR structures using
the RECOORD protocol [40]. A purpose-written Python
script that integrates the ACPYPE API with the CCPN
API was developed to run ACPYPE on the ligand only
to generate its GAFF force field parameters. These were
incorporated into the standard protein topology files to
calculate 200 initial structures by simulated annealing
(SA) with CNS (topology and parameters from Engh &
Huber [41] ). The 50 best of these structures were water
refined (WR) using the OPLSX force field, with ACPYPE
again providing the GAFF parameters for the ligand only
(see Discussion). The 50 final structures were sorted by
overall energy and the best 25 structures were validated
through the iCING [42] server, and then compared against
the validation of the original NMR structures as provided
by NRG-CING [43]. Double the number of default RECO-
ORD timesteps were used during the SA and WR because
of the size of the proteins and presence of ligand.

Results

We employed three tests to verify the correctness and
applicability of the topologies generated by ACPYPE; to
test its accuracy in transferring core data ACPYPE was
compared to fFAMBER, to test its robustness ACPYPE
was executed on a large set of small molecules from the
PDB, and to test its usability ACPYPE-generated ligand
topologies were employed to recalculate protein—ligand
structures from NMR data.

ACPYPE topologies versus ffAMBER

All atom types and parameters from GROMACS
AMBER99SB output were identical to ACPYPE with
the AMBER99SB option, with the following minor
differences:

e For histidine (all variants), arginine and tryptophan,
ACPYPE generated some inverted improper
dihedrals;

e For tryptophan ACPYPE incorporated 3 additional
unnecessary (but harmless) improper dihedrals in the
aromatic rings due to atom sharing;
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e For the tyrosine CZ atom ACPYPE obtained atom
type CA instead of C in GROMACS. This also results
in parameter differences for 6 bonds and 9 dihedrals.

e The partial atom charges parameters differ.

Despite these changes, the difference in total bonded
potential energy (i.e. without the long distance terms that
depends on charges) for the 22 systems is very small
between the ffAMBER and ACPYPE sets; the highest dif-
ference occurs for the tyrosine tripeptide and is 1.9% (6.7
kJ/mol). This is because of the the aforementioned atom
type change and its consequent parameter modifications
for bonds and dihedrals. For all other tripeptides, the
difference is never higher than 0.002%. To further con-
firm that ACPYPE gives consistent results, we used the
validation methodology by Eric Sorin and collaborators
for ffTAMBER [44] and compared the results from the
AMBER11 MD engine (programme sander) to the results
from GROMACS with ACPYPE topologies. For all sys-
tems except tyrosine, using the same set of charges as
defined in the AMBER99SB force field, the total potential
energy differences were always inferior to 0.007%. Tyro-
sine again was the outlier, but with a total potential energy
difference <3%.

Small molecules from the PDB

This test on 8950 small molecules served to evaluate the
robustness of ACPYPE and debug the code. The first
step was to curate the initial set of 8950 small molecule
entries; since the information from the PDB is not always
correct and the data went through a conversion process
to generate the input files, entries with issues varying
from total absence of input files to wrong atom coor-
dinates were removed. Entries were also removed from
further analysis if they did not adhere to a set of sim-
ple atom distance criteria (a 0.5 A cut-off for minimum
and a 3.0 A cut-off for maximum distance between cova-
lently bound atoms). From 17900 possible jobs (2 jobs for
each PDB, one with original PDB coordinates and other
with CORINA recalculated coordinates), 318 (1.78%) did
not have MOL2 input files and could not be calculated,
while 557 (3.11%) had erroneous atom coordinates. In
total 13045 jobs (72.88%) concluded without any remark-
able problems with an average execution time of 14m35s.
Excluding the jobs with incorrect data the ACPYPE effi-
ciency was 76.62% (13045 of 17025 valid jobs). For a
detailed report, please see Additional file 3.

To further explore whether the generated coordinates
were correct or acceptable, we selected only entries with
results from ACPYPE for both the PDB and CORINA
coordinates. The resulting 5772 entries (11544 jobs) were
subjected to 250 steps of energy minimisation via the con-
jugate gradient method using CNS (version 1.2). In total
1292 jobs failed the optimisation procedure because of
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mixed upper and lower case atom names, which CNS
does not support. This occurred because ANTECHAM-
BER converts upper-case names to capitalised names
(e.g., bromine code ‘BR’ to ‘Br’); the issue was reported
to ANTECHAMBER developers and is remedied in
ACPYPE revision 285. For the remaining 10252 structures
the all-atom RMSD between the initial and final structures
was calculated (Figure 2) to illustrate the accuracy of the
ACPYPE results.

NMR structure calculation

To test how ACPYPE works in a real NMR structure
calculation setting, we used the data for 5 protein—
ligand complexes from the PDB (see Table 1) that have
NMR constraint data in CCPN format from the NMR
Restraints Grid [43]. The results of the structure calcu-
lation are similar; overall the RMSD tends to increase
for the recalculated structures, but the NOE complete-
ness and overall quality tends to increase (Table 1). These
changes are expected due to differences in the structure
calculation protocol, and are also observed in the RECO-
ORD project [40]. More importantly, this test shows that
ACPYPE allows the structure determination of protein—
ligand complexes with autogenerated parameters and
topologies (for illustrative purposes, the structures for
[PDB:1BVE] are shown in Figure 3, the other structures
are available in Additional file 4).

Discussion

The idea of adapting ANTECHAMBER or its routines
to derive topologies and parameters for small molecules
is not new. We know of at least two cases: YASARA

Population of Entries
400 600 800 1000 1200
1 1 1
]

200
1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
RMSD (A)

Figure 2 RMSD distribution. RMSD distribution for a total of 5126
entries (with two results each) after energy minimisation done with
CNS programme. The average RMSD is shown by the bold vertical line.
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AutoSMILES [29] is implemented for YASARA [46], but
is restricted to this commercial software package; the
programme topolbuild is developed by Bruce D. Ray
(personal communication), and generates topologies and
parameters from a MOL2 file (with known charges) by
using AMBER, GROMOS [47] or OPLS/AA [13] force
fields in GROMACS format. It is limited to GROMACS
and not able to generate charges.

ACPYPE has the advantage that it avoids these limita-
tions. Moreover, ACPYPE is written in Python and makes
the (converted) information from ANTECHAMBER eas-
ily accessible for integration in other projects. In the NMR
community, it is already availabel via CCPN [48], and it
will be used in the upcoming rehash of the RECOORD
structure recalculation project [40], where complexes will
be included in addition to monomers. Pilot integration
with ARIA2 [49], in order to make it work seamlessly
via the CcpNmr Grid portal [50], was also tested. In
the MD community, ACPYPE is used in the DrugDis-
covery@Home project [51], and it is employed by others
(for example, see [52]). We also intend to further ver-
ify ACPYPE based on virtualchemistry.org [53], a recent
database of 145 organic molecules with some physical
properties calculated and topologies for GAFF [17] and
OPLS/AA validated by using the GROMACS software
[54].

Since ACPYPE is based on ANTECHAMBER, it also
inherits some of its core limitations: it is not possible to
work with organic molecules with open valences; it can-
not handle atoms besides C, N, O, S, P, H, F, Cl, Br and
I; and there cannot be any covalent bonds to another
(non-defined) molecule. Some of these restrictions can be
circumvented: for example if one wants parameters for a
modified amino acid residue, it is possible to neutralise the
N- and C- termini and then fit the additional parameters
manually to the modified residue.

The topological parameters generated by ACPYPE are
based on GAFF or AMBER99SB and should be used only
with compatible force fields such as AMBER and its vari-
ants; when employing ACPYPE to generate the ligand for
a protein—ligand complex, the force field parameters for
the protein should be from the AMBER family. However,
it is possible to use CNS with topologies generated by
ACPYPE, even if this means mixing two different force
fields (Engh & Huber [41] and AMBER99SB/GAFF). This
can be justified because during the SA steps of a structure
calculation the values of all parameters are increased to
much higher and fixed thresholds, and are so equalised for
both protein and ligands. Essentially the topology infor-
mation remains the same and all parameters are flattened
(the GAFF or AMBER99SB parameters are overwritten
by those from Engh & Huber), so the SA in CNS can be
performed without problems, as illustrated by the protein-
ligand case studies presented here. Likewise, during WR
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Table 1 Original NMR x ACPYPE
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Comparison data [PDB:1BVE] [PDB:1IKU] [PDB:1JKN] [PDB:2JN3] [PDB:2K0G]
PDB ligand code DMP MYR ATP JN3 CMmP
RMSD backbone (A) 1.16/1.16 1.52/2.53 0.97/1.56 047/1.55 2.24/2.30
all atoms (A) 1.88/2.04 2.23/333 1.60/2.38 1.39/2.40 2.53/2.79
Ramachandran core (%) 71.9/88.5 79.9/794 82.4/84.8 84.9/72.9 90.6/87.1
allowed (%) 24.7/9.8 17.6/16.4 16.9/12.7 13.6/22.3 8.9/12.1
generous (%) 29/1.1 2.1/25 0.5/19 1.4/29 0.5/0.3
disallowed (%) 0.5/0.6 04/1.6 0.2/0.7 0.0/22 0.0/0.5
NOE completeness (%) 41.3/459 51.7/55.8 53.6/554 44.9/45.3 49.6/50.4
CING ROG score green (%) 25/15 78/133 56/83 74/75 52/70
orange (%) 29/25 51/43 53/49 28/36 47/48
red (%) 46/60 60/13 57/34 25/16 44/25

Structure quality indicator changes for the original NMR structures from the PDB (left of /) to the structures recalculated using the ACPYPE parameters for the ligand
(right of /). RMSD values are the average pairwise between all structures in the ensemble.

steps, the protein is described by OPLSX parameters
(which are close to the original OPLS parameters and do
not introduce new atom types), with identical topology
description and very similar parameters to those used in
the AMBER force field family.

Another point for consideration is the way improper
dihedrals are defined in AMBER force fields. They are a set
of “proper” dihedrals that act only in planes, which may
result in chirality inversions or peptide bond flips during
the high-temperature portions of SA runs. This problem
is treated in AMBER MD applications by adding chirality
constraints and trans-peptide o constraints (where appro-
priate), but this solution is not easily extended to other
MD programmes. However, since we use AMBER force
fields only for small molecules, this is only a problem if

the molecule has defined chiral centres. Where necessary
it is possible to implement a routine to check the chiral
centres every few steps using the CNS macro language,
or to implement an extra step where the improper dihe-
drals are introduced in the ACPYPE generated topologies
before the calculation. Although ACPYPE will work auto-
matically in many cases, it is not recommended to use it as
a “black box’; and one should always explore the molecule
under investigation as well as the force field(s) used for
parameterisation.

During the development of ACPYPE, some issues in
AmberTools (with ANTECHAMBER in particular) were
spotted, identified and reported back to their developers,
sometimes with a proposed solution. This procedure only
enriched the quality of both programmes, and emphasises

superimposed; picture created with VMD [45].

Figure 3 Recalculated entry [PDB:1BVE] Entry [PDB:1BVE] from PDB recalculated using RECOORD protocol showing 25 models
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the strength of working with open-source projects. More-
over, in relation to GROMACS, an open-source MD
application, ACPYPE has great potential for usability and
further development. ACPYPE is in constant development
and has already a measurable community of users and
contributors with ideas of extending it for other MD and
NMR-SC programmes.

Conclusions

ACPYPE is an ANTECHAMBER-based tool that fills
the current gap in software to automatically incorporate
small molecules in MD and NMR-SC. It calculates partial
charges and generates topology and parameters in differ-
ent formats for different MM programmes, while being
object oriented for integration with other applications.
It is a robust and flexible application, completely open
source and freely available online for use by the scientific
community.

Availability and requirements

e Project name: ACPYPE - AnteChamber PYthon
Parser interfacE
Home page: http://www.ccpn.ac.uk/acpype
Operating Systems: Platform independent
Programming language: Python
Other requirements: Python 2.6 or higher,
including Python 3.x; Antechamber 1.27 or
(preferably) AmberTools 1.0 or higher; (optional, but
strongly recommended) Open Babel 2.2.0 or higher
® License: GNU GPL version 3

Additional files

Additional file 1: Other ways to generate charges for ACPYPE Link
http://www.ccpn.ac.uk/software/ACPYPE-folder/user-charge-
options.

Additional file 2: A comparative test for ACPYPE Link http://www.
ccpn.ac.uk/software/ACPYPE-folder/a-comparative-test-for-acpype.

Additional file 3: Complete report for ACPYPE over 17900 ligands
from PDB Link http://www.ccpn.ac.uk/software/ACPYPE-folder/
results-for-ligands.

Additional file 4: Figures for recalculated entries [PDB:1IKU],
[PDB:1JKN], [PDB:2JN3] and [PDB:2K0G].
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