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Abstract

Background: Wavelets have proven to be a powerful technique for the analysis of periodic data, such as those
that arise in the analysis of circadian oscillators. While many implementations of both continuous and discrete
wavelet transforms are available, we are aware of no software that has been designed with the nontechnical end-
user in mind. By developing a toolkit that makes these analyses accessible to end users without significant
programming experience, we hope to promote the more widespread use of wavelet analysis.

Findings: We have developed the WAVOS toolkit for wavelet analysis and visualization of oscillatory systems.
WAVOS features both the continuous (Morlet) and discrete (Daubechies) wavelet transforms, with a simple, user-
friendly graphical user interface within MATLAB. The interface allows for data to be imported from a number of
standard file formats, visualized, processed and analyzed, and exported without use of the command line. Our
work has been motivated by the challenges of circadian data, thus default settings appropriate to the analysis of
such data have been pre-selected in order to minimize the need for fine-tuning. The toolkit is flexible enough to
deal with a wide range of oscillatory signals, however, and may be used in more general contexts.

Conclusions: We have presented WAVOS: a comprehensive wavelet-based MATLAB toolkit that allows for easy
visualization, exploration, and analysis of oscillatory data. WAVOS includes both the Morlet continuous wavelet
transform and the Daubechies discrete wavelet transform. We have illustrated the use of WAVOS, and
demonstrated its utility for the analysis of circadian data on both bioluminesence and wheel-running data. WAVOS
is freely available at http://sourceforge.net/projects/wavos/files/

Background
Many real-world sources of data display suggestively peri-
odic behavior, but with time-varying period, amplitude, or
mean. This variation can lead to inaccurate results when
the data is analyzed with standard Fourier techniques, as
Fourier analysis assumes stationarity of the signal and its
basis functions are unbounded in time [1]. Wavelets, in
contrast, are localized in both time and frequency. This in
turn localizes the analysis, allowing the changes insignal
properties to be tracked over time [2].
Wavelet analysis has proven to be invaluable in many

problem domains, including ecological cycles [3], sunspot
cycles [4], circadian cycles [5,6], nfradian cycles asso-
ciated with gene transcripts [5], blood-flow dynamics [7],
and ECG signals [8-10]. Our work todate has focused on

circadian data. This data typically displays many of the
features that render a signal difficult to analyze via Four-
ier techniques, including changes in period length, sharp
transients, and phase shifts [6,11], as well as experimental
artifacts such as loss of amplitude, shifting means [12],
and “shot noise” when bioluminescence experiments are
considered [13]. These features may require significant
pre-processing of the data before analysis [14]. Recogniz-
ing the potential of wavelet methods for analysis of circa-
dian data, Price et al. [5] developed the WAVECLOCK
software, implementing the Morlet CWT in the R statis-
tical programming environment. The WAVECLOCK
software has enabled and inspired several investigations
[15,16], but requires familiarity with the R statistical pro-
gramming language and command-line interface. Other
wavelet implementations (e.g. WaveLab [17] or the
MATLAB Wavelet Toolkit) exist, but are either general-
purpose packages that assume significant familiarity with
wavelets, proprietary software, or both.
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The wavelet transform, in both continuous (Morlet)
and discrete (Daubechies) versions, offers a set of tools
for the analysis of nonstationary oscillators that can avoid
many of the issues associated with techniques that
assume stationarity. The Morlet continuous wavelet
transform can nonparametricallydenoise, detrend, and
analyze the local frequency content of a signal in a single
operation [1,15]. Application of the CWT enables such
analyses as estimating the evolution of the period and
phase of a signal across time, locating peaks and troughs
even in the presence of large amounts of noise, tracking
the evolution of the amplitude across time, and identify-
ing multiple simultaneous oscillators. The discrete wave-
let transform (DWT) enables multi-scale analysis of a
signal using a sequence of compactly supported filters
that decompose the signal into a set of component fre-
quency bands [18]. While it yields less precise frequency
estimates than the CWT, it enables direct statistical sig-
nificance testing of different frequency bands [19], and
has better time localization properties than the CWT,
allowing for more efficient removal of transients that are
strictly time-limited. It also has reconstruction properties
that are capable of preserving the mean of the signal [18].
Thus the DWT can be used as a pre-processing step for
other, non-wavelet analyses. Readers interested in learn-
ing more about the continuous wavelet transform are
referred to [2]; for further information on discrete wave-
lets, see [19].
We have designed WAVOS to be a comprehensive,

user-friendly toolbox for wavelet analysis and visualiza-
tion of oscillatory signals that makes beginning-to-end
wavelet processing and analysis accessible to users with
a minimum of expertise in mathematics or computing.
We present several analyses via a graphical user inter-
face as illustrated in Figures 1, 2, 3. In the following, we
discuss the capabilities and use of WAVOS and some
results for circadian systems that we have recently
obtained using this software. While the focus of this
article is on circadian data, and the preset options are
targeted towards such analysis (as described in the
sequel), the WAVOS GUI and included functions may
be readily used to analyze data of any periodicity by
adjusting the minimum and maximum wavelength
parameters.

Implementation
WAVOS is implemented in MATLAB to allow for easy
modification. The convolutions required for both the
discrete and continuous wavelet transforms are per-
formed in the Fourier domain. Several options are pro-
vided for managing the implicit periodization and
corresponding boundary effects that this produces in the
CWT, including zero-padding, edge-reweighting, and
truncation of affected CWT coefficients (as in [5]).

For the discrete wavelet transform, the standard deci-
mated transform may cause localization issues for parti-
cularly sharp transients, depending upon the place at
which the signal is split during decimation. The transi-
ent may be completely contained in a particular coeffi-
cient of the transform, or it may be split between two
adjacent coefficients. This has the undesirable effect of
potentially allowing two different rotations of identical
data to produce two different sets of DWT coefficients
[19]. To avoid this issue, we use a redundant version of
the DWT known in various contexts as the “undeci-
mated”, “shift-invariant”, or “maximum-overlap” DWT
[19]. This transform is invariant to rotation of the data.

Figure 1 CWTgui main interface. The main user interface of
CWTgui, containing controls to load the data, select analysis
parameters, and select the output type and location. CWTgui
performs batch analysis of a dataset using the Morlet CWT and
returns the results as either a MATLAB environment variable, or
saved to a file.

Figure 2 CWTvis main interface . The main user interface of
CWTvis, containing controls to load the data, select analysis
parameters, and explore various plotting and output options.
CWTvis allows the user to visualize the output of wavelet operations
on individual data traces before beginning a batch analysis using
CWTgui.
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Statistical significance testing of the levels of the DWT
decomposition is performed using a Chi-squared test,
under the assumption of additive Gaussian noise as
described in [19].
The default parameters in the GUI are geared towards

analysis of circadian signals. In particular, the minimum
and maximum periods default to 6 and 48, respectively,
with a default sampling rate of 1. These presets assume
hourly samples of data with periods of interest in the
above range. Both the sampling rate and the periods of
interest may be adjusted independently of each other.
The tool will not attempt to analyse periodicities that
exceed the minimum or maximum possible due to num-
berof samples and sampling rate, and will emit a warning
message with the actual bounds used if such an analysis
is attempted. For DWT denoising, a default p-value of
0.05 is used, as this is a generally accepted standard for
statistical significance. Users may also select different
levels of the decomposition by hand, in order to focus on
periodicities of the data that interest them.
Due to the native MATLAB implementation, long time

series (on the order of 10,000 or more observations) may
result in analyses requiring several minutes per time series
to complete. This may be mitigated by reducing the range
of periods to be analyzed in the CWT, or down-sampling

the series to a shorter one with a smaller number of sam-
ples per unit time. Data sets containing a large number of
time series with a large number of samples may exhaust
MATLAB’s working memory, causing an error; this will
depend strongly on the computer being used. Due to
MATLAB’s representation of data in matrix form, all time
series in a single data set to be processed as a batch must
contain an equal number of observations. Time series with
differing numbers of observations may be processed and
analyzed separately.

Usage
The CWT and DWT have different features that incline
them toward different uses. The Morlet CWT is most
useful for investigating local properties of a signal: its
detailed decomposition of time and frequency allows for
very close tracking of several statistics of interest, how-
ever it cannot efficiently reconstruct a signal from indivi-
dual components. The DWT fills a complementary role;
while its time-frequency decomposition is very coarse, it
is capable of reconstruction of a signal and also permits
statistical testing. This allows the DWT to be used for
many familiar signal-processing tasks, such as denoising
and detrending, that are difficult to accomplish with the
CWT.
The Morlet CWT may be viewed as a modification of

the windowed Fourier transform (WFT) that scales the
size of the window to a constant number of wavelengths
for any analysis frequency [2], resulting in good fre-
quency detection across a wider range of periods than
many other methods. For example, Figure 4 displays a
synthetic signal with a period that is shifting from 24 to
18 hours in length. Figure 5 shows the CWT heatmap of
that signal with Gaussian edge correction applied and the
edge-affected coefficients both included and excluded (all
options that can be set within the WAVOS CWT mod-
ule, see Figures 1 and 2). Note that the ridge of the heat-
map (highlighted in green) tracks the changing period of
oscillation. The changing period appears in more detail
in Figure 6, where the instantaneous period is estimated
using several different options within WAVOS. The
Fourier-transform-like nature of the Morlet CWT allows
for estimation of phase but localizes the signal, thus
improving the accuracy of locating associated features
such as the signal peak and trough. Figure 7 shows the
peak and trough points of the signal, as well as the
instantaneous amplitude measurements, obtained from
the phase along the ridge identified in Figure 5.
The CWT is excellent for examining local features of a

signal. On the other hand, it is not well-suited for signal
processing tasks such as decomposing the signal into dif-
ferent wavelengths, discarding or shrinking some coeffi-
cients related to particularwavelengths, and reconstructing
the signal. Fortunately, the Discrete Wavelet Transform is

Figure 3 DWTgui main interface. The main user interface of
DWTgui.
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well-suited for these tasks. Figure 8 illustrates the use of
the DWT in two different modes provided by WAVOS
(see Figure 3) to process the signal and remove either sta-
tistically insignificant noise, or portions of the signal out-
side of a particular range of frequencies. An analysis of a
signal with missing data is provided in Figures 9, 10, 11,
12, 13; these figures illustrate the robustness of the CWT
and DWT to significant amounts of missing data. All fig-
ures were generated using WAVOS.

Using the Morlet CWT in WAVOS has enabled us to
analyze the distributional properties of the period of rat
SCN cells based on PER2::LUC bioluminescence data
[6]. Where previous studies had classified cells as either
arrhythmic or circadian, our wavelet analysis revealed
that individual cells, when removed from network inter-
actions, intermittently express circadian and/or longer
infradian periods. Results from our stochastic model
suggest that the uncoupled cells may beswitching

Figure 4 Synthetic signal A. Synthetic signal A; decreasing period
from 24 to 18 hours, stable baseline, decaying amplitude. Shifting
periods are not effectively detectable by the Fourier transform, and
will lead to poor estimates of the period. In contrast, analysis by the
CWTyields local estimates of the period.

Figure 5 CWTheatmap of synthetic signal A. The first step of
analysis of synthetic signal A (Figure 4) with the CWT: generating
the CWT heatmap. The upper panel shows the complete CWT
heatmap, the lower panel shows the CWT heatmap with all edge-
influenced coefficients removed. The ridge is overlaid in green.

Figure 6 Period estimates for synthetic signal A. Estimated
period of synthetic signal A (Figure 4), showing three different edge
correction options. These estimates are derived from the ridge of
the heatmap as shown in Figure 5. The true period is overlaid in
green. This data may be plotted via CWTvis and exported to either
an external file or a MATLAB variable with CWTgui.

Figure 7 Feature extraction for synthetic signal A. Estimated
peak, troughs, and instantaneous amplitude of synthetic signal A
(Figure 4) estimated via the CWT; this plot may be visualized in
CWTvis and exported to either an external file or a MATLAB variable
with CWTgui.
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between two ocsillatory mechanism: the indirect nega-
tive feedback of protein complex PER-CRY on the
expression of Per and Cry genes, and the negative feed-
back of CLOCK-BMAL1 on the expression of the
Bmal1 gene.
As another example, we have also used WAVOS to

analyze wheel-running data for wild-type mice in a
12:12 light:dark cycle (unpublished data, courtesy of the

Herzog lab). The data contains wheel revolutions per
minute sampled every 15 minutes for 10 days. Figure 14
shows the DWT decomposition plot; the main periodi-
city of roughly 24 hours is clearly visible in the 16-32
hour band, and the noise associated with waking beha-
vior is visible in the highest frequency/shortest period

Figure 8 Denoising/detrending of synthetic signal A. Denoising/
detrending of the synthetic signal A (Figure 4) using the DWT. The
upper panel displays the output of the DWT processing of signal A
on the basis of p-value, retaining only those coefficients with a p-
value of less than 0.05. The lower panel displays the output of the
DWT processing of signal A by hard-thresholding period boundaries.
Note that p-value based processing typically retains a non-zero
mean as well as moving baselines, since these tend to be
statistically significant.

Figure 9 Synthetic signal B. Synthetic signal B; stable period with
censored middle. The gap causes Fourier methods substantial
difficulty.

Figure 10 CWTheatmap of synthetic signal B. The first step of
analysis of synthetic signal B (Figure 9) with the CWT: generating
the CWT heatmap. The upper panel shows complete CWT heatmap.
The lower panel shows the CWT heatmap with all edge-influenced
coefficients removed. The ridge is overlaid in green. Note that a
small distortion is created by the missing data, however the CWT is
capable of interpolating over this range.

Figure 11 Period estimates for synthetic signal B. Estimated
period of synthetic signal B (Figure 9), showing three different edge
correction options. These estimates are derived from the ridge of
the heatmap as shown in Figure 10. The true period is overlaid in
green. This data may be plotted via CWTvis and exported to either
an external file or a MATLAB variable with CWTgui. As in Figure 10,
the period estimate is successfully interpolated across the missing
data, albeit with some distortion.
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bands at the bottom. The same data is analyzed in
Figure 15 via CWT; the circadian periodicity of 24
hours is clearly visible, highlighted via the ridge, along

with intermittent ultradian rhythms. Edge effects have
been removed (black masking) to avoid potential arti-
facts in the analysis. Finally, Figure 16 shows peak and
trough phase markers inferred automatically from the
CWT (green) overlaid on the original data (blue). As
above, edge-effect masking has been performed. Despite
the noisy and non-sinusoidal nature of the data, the
CWT accurately selects the appropriate phase markers.
Figures 14, 15, 16 were created using the WAVOS GUI.
WAVOS has many features to facilitate analysis with the

DWT and CWT, including: both command-line and gra-
phical user interfaces; automatic processing of multiple
time series simultaneously; interfaces to multiple standard
file formats (including .csv,.xls, .txt, and .mat); automated

Figure 12 Feature extraction for synthetic signal B. Estimated
peak, troughs, and instantaneous amplitude of synthetic signal B
(Figure 9) estimated via the CWT; this plot may be visualized in
CWTvis and exported to either an external file or a MATLAB variable
with CWTgui. The amplitude estimate suffers somewhat from the
missing data, however the peak-trough estimates are
successfullyinterpolated.

Figure 13 Denoising/detrending of synthetic signal B .
Denoising/detrending of the synthetic signal B (figure 9) using the
DWT. The upper panel displays the output of the DWT processing
of signal B on the basis of p-value, only retaining those coefficients
with a p-value of less than 0.05. The lower panel displays the
output of the DWT processing of signal A by hard-thresholding
period boundaries. Note that p-value based processing typically
retains a non-zero mean as well as moving baselines, since these do
tend to be statistically significant. Hard-thresholding to remove
baselines can lead to some distortionof missing data as seen in the
lower panel.

Figure 14 DWT analysis of wheel-running data. The DWT
decomposition plot of 10 days of wheel-running data from a wild-
type mouse in a 12:12 light schedule (generously provided by the
Herzog lab).

Figure 15 CWTheatmap of wheel-running data. The CWT
heatmap of the data of Figure 14. Note that the period is relatively
stable over the course of the data and that a single ridge is clearly
visible, as well as some brief ultradian periodicities.
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detection and extraction of multiple statistics of interest
(period, phase, amplitude, peak-to-trough measurements,
and Rayleigh synchronization measurements); visualization
tools for both exploration and analysis; utilities for
smoothing, detrending, and statistical significance testing
using the DWT; and multiple ridge selection algorithms,
including local maximum and simulated annealing (the
“crazy climber” method of [20]). Complete details are pro-
vided in the WAVOS documentation (at the download
link).
Future development of WAVOS will concentrate on

feature extraction from circadian signals, in particular
allowing end-users to select user-defined phase markers
for further analysis.

Availability and requirements
• Project name: WAVOS - Wavelet Analysis and Visua-
lization of Oscillatory Signals
• Project home page: http://sourceforge.net/p/wavos/

home/Home/
• Operating Systems: Cross-platform with MATLAB

2007a or later
• Programming language: MATLAB
• Other requirements: MATLAB 2007a or later
• License: Modified BSD
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