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Abstract

Background: Calculation of the root mean square deviation (RMSD) between the atomic coordinates of two
optimally superposed structures is a basic component of structural comparison techniques. We describe a
quaternion based method, GPU-Q-J, that is stable with single precision calculations and suitable for graphics
processor units (GPUs). The application was implemented on an ATI 4770 graphics card in C/C++ and Brook+ in
Linux where it was 260 to 760 times faster than existing unoptimized CPU methods. Source code is available from
the Compbio website http://software.compbio.washington.edu/misc/downloads/st_gpu_fit/ or from the author
LHH.

Findings: The Nutritious Rice for the World Project (NRW) on World Community Grid predicted de novo, the
structures of over 62,000 small proteins and protein domains returning a total of 10 billion candidate structures.
Clustering ensembles of structures on this scale requires calculation of large similarity matrices consisting of RMSDs
between each pair of structures in the set. As a real-world test, we calculated the matrices for 6 different
ensembles from NRW. The GPU method was 260 times faster that the fastest existing CPU based method and over
500 times faster than the method that had been previously used.

Conclusions: GPU-Q-J is a significant advance over previous CPU methods. It relieves a major bottleneck in the
clustering of large numbers of structures for NRW. It also has applications in structure comparison methods that
involve multiple superposition and RMSD determination steps, particularly when such methods are applied on a
proteome and genome wide scale.

Background
Structure comparison by optimal superposition and
RMSD calculation
In order to compare two protein structures, a transfor-
mation is first obtained that optimally superposes corre-
sponding atoms from the one structure onto the other.
The root-mean-square- deviation (RMSD) between the
coordinates of the superposed structures is then calcu-
lated [1]. In structural biology, such comparisons are
very common and RMSD is used as shorthand for root
mean square deviation after optimal superposition.
RMSD calculations form the basic building block for
more sophisticated structural comparison methods that
also optimize the subset of atoms being compared. This

is desirable when there may be divergent regions that
would dominate the superposition. Multiple RMSD cal-
culations using different possible sequence mappings are
also necessary when a new protein is being compared to
a library of known folds to help determine its function
[2-4].
For genome wide applications, such as the Nutritious

Rice for the World (NRW) project, structure compari-
son becomes a bottleneck for the clustering of large
ensembles of candidate structures on the basis of struc-
tural similarity. Consumer graphic processing units
(GPUs), designed to rapidly process video for games and
home entertainment, utilize many individual processors
that operate simultaneously. This results in TFLOPS
(1012 floating operations per second) speeds which are 2
to 3 orders of magnitude faster than consumer CPUs.
GPUs are becoming ubiquitous and their impact is* Correspondence: ram@ram.org
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being felt especially in community grid projects which
utilize home machines. To access this power, methods
must be specifically adapted to GPUs, to take into
account their characteristics, such as the need for inde-
pendent threads, their optimizations for single precision
vector operations, and penalties for branching and
memory fetches of data.
The simplest method for optimal superposition trans-

lates the center of masses or barycenters of the two
molecules to the origin and then applies a rotation to
one molecule that minimizes the covariance matrix
between the two sets of coordinates [1]. An equivalent
formulation uses quaternions and reduces to solving for
the eigenvalues and eigenvectors of a 4 × 4 matrix [5].
A key consideration in the choice of a quaternion-based
methodology was that the rotational method (Rot) for
RMSD calculations requires at least two fetches of coor-
dinates whereas the quaternion method can be imple-
mented with just one. All quaternion based methods
solve for the eigenvalues of a symmetric 4 × 4 matrix
derived from the covariances between the coordinates of
the two sets of atoms being compared. The maximum
eigenvalue is used to obtain the RMSD. The fastest of
previously published methods, Q-CP, does this by find-
ing the largest real root of the characteristic polynomial
associated with the matrix, using a Newton-Raphson
solver [6,7]. Unfortunately, all the variants that were
tried in formulating and solving the quartic characteris-
tic polynomial proved to be unstable with single preci-
sion calculations.
Coutsias and co-workers [5] obtained the eigenvalues

and eigenvectors of the 4 × 4 matrix using the Power algo-
rithm (Q-P). However, this was also the slowest CPU
implementation that we tested even though it was imple-
mented in FORTRAN. Instead, we used the cyclic-Jacobi
method [8] for solving for the eigenvalues in our imple-
mentations of the quaternion-based algorithm (Q-J and
GPU-Q-J). Q-J is almost as fast as Q-CP on CPUs, and
converges stably even with single precision calculations.

The test set - Nutritious Rice for the World on World
Community Grid
Current implementations are very fast and more than
sufficient for routine applications where only a few
RMSD calculations are necessary. However, for applica-
tions involving very large datasets, current RMSD meth-
ods become a significant bottleneck. Our implementation
was motivated by the needs of one such project, the
Nutritious Rice of the World, (NRW) [9]. NRW ran on
World Community Grid [10], a distributed computa-
tional project that utilizes the resources of a community
of volunteers. It was created by IBM in 2004 and by the
end of 2009, there were almost 500,000 members regis-
tered over 1.5 machines on the grid providing over

300,000 years of computing time in total. World Com-
munity Grid has supported many different projects, one
of them being NRW. Users download our ProtinfoAB cli-
ent program [11,12], which requests workunits from
World Community Grid servers, processes them using
idle computing cycles, and returns the structure predic-
tions to World Community Grid. The aim of NRW was
to predict the structure of all small rice proteins from
their sequence. The predicted structures can then be
screened against known protein fold families to identify
the function of the gene product. 25,761 CPU-years were
devoted to computing 10 billion structures for NRW.
These results would have taken our local cluster over 30
years to obtain but took less than 2 years using World
Community Grid.
Our methodology for choosing the best candidate

structures from the 62,000 ensembles involves clustering
the candidate structures using RMSD as a metric
[13,14]. The construction of the similarity matrix con-
sisting of the RMSD between every pair of structures is
an O(N2) process. For a typical set of 100,000 structures
generated by NRW for a single sequence, this would
take days on a CPU. We filter the ensemble using differ-
ent energy functions [4,5] to reduce the size to the 5000
best structures before clustering. To cluster even this
smaller set can take an hour on a CPU. As shown in
Additional file 1: Supplemental Table S1, this could be
accomplished in a few seconds using a GPU. There are
different sets of energy functions that can be used to fil-
ter the proteins to produce different subsets. In addition,
it would be preferable to cluster larger numbers of
structures. The CPU implementations of RMSD calcula-
tions, while more than fast enough for most applica-
tions, become a bottleneck when examining 62,000
ensembles of structures.

Results and Discussion
Algorithm
The quaternion algorithm is described in detail in [5] so
we will only review it briefly. Let the position vectors of
the kth atoms for the two proteins be:

pk =

⎛
⎝pk1
pk2
pk3

⎞
⎠ qk =

⎛
⎝qk1
qk2
qk3

⎞
⎠

The covariance matrix for a comparison of N atoms is
given by

Rij =
N∑
k=1

(
pki − p̄i

) (
qkj− q̄j

)

The terms can be calculated with one fetch of coordi-
nates by re-arranging to:
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Rij =
N∑
k=1

pkiqkj − 1
N

(
N∑
k=1

pki×
N∑
k=1

qki

)

A 4 × 4 symmetric matrix can be obtained:
⎡
⎢⎢⎣
R11 + R22 + R33 R23 − R32 R31 − R13 R12 − R21

R23 − R32 R11 − R22 − R33 R12 + R21 R13 + R31

R31 − R13 R12 + R21 −R11 + R22 − R33 R23 + R32

R12 − R21 R13 + R31 R23 + R32 −R11 − R22 + R33

⎤
⎥⎥⎦

The RMSD after optimal superposition is then given
by:

RMSD =

√√√√√ N∑
k=1

(∣∣pk∣∣2 + ∣∣qk∣∣2) − 2λmax

N

where lmax is the maximum eigenvalue of the 4 × 4
matrix.
The eigenvalues were obtained using a modified ver-

sion of the standard library implementation of cyclic-
Jacobi method [15]. GPU subroutines are actually inline
substitution of code and not implemented through a
stack. Thus the same processor constructs the matrix
and calculates the eigenvalues. It is not possible to par-
allelize both processes independently. Moreover, there is
only limited memory for code and variables. Branching
in GPUs can also be very slow. Therefore we coded the
cyclic-Jacobi method specifically for a symmetric 4 × 4
matrix and minimized the number of variables, instruc-
tions and branch points.

Implementation
Hardware details
The GPU-Q-J algorithm was implemented on an ATI
4770 graphics card. The ATI 4770 GPU contains 640
stream processors with access to 512 MB of onboard
GDDR5 memory. The processors are organized into
groups of 5 consisting of 4 standard stream processors
and one with specialized trigonometric capabilities. Sin-
gle precision floating operations use all stream proces-
sors simultaneously and double precision operations use
a group of 5 to generate a single result. Thus, double
precision operations are at least 5 times slower. The
card is a rated at approximately 1 TFLOPS for single
precision calculations, 200 GFLOPS (109 floating opera-
tions per second) for double precision calculations and
consumes 80W at peak. Communication between the
CPU and GPU was through a PCIe 16 bus. A single
core Sempron 3000+ system (running Linux), was used
in test applications so that thread management among
multiple cores would not factor into the comparison.
The CPU scored 1.3 GFLOPS in double precision multi-
plication and addition.using flops.c [16] as a benchmark.

Software environment
The ATI SDK 1.4 provides Brook+ [17] as a high level
language to interface with its GPUs. Brook+ is based
upon Brook [18], a C/C++ like language developed at
Stanford. The main extension to standard C/C++ is the
stream data structure. Stream data is organized and
indexed in a manner similar to regular arrays which are
the mechanism for supplying inputs and capturing out-
puts. In a GPU accelerated process, the CPU writes data
into input streams to be sent to the graphics card. An
onboard job scheduler assigns an index to a set of
stream processors. The data in the input streams at that
index are read in, operated on and then output to one
or more output streams with the matching index. The
numerous stream processors can operate simultaneously
on their assigned pieces of the data streams which
results in the acceleration.
More recent ATI GPUs support “gather” and “scatter”

streams. A gather stream is a data structure where
stream processors can read or gather data from any
piece of the stream. A scatter stream is the output ana-
logue where the stream processors can write or scatter
data to any piece of the stream. Combined scatter/
gather streams are also available which allow random
access reads and writes from and to the same stream
data structure. Gather and especially scatter streams are
slower than regular streams but are much more flexible.
GPU optimizations
GPUs have many built-in optimizations for common
graphics 4-vector operations, such as dot products and
addition. The calculation of the necessary covariances
was accomplished by summing the 4-vectors and dot
products of 4-vectors to take advantage of these opti-
mizations. This requires re-organizing the coordinates
into suitable 4-vectors of single precision floats as
shown in Figure 1. The 9 covariance matrix elements
were stored as double precision variables but the 4 × 4
matrix elements were passed to the Jacobi routine as
single precision. Although a completely single preci-
sion implementation is possible, this compromise
increased accuracy for some degenerate cases without
sacrificing speed. All methods, including GPU-Q-J,
give identical values for the RMSDs to 2 decimal
places. This accuracy is more than sufficient for our
purposes.
The test cases for the RMSD determinations involved

calculating the RMSDs for every pair of structures in an
ensemble. To do this, the coordinates of all the struc-
tures are first read into a single gather stream of 4-
vectors. A set of indices is provided as a regular input
stream to tell the stream processor the pair of offsets of
the coordinates that are to be fetched by GPU sub-
process and operated upon to determine the RMSD.
The resultant RMSD is written to an output stream to
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be sent back to the CPU. By using a slightly slower
gather stream, duplicate comparisons are avoided and
only the values corresponding to the upper triangle of
the similarity matrix are calculated.
Testing and comparison of different methods
Testing was done using 6 different data sets comprising of
structure predictions from NRW. The protein sequences
ranged in size from 70 to 140 residues and ensemble sizes
ranged from 100 to 5000. Times were recorded for the cal-
culation of all-atom RMSDs between every pair in an
ensemble of structures. For each run, the GPU times were

determined by averaging 5 different timings. Timings for
each of the CPU methods were then determined and
expressed as a multiple of the average GPU time. The
results from 6 different runs were averaged for each data-
set. These results are shown in Figure 2. For all the ensem-
ble sizes, the GPU implementation was the fastest. As the
number of comparisons increases the overhead involved
to use the GPU becomes negligible. For the largest ensem-
ble size, the GPU implementation was, on average 260-
fold faster than the fastest CPU method, Q-CP, and almost
800-fold faster than the slowest method, Q-P. Some of

Figure 1 GPU-Q-J RMSD calculation procedure. The methodology used to calculate RMSDs on GPUs is shown. The Cartesian coordinates of
the two proteins are reshuffled in 4-vectors. This allows the use of built-in dot product operations for the calculation of the covariance matrix R.
Because we do not center the coordinates beforehand so that their barycenters are at the origin, a second term involving the mean values of
the coordinates must be subtracted. By combining the two steps, we avoid an expensive extra fetch of coordinates. Optimized 4-vector
summation is used to calculate the coordinate means. The values of the covariance matrix R are maintained as double precision but the 4 × 4
matrix passed to the cyclic-Jacobi routine is single precision. This compromise increases the accuracy in some degenerate cases without
sacrificing speed, as the vast majority of calculations take place as 4-vector single precision operations. The final value of RMSD obtained is
identical that obtained by the CPU methods to at least 2 decimal places.
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these differences are due the CPU methods not being opti-
mized for speed. In Additional file 1: Supplemental Table
S1, we also provide the actual times in seconds required to
calculate the RMSDs and to read in the coordinates. Read
times can be significant if structures are stored as PDB
text files. However, to conserve space and bandwidth,
structures from NRW are stored as binary files of torsional
angle values which are then used to reconstruct the Carte-
sian coordinates. This entire process takes only a few sec-
onds even for 5000 structures.
The CPU methods were compiled with gcc 4.4.1 with

the optimization flags enabled. The CPU implementation
of Q-J used the exact algorithm used in the GPU version,
including the use of double and single precision variables.
Although Q-CP was the fastest of the CPU methods by a
significant margin, it was not an order of magnitude faster
as previously reported [7]. The speed of the Q-CP imple-
mentation is heavily dependent on the number of

iterations that is required for the Newton-Raphson
method to converge. Convergence was likely slower for
the divergent structures encountered in our test sets
which were derived from de novo predictions.

Conclusions
For most routine applications, the speed of current CPU
implementations of RMSD is not an issue. As a result,
with the possible exception of Q-CP, the CPU implemen-
tations are not optimized for speed and speed-ups should
be obtainable with properly optimized GPU implementa-
tions of the other algorithms. Also for some GPUs the
speed advantage between single precision and double pre-
cision math is not as pronounced. A stable double preci-
sion non-iterative eigenvalue solution might then be more
efficient than the iterative Jacobi method that we have
described. In any case, GPU-Q-J is a stable and very fast
method.

Figure 2 Acceleration of RMSD calculations. Four CPU implementations of different RMSD calculation algorithms, Quaternion Characteristic
Polynomial (Q-CP), Quaternion Power (Q-P), Quaternion Jacobi (Q-J) and Rotational (Rot) were compared against our GPU implementation of the
Q-J algorithm (GPU-Q-J). 6 different datasets from NRW, comprising of predictions of protein structures ranging from 70 to 140 residues in size
were used as the test set. The time required to calculate the RMSDs for each pair of structures in the ensemble are displayed relative to the
time required by the GPU implementation. Numbers on the right indicate the average for the 6 datasets. The results show that for ensembles of
greater than 1000 structures, the overhead in setting up the GPU algorithm becomes negligible. There is a 260-fold increase in speed over the
fastest CPU implementation. This increase in speed allows large ensembles of structures to be clustered quickly and relieves a major bottleneck
in processing the results from NRW.
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Applications such as iterative density [12] and cluster-
ing [19] that require a complete pairwise similarity
matrix will benefit significantly from the acceleration of
the RMSD calculations. The GPU-Q-J method can be
applied to more complicated structural comparison
methods that use multiple RMSD determination steps
[2-4]. Such methods are useful in functional annotation,
where predicted structures are compared against a
library of folds to help determine the function of the
novel protein. Computational time is significant when
these techniques are used to produce annotations on a
genome scale as is being done in NRW.
Projects such as NRW create datasets so large that

clustering using RMSD or other structural similarity
metric is cumbersome with existing methods. With our
new GPU based method, we have eliminated this bottle-
neck in the evaluation of the NRW datasets. In addition,
we will be comparing the structures from the 60,000 sets
of predictions with protein fold libraries to determine
their function. Our new RMSD method can be applied to
the structural comparison methods used in the annota-
tion step as well. This will further accelerate the analysis
of the 10 billions structures returned by NRW which we
hope will allow us to help better understand rice genome
and to potentially develop better strains of rice.
GPUs with the power of small supercomputers are

becoming ubiquitous in consumer computing devices.
The test system that we used is a modest one and is
exceeded by many home computers used for gaming or
for high definition video. These devices are being made
accessible to scientific applications through community
grids which link millions of volunteer nodes together.
Although GPU-Q-J was developed for clustering large
ensemble sets on our local servers, the method will
form part of a new GPU-aware protein folding client
that is in development. Such GPU-aware clients have
already made an impact in projects such as Foldin-
g@home [20]. Effective GPU adaptations of routines for
commonly used calculations such as the optimal super-
position/RMSD are important if we are to fully utilize
the enormous power being made available through the
generosity of participants in projects such as NRW.

Additional material

Additional file 1: Supplemental Table S1. The table indicates the times
in seconds, required for the different RMSD calculations for the 6
proteins from NRW ranging in size from 70 to 140 residues. In addition
the times required to read in the torsional coordinates and convert them
to Cartesian coordinates are indicated.
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