
RESEARCH ARTICLE Open Access

A speedup technique for (l, d)-motif finding
algorithms
Sanguthevar Rajasekaran*, Hieu Dinh

Abstract

Background: The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital
biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the
determination of open reading frames, identification of promoter elements of genes, identification of intron/exon
splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing
sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of
protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation
elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding
transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a
result, numerous papers have been written to solve the motif search problem.

Results: Three versions of the motif search problem have been proposed in the literature: Simple Motif Search
(SMS), (l, d)-motif search (or Planted Motif Search (PMS)), and Edit-distance-based Motif Search (EMS). In this paper we
focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and
approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify
some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms
proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this
paper we propose a generic technique that can be used to speedup PMS algorithms.

Conclusions: We present a speedup technique that can be used on any PMS algorithm. We have tested our
speedup technique on a number of algorithms. These experimental results show that our speedup technique is
indeed very effective. The implementation of algorithms is freely available on the web at http://www.engr.uconn.
edu/rajasek/PMS4.zip.

Background
Pattern search in biological sequences has numerous
applications and hence a large amount of research has
been done to identify patterns. Motifs are fundamental
functional elements in proteins vital for understanding
gene function, human disease, and may serve as thera-
peutic drug targets. Three versions of the motif search
problem have been identified by researchers: Simple
Motif Search (SMS), Planted Motif Search (PMS) - also
known as (l, d)-motif search, and Edit-distance-based
Motif Search (EMS) (see e.g., [1]).
PMS problem takes as input n sequences of length m

each and two integers l and d. The problem is to iden-
tify a string M of length l such that M occurs in each of

the n sequences with a Hamming distance of at most d.
For example, if the input sequences are GCGCGAT,
CACGTGA, and CGGTGCC; l = 3 and d = 1, then
GGT is a motif of interest.
EMS is the same as PMS, except that edit distance is

used instead of the Hamming distance. SMS takes as
input n sequences and an integer l. The problem is to
identify all the patterns of length l (with up to l/2 wild
card characters), together with a count of how many
times each pattern occurs.
Two kinds of algorithms can be found in the literature

for the solution of PMS. The first kind of algorithms
identify all the motifs always. This kind of algorithms
are called exact algorithms. The second kind of algo-
rithms may not always identify the motif(s). Numerous
algorithms of each kind can be found in the literature.* Correspondence: rajasek@engr.uconn.edu

Department of CSE, University of Connecticut, Storrs, CT 06269, USA

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

© 2011 Rajasekaran et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.engr.uconn.edu/rajasek/PMS4.zip
http://www.engr.uconn.edu/rajasek/PMS4.zip
mailto:rajasek@engr.uconn.edu
http://creativecommons.org/licenses/by/2.0

The exact version of the PMS problem is known to be
NP-complete.
Some example approximate algorithms are due to

[2-5], and [6]. These algorithms employ local search
techniques such as Gibbs sampling, expectation optimi-
zation, etc. The WINNOWER algorithm in [5] is based
on finding cliques in a graph. The PROJECTION algo-
rithm of [3] employs random projections. Approximate
algorithms tend to be very fast but there is no guarantee
that we will get all the motifs of interest. Other exam-
ples of approximate algorithms include: MULTIPROFI-
LER [7], PatternBranching [8], CONSENSUS [9],
GibbsDNA [4], MEME [2], and ProfileBranching [8].
Several exact algorithms are also known for solving

the PMS problem: [10-16], and [17]. PMS algorithms
are typically tested on random benchmark data gener-
ated as follows: Twenty sequences each of length 600
are generated randomly from the alphabet of interest.
The motif M is also generated randomly and planted in
each of the input sequences within a Hamming distance
of d. The motif instances are also generated randomly.
Certain instances of the (l, d)-motif problem have been
identified to be challenging. An instance is challenging if
the expected number of (l, d)-motifs that occur by ran-
dom chance (in addition to the planted one) is one or
more. For example, the following instances are challen-
ging: (9, 2), (11, 3), (13, 4), (15, 5), (17, 6), (19, 7), etc.
The performance of PMS algorithms are customarily
shown only for challenging instances.
The exact algorithm MITRA of [8] can solve the chal-

lenging instance (15, 4). It cannot solve (15, 5) or any
larger instances. On these instances it takes either too
much time or too much space. Three exact algorithms
PMS1, PMS2, and PMS3 have been given in [18]. These
algorithms are faster than MITRA. Other exact algo-
rithms are: Voting of [19], RISOTTO of [20], and
PMSprune of [21].
In this paper we present a speedup technique that can

be used for any PMS algorithm. Before presenting
details of our technique, we provide a brief summary of
the following algorithms: PMS1, Voting, RISOTTO, and
PMSprune. We have employed these algorithms to
demonstrate the efficacy of our technique.

Methods
A Summary of Known Algorithms
PMS0 and PMS1
PMS0 and PMS1 are two exact algorithms given in [18].
PMS0 works as follows. Let S1, S2, ..., Sn be the given
input sequences and let m be the length of each input
sequence. For any two l-mers u and v let H.D.(u,v)
stand for the Hamming distance between u and v. Let u
be any l-mer. We define the d-neighborhood of u
(denoted as Du) as the set of l-mers that are at a

distance of ≤ d from u. In other words, Du is nothing
but {v: H.D.(u, v) ≤ d}. Let C be the collection of l-mers
in S1. Note that C has (m - l + 1) l-mers. Let C’ =

∪uÎCDu. Note that |C′| = O

(
(m − l + 1)

(
l

d

)
3d

)
. For each

element v of C’ check if it is a valid (l, d)-motif or not.
Given an l-mer v, we can check if it is a valid (l, d)-
motif or not in O(mnl) time. Thus the run time of

PMS0 is O(m2nl

(
l

d

)
3d) .

PMS1 is an exact algorithm that works as follows. For
each input sequence Si (1 ≤ i ≤ n) it generates a list of
d-neighbors. In particular, for each l-mer u in Si, it gen-
erates Du. It merges all such Du’s and eliminates dupli-
cates to get Li. The output (l, d)-motifs will be ∩n

i=1Li .
More details follow.
Algorithm PMS1

1. Generate all possible l-mers from out of each of
the n input sequences. Let Ci be the collection of l-
mers from out of Si for 1 ≤ i ≤ n.
2. For all 1 ≤ i ≤ n do: C′

i = ∪u∈CiDu ;

|C′
i| = O

(
m(ld)|�|d) .

3. Sort all the l-mers in every C′
i , 1≤ i ≤ n, in lexico-

graphic order, and eliminate duplicates in every C′
i .

An integer sorting algorithm can be used (see e.g.,
[22]). Let Li be the resultant sorted list correspond-
ing to C′

i .
4. Merge all the Li’s (1 ≤ i ≤ n) and output the gen-
erated (in step 2) l-mers that occur in all the Li’s.

The following theorem results.
Theorem 0.1 PMS1 runs in time

O

(
mn

(
l

d

)
|∑ |d l

w

)
where w is the word length of the

computer.

Voting
The Voting algorithm proposed in [19] is very similar to
PMS1. In this algorithm also, the potential motifs con-
sidered are the d-neighbors of each l-mer in the input
sequences. In particular, they employ a hash table V of
d-neighbors. Each such d-neighbor collects votes. Let v
be a d-neighbor of some l-mer in the input. Then, v will
receive a vote from the input sequence i (for 1 ≤ i ≤ n)
if v is a d-neighbor of some l-mer in the input sequence
Si. They ensure that v will not get multiple votes from
any sequence using another hash table R.
The algorithm builds both V and R by processing each

l-mer u in each input sequence, generating the d-neigh-
borhood of u, and hashing the d-neighbors into V and
R. After processing all the input l-mers in this fashion,

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 2 of 7

the algorithm outputs all those d-neighbors that receive
a vote of n.
Clearly, the asymptotic run time of this algorithm is

O

(
mn

(
l

d

)
|∑ |d

)
assuming that l is a constant. If l is

not of constant size, there could be a linear dependence
on l as well in the run time.
RISOTTO
An exact algorithm for PMS has been given by [23] that
has a run time of O(n2mld|Σ|d). This algorithm uses O
(n2m/w) space where w is the word length of the com-
puter. This algorithm constructs a suffix tree on the
input sequences in O(nm) time using O(nm) space.
Some preprocessing is done on the suffix tree that takes
O(n2m/w) time and O(n2m/w) space. If u is any l-mer in
any input sequence, then u has O(ld(|Σ| - 1)d) possible
d-neighbors. Any of these neighbors could potentially be
a motif of interest. Since there are O(nm) l-mers in the
input, the number of such neighbors is O (nmld(|Σ| - 1)
d. For each such neighbor v the algorithm of [23] walks
through the suffix tree to check if v is a valid motif (i.e.,
it has a d-neighbor in each input sequence). This walk-
ing step is referred to as ‘spelling’. The spelling opera-
tion takes a total of O(n2mld(|Σ| - 1)d) time using an
additional O(nm) space.
An improved version of the above algorithm, called

RISOTTO, has been given by [20]. The algorithm of
[23] makes use of a trie called the motif tree. The root
of this tree corresponds to the empty string. The algo-
rithm grows this string one symbol at a time and for
each such string checks if it is a valid motif (i.e., the
string is of the right length and it occurs in every
sequence within a Hamming distance of d). A key
observation that [20] make use of in their algorithm is
the following. Let q be a string that occurs in all the
input sequences (up to a Hamming distance of d). Let
its maximum extensibility be MaxExt(q).
MaxExt(q) refers to the maximum number of symbols

that can be appended to q so that the resultant string
will occur in all the input sequences (within a Hamming
distance of d). If q’ is another string such that q is a suf-
fix of q’, then MaxExt(q’) cannot be more than MaxExt
(q). As a result, if MaxExt(q’) + |q’| <l, then we don’t
have to consider augmenting q’ further. In other words,
we can prune the subtree rooted at q’ in the motif tree
[20]. show that the average performance of RISOTTO is
better than that of [23].
PMSprune
PMSprune follows the same strategy as PMS0: for every
l-mer y in S1 it generates the set of neighbors of z and
for each one of them checks whether this is a valid (l,
d)-motif or not. However it improves the performance
of PMS0 in a significant way. Salient features of this

algorithm are:

1. It generates the neighborhood of every l-mer u in
a branch and bound manner. In this method, these
l-mers will correspond to nodes in a tree of height
at most d. The root (which is at level zero) of this
tree will be u. At level i of this tree they generate l-
mers that are at a distance of i from u (for 1 ≤ i ≤
d).
2. Let S = {S1, S2, ..., Sn} be the input set of
sequences. If x is any l-mer, the distance between x
and any input sequence Si is denoted as d(x, Si) and
is defined as min {H.D.(x, y)|y is an l - mer in Si}.
The distance between x and S is denoted as d̄(x, S)
and is defined as maxni=1 d (x, Si) .
Let u be any l-mer in S1 and let x be any l-mer in
the d-neighborhood of u (i.e., Du). PMSprune checks
if x is a valid (l, d)-motif or not by computing

d̄(x, S) . If d̄(x, S) ≤ d then x is output - it is a valid
motif. More importantly, if x is at level h in the tree,
PMSprune uses the value of d(x, S) and h to prune

the descendants of x. In particular, if d̄(x, S) >(2d -
h), then the subtree rooted at x is pruned - none of
the l-mers in this subtree could be a valid (l, d)-
motif.
3. It dynamically prunes the l-mers in Si for i = 2, ...,
n that are considered for the calculation of d̄(·, S).
4. It calculates the value of d̄(·, S) in an incremental
way taking into account the way the neighborhood
is generated.

The worst case run time of PMSprune is

O

(
nm2

(
l

d

)
3d

)
and it uses O(nm2) space. Even though

its worst case run time is worse than that of PMS0,
PMSprune has a better expected run time and it does
better in practice [21].

Our Speedup Technique
Summary
We refer to our speedup technique as PMS4 and it can
be used in conjunction with any PMS algorithm. The
idea of PMS4 is also based on PMS0. We can think of
PMS0 as consisting of two stages. In the first stage, we
generate all the l-mers of S1 and for each such l-mer
generate its d-neighborhood. All of these d-neighbor-
hoods are then merged to get the list L1 of l-mers. In
the second stage, for each l-mer v in L1, check if v is a
valid (l, d)-motif or not.
In other words, in stage 1 we come up with a list of

candidate motifs. In the second stage, for each candidate

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 3 of 7

motif we check if it is a valid motif or not. For each
candidate motif it takes O(mnl) time to check if it is a
valid motif or not. This is rather a large amount of time.
PMS0 does not perform well since there are a large
number of candidate motifs and for each candidate
motif it takes a long time to check its validity. We can
speedup its performance if we can reduce the number
of candidate motifs (and/or if we can speedup the valid-
ity checking for each candidate motif).
PMS4 reduces the number of candidate motifs by first

running the PMS algorithm on a small number of input
sequences. It then verifies the validity of each candidate.
Let A be the PMS algorithm under concern. A pseudo-
code for PMS4 follows.
Algorithm PMS4

1. Run the algorithm A on k input sequences
(where k <n). An optimal value of k can be deter-
mined empirically. We could pick the k sequences in
a number of ways. For example, they could be the
first k sequences, random k sequences, and so on.
Let C be the collection of (l, d)-motifs found in
these k sequences.
2. for each l-mer v in C do
Check if v is a valid motif in O(mnl) time. If so, out-
put v.

A probabilistic analysis
The problem of planted motif search is complicated by
the fact that, for a given value of l, if the value of d is
large enough, then the expected number of motifs that
occur by random chance could be enormous. For
instance, when n = 20, m = 600, l = 9, d = 2, the
expected number of spurious motifs (that occur in each
input sequence at a hamming distance of d) is 1.6. On
the other hand for n = 20, m = 600, l = 10, d = 2, the
expected number of spurious motifs is only 6.1 × 10-8.
A probabilistic analysis to this effect can be conducted
as follows (as shown in [3]).
Let Sk be any input sequence 1 ≤ k ≤ n and let u be

any l-mer. Probability that u occurs in Sk at a Hamming
distance of d starting from a specific position is

p =

(
l

d

)(
3
4

)d(1
4

)l−d

Thus, probability that u occurs

in Sk starting from at least one of the positions in Sk is
1 - (1 - p)m-l+1. Here it is assumed that the occurrence
of u is independent of the starting position (which is
clearly not true). Buhler and Tompa argue that this
assumption nearly holds in practice [3]. This means that
the expected number of l-mers that occur in each of the
input sequences (at a hamming distance of d) is 4l [1 -
(1 - p)m-l+1]n.
A slightly different valid analysis has been presented in

[24]. Let Sk be any input sequence 1 ≤ k ≤ n and let u

be any l-mer. Call the positions

1, l + 1, 2l + 1, . . . ,
⌈
m − l + 1

l

⌉
l + 1special positions.

Probability that u occurs in Sk at a hamming distance of
d starting from a specific special position is

p =

(
l

d

)(
3
4

)d(1
4

)l−d

. Thus, probability that u occurs

in Sk starting from at least one of the special positions is

1 - (1 - p)m’ where m′ =
⌈
m−l+1

l

⌉
+ 1 . As a result, prob-

ability that u occurs somewhere in Skis at least 1 - (1 -
p)m’. This means that the expected number of l-mers
that occur in each of the input sequences (at a hamming
distance of d) is ≥ 4l [1 - (1 - p)m’]n.
Table 1 shows the expected number of motifs for dif-

ferent values of l, d, and k. In this table E.N.M. stands
for the expected number of motifs. E.N.M. values in this
table have been computed using the first (inaccurate)
analysis.
The run times of many of the known PMS algorithms

are linearly dependent on the number of input
sequences. Examples include PMS0, PMS1, RISOTTO,
Voting, and PMSprune. Any reduction in the number of
input sequences will result in a corresponding reduction
in the run time. If the number of resultant motifs is
small then the overall run time will be reduced. We
have to strike a balance between the time it takes for
the first stage and the second stage. A good starting
point for the value of k is ⌈n/2⌉. We could then work
around this value to optimize the time.

Results and Discussion
We have tested the performance of PMS1, PMSprune,
and RISOTTO for various values of (l, d), and k. The
improvements in performance are shown next. We have
not included Voting in this comparison since the Voting

Table 1 Expected number of motifs for various values of
l, d, and k

E.N.M. stands for the expected number of motifs

l d k E.N.M. l d k E.N.M. l d k E.N.M.

9 2 8 1,383 11 3 8 9,297 13 4 8 42,337

9 2 9 718 11 3 9 4,331 13 4 9 16,855

9 2 10 373 11 3 10 2,018 13 4 10 6,710

9 2 11 194 11 3 11 940 13 4 11 2,672

9 2 12 101 11 3 12 438 13 4 12 1,064

15 5 8 145,959 17 6 8 407,602 19 7 8 968,241

15 5 9 47,962 17 6 9 107,681 19 7 9 201,530

15 5 10 15,761 17 6 10 28,448 19 7 10 41,947

15 5 11 5,179 17 6 11 7,516 19 7 11 8,731

15 5 12 1,702 17 6 12 1,986 19 7 12 1,818

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 4 of 7

program takes a very long time when we decrease the
number of sequences. When we decrease the number of
sequences the number of motifs increases. The Voting
program sorts these motifs and outputs them. We sus-
pect that the sorting program used could be the reason
for the long run times. However, since the asymptotic
run time of Voting is linear in the number of sequences,
PMS4 is expected to result in a speedup of Voting simi-
lar to that in PMS1 and RISOTTO. All the times
reported in this section are averages over 10 random
instances (fixing the values of k, l, and d). Each instance
is a benchmark set of 20 random sequences of length
600 as mentioned in the Background Section

The case of (9, 2)
Results for the case of l = 9 and d = 2 are shown in
Table 2. In this table, we display the time taken by each
algorithm for k = 20 (denoted as T20) in column 2. Note
that these algorithms, by default, work with 20 sequences.
The best times found using PMS4 (denoted as Tb) are
shown in column 3. The ratio T20/Tb (called the speedup)
is shown in column 4. It is clear from this table that each
of these algorithms benefits from PMS4. In particular,
RISOTTO benefits the most with a speedup of close to 2.
Figure 1 shows the performance of these algorithms for
various values of k starting from 5.

The case of (11, 3)
Results for the case of l = 11 and d = 3 are shown in
Table 3. For this case also RISOTTO benefits the most
with a speedup of more than 2. The speedup for
PMSprune has decreased and that for PMS1 has also
decreased but not by the same amount as PMSprune.
Figure 2 shows the performance of these three algo-
rithms for different values of k.

The case of (13, 4)
Table 4 summarizes the performance of PMS1,
PMSprune and RISOTTO. The speedup for RISOTTO
has increased. In general, the performance of RISOTTO
increases with an increasing value of l. The performance
of PMS1 also increases with an increasing value of l.
However, the performance of PMSprune seems to be
stable. Figure 3 displays the performance of all the three
algorithms.

The case of (15, 5)
In Table 5 and Figure 4, we show the results for PMS1
and PMSprune. RISOTTO takes too much time for
this case and hence we have not included it in this
comparison. As has been observed before, the speedup
of PMS1 increases with an increasing value of l and

Table 2 The best speedups of PMS4 for l = 9, d = 2

Algorithm Time for
k = 20
(T20) in
seconds

Best time using
PMS4

(Tb) in seconds

Speedup = T20
=Tb

PMS1 0.3234 0.2279 1.42

PMSprune 0.4436 0.2545 1.74

RISOTTO 3.647 1.9282 1.89

Figure 1 Performance of PMS1, PMSprune, and RISOTTO for l =
9, d = 2, and various values of k. The x-axis corresponds to the
values of k and the y-axis corresponds to the run times in seconds.

Table 3 The best speedups of PMS4 for l = 11, d = 3

Algorithm Time for k = 20
(T20) in seconds

Best time using PMS4
(Tb) in seconds

Speedup =
T20 =Tb

PMS1 5.9749 4.4469 1.34

PMSprune 2.7298 1.9218 1.42

RISOTTO 64.6362 27.8341 2.32

Figure 2 Performance of PMS1, PMSprune, and RISOTTO for l =
11, d = 3, and various values of k. The x-axis corresponds to the
values of k and the y-axis corresponds to the run times in seconds.

Table 4 The best speedups of PMS4 for l = 13, d = 4

Algorithm Time for k = 20
(T20) in seconds

Best time using PMS4
(Tb) in seconds

Speedup =
T20 =Tb

PMS1 83.7 49.2 1.70

PMSprune 44.6 31.6 1.41

RISOTTO 774.3 318.5 2.43

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 5 of 7

the speedup for PMSprune stays nearly the same (at
around 1.4).
Based on the experimental results, we suggest that the

best value of k should be chosen around 0.4n to have
maximum speedup.

Conclusion
In this paper we have presented a speedup technique
that can be used on any PMS algorithm. We have tested
our speedup technique on a number of algorithms.
These experimental results show that our speedup tech-
nique is indeed very effective.

Acknowledgements
This work has been supported in part by the following grants: NSF 0829916
and NIH 1R01LM010101-01A1.

Authors’ contributions
SR and HD designed and analyzed the algorithms. HD implemented the
algorithms and carried out the empirical experiments. SR and HD analyzed
the empirical results.
Both SR and HD read and approved this paper.

Competing interests
The authors declare that they have no competing interests.

Received: 21 December 2010 Accepted: 8 March 2011
Published: 8 March 2011

References
1. Rajasekaran S: Computational techniques for motif search. Frontiers in

Bioscience 2009, 14:5052-5065.
2. Bailey T, Elkan C: Fitting a mixture model by expectation maximization to

discover motifs in biopolymers. Proc. Second International Conference on
Intelligent Systems for Molecular Biology 1994, 28-36.

3. Buhler J, Tompa M: Finding motifs using random projections. Proc. Fifth
Annual International Conference on Computational Molecular Biology
(RECOMB) 2001.

4. Lawrence CE, B MS, L JS, N AF, Altschul SF, Wootton JC: Detecting subtle
sequence signals: a Gibbs sampling strategy for multiple alignment.
Science 1993, 262:208-214.

5. Pevzner P, Sze SH: Combinatorial approaches to finding subtle signals in
DNA sequences. Proc. Eighth International Conference on Intelligent Systems
for Molecular Biology 2000, 269-278.

6. Rocke E, Tompa M: An algorithm for finding novel gapped motifs in DNA
sequences. Proc. Second International Conference on Computational
Molecular Biology (RECOMB) 1998, 228-233.

7. Keich U, Pevzner P: Finding motifs in the twilight zone. Bioinformatics
2002, 18:1374-1381.

8. Price A, R S, Pevzner PA: Finding subtle motifs by branching from sample
strings. Bioinformatics 2003, 1:1-7.

9. Hertz G, Stormo G: Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences. Bioinformatics 1999,
15:563-577.

10. Blanchette M, S B, Tompa M: An exact algorithm to identify motifs in
orthologous sequences from multiple species. Proc. Eighth International
Conference on Intelligent Systems for Molecular Biology 2000, 37-45.

11. Eskin E, Pevzner P: Finding composite regulatory patterns in DNA
sequences. Bioinformatics 2002, S1:354-363.

12. Brazma A, V J, Jonassen I, Ukkonen E: Predicting gene regulatory elements
in silico on a genomic scale. Genome Research 1998, 15:1202-1215.

13. Galas DJ, E M, Waterman MS: Rigorous pattern-recognition methods for
DNA sequences: Analysis of promoter sequences from Escherichia coli.
Journal of Molecular Biology 1985, 186:117-128.

14. Sinha S, Tompa M: A statistical method for finding transcription factor
binding sites. Proc. Eighth International Conference on Intelligent Systems for
Molecular Biology 2000, 344-354.

15. Staden R: Methods for discovering novel motifs in nucleic acid
sequences. Computer Applications in the Biosciences 1989, 5(4):293-298.

16. Tompa M: An exact method for finding short motifs in sequences, with
application to the ribosome binding site problem. Proc. Seventh
International Conference on Intelligent Systems for Molecular Biology 1999,
262-271.

17. van Helden J, A B, Collado-Vides J: Extracting regulatory sites from the
upstream region of yeast genes by computational analysis of
oligonucleotide frequencies. Journal of Molecular Biology 1998,
281(5):827-842.

18. S Rajasekaran SB, Huang CH: Exact algorithms for planted motif challenge
problems. Journal of Computational Biology 2005, 12(8):1117-1128.

19. Chin F, Leung H: Algorithms for Discovering Long Motifs. Proceedings of
the Third Asia-Pacific Bioinformatics Conference (APBC2005), Singapore 2005,
261-271.

20. Pisanti N, M L, Carvalho AM, Sagot MF: RISOTTO: Fast extraction of motifs
with mismatches. Proceedings of the 7th Latin American Theoretical
Informatics Symposium 2006, 757-768.

21. Davila J, B S, Rajasekaran S: Fast and practical algorithms for planted (l, d)
motif search. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2007, 544-552.

Figure 3 Performance of PMS1, PMSprune, and RISOTTO for l =
13, d = 4, and various values of k. The x-axis corresponds to the
values of k and the y-axis corresponds to the run times in seconds.

Figure 4 Performance of PMS1 and PMSprune for l = 15, d = 5,
and various values of k. The x-axis corresponds to the values of k
and the y-axis corresponds to the run times in seconds.

Table 5 The best speedups of PMS4 for l = 15, d = 5

Algorithm Time for k = 20
(T20) in seconds

Best time using PMS4
(Tb) in seconds

Speedup = T
20 =Tb

PMS1 1906.7 990.7 1.92

PMSprune 619.2 460.1 1.35

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 6 of 7

http://www.ncbi.nlm.nih.gov/pubmed/19482604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8211139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8211139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3908689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3908689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2684350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2684350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241901?dopt=Abstract

22. Horowitz E, S S, Rajasekaran S: Computer Algorithms W. H. Freeman Press;
1998.

23. Sagot M: Spelling approximate repeated or common motifs using a
suffix tree. Springer-Verlag LNCS 1380 1998, 111-127.

24. Rajasekaran S: Motif Search Algorithms in Handbook of Computational
Molecular Biology CRC Press; 2006.

doi:10.1186/1756-0500-4-54
Cite this article as: Rajasekaran and Dinh: A speedup technique for (l, d)-
motif finding algorithms. BMC Research Notes 2011 4:54.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Rajasekaran and Dinh BMC Research Notes 2011, 4:54
http://www.biomedcentral.com/1756-0500/4/54

Page 7 of 7

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	A Summary of Known Algorithms
	PMS0 and PMS1
	Voting
	RISOTTO
	PMSprune

	Our Speedup Technique
	Summary
	A probabilistic analysis

	Results and Discussion
	The case of (9, 2)
	The case of (11, 3)
	The case of (13, 4)
	The case of (15, 5)

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

