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Abstract

screening programmes.

agents.

Background: Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than
two billion people around the globe and is one of the major causes of morbidity and mortality in the developing
world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs
resulting in the emergence and spread of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains
throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead
identification methodologies. Target based screening of large compound libraries has been widely used as a fast
and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole
organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for
lead identification but they are limited by the time and cost involved in running the screens for large compound
libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for

Results: We utilized physicochemical properties of compounds to train four supervised classifiers (Naive Bayes,
Random Forest, J48 and SMO) on three publicly available bioassay screens of Mtb inhibitors and validated the
robustness of the predictive models using various statistical measures.

Conclusions: This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity
and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular

Background

Tuberculosis (TB) remains one of the largest killer infec-
tious disease infecting one-third of the world’s popula-
tion. The latest World Health Organization estimates
show that nearly 1.7 million people died of TB in 2009
[1]. Immunocompromised individuals, particularly those
infected with human immunodeficiency virus (HIV) and
those on immunosuppressant therapy are at greater risk
for infection with Mycobacterium tuberculosis. HIV and
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TB form a lethal combination, accelerating disease pro-
gression and causing severe morbidity and mortality [2].
In addition, emergence and spread of multidrug-resistant
(MDR) and extensively drug-resistant (XDR) strains have
become a major concern worldwide [3]. An estimated
150,000 deaths caused by MDR-TB occurred globally in
2008, with almost 50% of the cases originating from
China and India [4]. The discovery of new molecules
with anti-TB activity and with no cross-resistance to any
existing drugs has been the immediate need to control
this global epidemic.

A modern drug discovery program generally starts
with target selection and/or screening of small mole-
cules, followed by hit identification, hit-to-lead transi-
tion, lead optimization, and clinical candidate selection.
Hit identification, occurs at an early stage of the whole
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process and has profound influence on the success of
any drug discovery program. High throughput screening
has been one of the mainstays in the identification of
hits in a general drug discovery programme. High
throughput screening strategy suffers from its many lim-
itations - most importantly, the enormous cost and time
spent in running the screens [5]. Virtual screening, or
in-silico screening which is a computational analogue of
high throughput screening, has been employed as an
early stage, cost-effective strategy to prioritize molecules
from large compound libraries for experimental screen-
ing [6]. Virtual screening in addition to being cheaper
than its experimental counterpart could further benefit
from the advances in hardware and software develop-
ment, including faster processors, parallel computing
and smarter and faster algorithms.

Machine learning (ML) techniques and specifically
supervised learning methods have been recently adopted
for virtual screening to assign nominal/numerical classifi-
cations in terms of activities [7-12]. A major focus of ML
methods is to automatically learn to recognize complex
patterns which classify sets from input data and to make
intelligent decisions based on independent datasets [13].
Bioactivity data available from the many high throughput
screens provide useful means to train machine learning
classifiers as it contains binary i.e. active/inactive as well as
numerical (for example IC50) values for classification of
compounds. Previous studies have pointed to the usability
of bioassay data available in public domain to build effi-
cient classifiers [10]. The recent availability of a large
amount of data on biological activities of molecules, espe-
cially derived from high throughput screens now enables
us to create predictive computational models. Though ML
methods have proved to be a valuable tool in rapid virtual
screening of large molecular libraries, they have been sel-
domly applied in TB drug discovery programmes [14-17].
Our present study aims at developing a comprehensive
and systematic approach with the aid of ML techniques to
build binary classification models from high throughput
whole-cell screens of anti-tubercular agents. These predic-
tive models when applied to virtual screening of large
compound libraries can identify new active scaffolds that
can accelerate the Mtb drug discovery process.

Results and Discussion

All the three datasets from PubChem used in the present
study were confirmatory in nature. A large imbalance was
observed in the datasets with fewer numbers of actives
compared to the inactives. The files containing 179
descriptors generated with PowerMV were loaded into
Weka, after processing as described in the materials and
methods section (vide supra). The numbers of descriptors
finally used were 155,153 and 151 for AID1626, AID1949
and AID1332 respectively. Approximately 15% descriptors
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were removed from each dataset (Additional file 1). Since
not many descriptors were removed using the diversity fil-
ter, we assume the compounds present in active and inac-
tive datasets are quite diverse.

All the classification experiments were done on Weka
version 3.6. We started with an increased heap-size of 4
GB to handle out-of-memory exceptions for large datasets.
Initial experiments were run using standard classifiers
alone. For models, having a low FP rate with standard clas-
sifiers, cost sensitivity was introduced. Misclassification
cost was increased for false negatives so as to stay in the
upper limit of FP rate. All results reported are based on
independent test set used for re-evaluation on the trained
model. Misclassification cost used for FN for each AID set
is presented in Table 1. Lowest misclassification cost
setting was required for Naive Bayes which was also the
fastest building model.

Since a number of models were trained on each dataset
using different cost settings, best models of each dataset
in each classifier category were selected based on various
statistical measurements (Table 2) that were used to
assess the performance of the models. All models were
generated within controlled FP rate (i.e. 20%). The overall
effectiveness of a classifier can be judged by the accuracy
of the generated models. Almost all the models produced
had accuracy near 80%. In order to make out the classi-
fier’s ability to efficiently identify actual positive and
negative labels, a measure of Sensitivity (a.k.a. Recall-
rate) and Specificity for each dataset was used respec-
tively (Figure 1 and 2). An optimal prediction aims to
achieve 100% sensitivity and specificity. As can be
observed, the specificity of all the models was above 80%
and the sensitivity varied from 50-80% for RF, J48 and
SMO with NB being least sensitive. Random Forest
appeared to be the most sensitive classifier for every
dataset.

Owing to the presence of class imbalance problem in
our datasets, accuracy alone may not turn out to be the
real estimator of model robustness. So, another perfor-
mance measure called Balanced Classification Rate
(BCR) was calculated. BCR, also referred to as Balanced
Accuracy, equally weights the errors within each class. It
gives a more precise evaluation of the overall model
effectiveness. As can be observed from Table 2, the
balanced accuracy of all models is optimum with Ran-
dom Forest clearly outperforming others.

Table 1 Misclassification costs used for False Negative
(FN)

Pubchem Assay ID  Naive Bayes = Random Forest SMO  J48
AID1626 9.5 6270 65 300
AID1949 8 2250 42 200
AID1332 None* 15 4 "
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Table 2 Overall summary of the performance of the models
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Dataset Classifier* TP% FP% TN% FN% Accuracy ROC area BCR* mcc®
AID1626 CSCNB 444 193 80.7 556 80.32% 0.707 0.625 0.061
CSCRF 65.7 17.5 82,5 343 82.36% 0.823 0.741 0.122
CSCSMO 51.2 188 812 4838 80.88% 0.750 0.662 0.080
MetaCostJ48 593 19.6 80.4 40.7 80.24% 0.690 0.698 0.097
AID1949 CSCNB 46.9 194 80.6 53.1 80.04% 0.712 0.637 0.080
CSCRF 69.2 185 81.5 30.8 81.25% 0.825 0.753 0.162
CSCSMO 54.1 199 80.1 459 79.63% 0.744 0671 0.107
MetaCostJ48 61.6 185 815 384 81.17% 0718 0.715 0.138
AID1332 NB 394 195 80.5 60.6 74.31% 0.686 0.599 0.171
CSCRF 81.8 17.3 82.7 182 82.57% 0.876 0.822 0.521
CSCSMO 72.7 16.2 83.8 27.3 82.11% 0.806 0.782 0469
MetaCostJ48 72.7 17.3 82.7 27.3 81.19% 0.762 0.777 0454

* CSC denotes CostSensitiveClassifier, # BCR - Balanced Classification Rate,
$ MCC - Matthews Correlation Coefficient

For our highly imbalanced datasets accuracy and BCR
turns out to be more reliable predictive measures as
Meta-learning has been employed during model building.
This increases our confidence in all the generated mod-
els. Best MCC values were obtained for Random Forest
models (Table 2). A ROC curve analysis (Figure 3) of
Random Forest models for all the three AIDs also
revealed of the classifier’s robustness and effectiveness.
All the RF models had a significant Area under the Curve
(AUC) of greater than 0.80. The ROC curves of other
classifier’s i.e. SMO, J48 and NB can be viewed in Addi-
tional file 2. The diagonal line (also referred to as line of

no-discrimination) divides the ROC space. A completely
random guess by the classifier would have resulted in
points lying along the diagonal. As can be observed from
the results, among all the four classifiers used Random
Forest provides overall best classification for every AID
followed by J48, SMO and NB. Thus we effectively pro-
pose Random Forest as the best classifier for currently
studied Mycobacterium tuberculosis bioassay datasets
that can be used to prioritize molecules for their selection
during screening.

High dimensional nature of modeling tasks may raise
the issue of over-fitting of the generated models and a
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number of measures are suggested to deal with this
[18,19] thus it is better to cross-validate the perfor-
mance of the models. Therefore, a cross-validation of
best models generated in each category was also carried
out by using other two AID sets as independent datasets
(Table 3). This time the entire datasets were used as a
test set. Satisfactory performance of all the models in
cross-validation increased our reliability in the generated
models. As expected all the models from every dataset
performed equally well on a given test set. The higher
accuracy of NB model of AID1332 as compared to RF,
SMO and J48 models cannot be regarded effective
enough as it was trained with standard classifier (i.e.
without misclassification cost) thus it does not reflect a
true measurement of performance of NB model. In our
datasets, AID1626 had the largest number of com-
pounds followed by AID1949 and AID1332. From the
cross-validation results, we also deduce that training
models on larger dataset result in more consistent pre-
dictions. As can be observed, cross-validation accuracy
of AID1626 is more consistent than the other two
datasets.

Conclusions

We have employed a systematic and comprehensive
approach to build supervised classification based predictive
models for anti-tubercular agents from publicly available
bioassay datasets for in-vitro screens for Mtb inhibitors. In
contrast with the conventional target-based screening
approaches, these models are target-agnostic as they are
based on whole-cell screening experiments. We have gen-
erated classification models for anti-tubercular agents with
four commonly used state-of-the-art classifiers i.e. Naive
Bayes, Random Forest, J48 and SMO. Owing to the large
class imbalance in datasets, introducing cost-sensitive
meta-learning led to enhanced sensitivity, specificity and
accuracy in the generated models. Though all the models
produced had accuracy above 80%, the balanced accuracy
(BCR) and AUC revealed a more precise and true picture
of performance of the individual classifiers. An extensive
analysis of binary classification statistical parameters
showed that overall best classification for all three Mtb
datasets was provided by Random Forest. Further, the
cross-validation of best models against each of the other
dataset also revealed a high predictive accuracy in the
same range, substantiating the robustness of the model.
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These predictive models can now aid in the virtual screen-
ing of large molecular libraries to mine novel chemical
scaffolds and thereby trigger an accelerated drug discovery
for Mtb.

Methods

Data Source

Datasets for three confirmatory bioassay screens based
on microplate Alamar blue assay for identifying inhibi-
tors of Mycobacterium tuberculosis in 7H12 broth were
available at PubChem database of National Center for
Biotechnology Information (NCBI) [20]. These corre-
spond to assay identifiers: AID1626, AID1949 and
AID1332 [21,22]. All the three assays were conducted
through the Tuberculosis Antimicrobial Acquisition and
Coordinating Facility (TAACF) [23]. The total number of
compounds tested in each assay along with the number
of compounds identified as actives, inactives and incon-
clusive are enlisted in Additional file 3. Compounds that
showed > 30% inhibition for at least one concentration in
the anti-microbial activity dose response were defined as
“Active”. If the inhibition at all doses was < 30% in the
Mtb assay, the compound was defined as “Inactive”.
Compounds with a percent inhibition > 80% but were
not selected for follow up dose response were labeled
“Inconclusive.” Inconclusive compounds were not
included in the training dataset to avoid uncertainty in
predictive ability of the models. All the three confirma-
tory screens of inhibitors of Mycobacterium tuberculosis
were downloaded in SDF formats. Their corresponding
bioactivity data was also obtained from PubChem as a
comma separated file. Figure 4 depicts the general flow
of the strategy employed for data processing, analysis,
model building and validation.

Descriptor generation and dataset preparation

2D Molecular descriptors for all compounds were gener-
ated in the molecular visualization software PowerMV
[24]. Owing to the large number of molecules in datasets
AID1626 and AID1949 these files were split to smaller
files using a Perl script SplitSDFiles available from Maya-
ChemTools [25], prior to loading in PowerMV. Bioactivity
values were appended to the data as class attribute (label:
Outcome). A total of 179 descriptors were generated for
each of the dataset. Details of various descriptors are pro-
vided in Additional file 4 and a comparative account of

Table 3 Cross-validation of models on the three blinded data sets

Test set Model-set_AID1626 accuracy % Model-set_AID1949 accuracy % Model-set_AID1332 accuracy %
NB RF SMO J48 NB SMO J48 NB RF SMO J48
AID1626 - - - - 827 82.7 833 80.0 781 66.3 66.1 618
AID1949 764 76.5 7 77.0 - - - 78.0 60.7 559 613
AID1332 755 799 745 74.6 73.0 78.0 74.2 66.7 - - - -
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contribution of each descriptor to molecular properties of
all compounds is summarized in Additional file 5. The bit-
string fingerprint attributes having no variation i.e. the
ones containing only 0’s or 1’s throughout the dataset
were filtered out in order to reduce the dimensionality of
the dataset. The datasets were ordered by class and a
bespoke Perl script was used to randomly split them into
two parts: 80% of the data was used as the training-cum-
validation set and 20% of data as an independent test set.
In Cross-validation, a number of folds n is specified. The
dataset is randomly reordered and then split into n folds
of equal size. In each iteration, one fold is used for testing

and the other n-1 folds are used for training the classifier.
The test results are collected and averaged over all folds.
This gives the cross-validated estimate of the accuracy.
Accounting for the computational complexity, a 5-fold
cross-validation was performed on larger dataset and a 10-
fold on smaller dataset.

Machine Learning

We used the Weka data mining toolkit (version 3.6) for
analysis of the data and classification experiments [26].
Weka incorporates comprehensive collection of machine
learning algorithms for data mining tasks. It also
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incorporates tools for data pre-processing, classification,
regression, clustering, association and visualization. The
toolkit is also well-suited for developing new machine
learning schemes.

Classification Algorithms

Classification refers to an algorithmic procedure that
attempts to assign each input value, a given set of
classes. The classification process requires building a
classifier (model) which is a mathematical function that
assigns class (ex. active/inactive) labels to instances
defined by a set of attributes (ex. descriptors). In the
present study, we compared four state-of-the-art classi-
fiers namely Naive Bayes, Random Forest, SMO and J48.
The salient features of each of the classifiers are
described below-

Naive Bayes (NB) is based on Bayes rule [27]. The
Naive Bayes classifier learns from training dataset, the
conditional probability of each attribute given the class
label. This approach assumes that all descriptors are sta-
tistically independent (i.e. presence of one has no effect
on the other) and therefore considers each of them indi-
vidually. Bayes” theorem finds the probability of an event
occurring given the probability of another event that has
already occurred. The probability of a molecule to be in
one or the other class is considered to be proportional
to the ratio of members in each of the class that share
the descriptor value. The overall probability of activity is
computed by the product of the individual probabilities.

Random Forests (RF) are an ensemble of trees [28]. In
order to grow these ensembles, random vectors are gen-
erated from the training set where a different set of
descriptors is used to build each tree. Random vectors
are drawn by randomly selecting a subset of features to
grow each tree. After a large number of trees are grown,
the vote for the most popular class is performed.

Sequential Minimal Optimization (SMO) is an imple-
mentation of Support Vector Machines (SVM) [29]. A
SVM is a hyperplane that separates members of one
class from members of another class (actives and inac-
tives in this case) with maximum margin. Unlike SVM
which requires solving a large quadratic programming
(QP) optimization problem, SMO breaks this problem
into smallest possible QP problems and solves them
analytically. SMO is less costly in terms of the computa-
tion time and at the same time has the ability to handle
large datasets compared to SVM, which makes it easy to
implement it on very large datasets.

J48 is an implementation of C4.5 decision tree learner
[30]. A decision tree model is constructed from root to
leaves in a top-down fashion by choosing the most
appropriate attribute at each node i.e. a decision node.
A leaf indicates a class.
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Training Classifiers

Majority of the bioassay datasets are imbalanced where
one class is represented by a large number of molecules
while the other is not [31] which is observed in the present
datasets also (Additional file 3). This class imbalance pro-
blem cannot be dealt successfully with standard data
mining methods as most original classifiers assume equal
weighting of the classes and that all misclassification errors
cost equally. However, this assumption is not true in real
world applications [32]. Cost-sensitive learning is often
used to deal with datasets with very imbalanced class dis-
tribution. Introducing misclassification cost for standard
classifiers makes them cost sensitive and provide them
with the ability to predict a class that leads to the lowest
expected cost [33]. Setting of the misclassification cost is
almost always arbitrary as no general rule exists for it. It
has previously been shown that misclassification cost
depends more on the base classifier used rather than min-
ority class ratio or number of attributes [10].

There are two ways to introduce misclassification cost in
classifiers: one to design cost sensitive algorithms directly
and the other is to use a wrapper that converts existing
base classifiers into cost-sensitive ones. The later is called
meta-learning [32]. In Weka Meta-learners are used to
make the base classifiers cost sensitive. MetaCost [34] first
uses bagging on decision trees to obtain reliable probabil-
ity estimations of training examples, relabels the classes of
training examples and then uses the relabeled training
instances to build a cost-insensitive classifier. CostSensiti-
veClassifier [35], use a cost-insensitive algorithm to obtain
the probability estimations of each test instance and then
predicts the class label of the test examples.

For our datasets that are using a two class schema (i.e.
active/inactive) cost sensitivity is introduced by using a 2 x
2 (for binary classification) cost matrix. The four sections
of a cost matrix can be read as: True Positives (TP) -
actives classified as actives; False Positives (FP) - inactives
classified as actives; True Negatives (TN) - inactives classi-
fied as inactives; False Negatives (FN) - actives classified as
inactives. One of the key point considered during develop-
ment of the classifiers is that % of false negatives is more
important than % of false positives for compound selec-
tion. To attain this, one could minimize the number of
false negatives at the expense of increasing the false posi-
tive. Increasing misclassification for false negatives would
lead to increase in both false positives and true positives.
The % of false positives can easily be kept under check by
setting an upper limit on FP rate. In this case the limit of
FP rate was set to a maximum of 20%. The misclassifica-
tion cost for false negatives could then be increased until
this limit is achieved. Cases where standard classifiers
were producing this result cost-sensitivity were not used
and only default classifiers were used.
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Default Weka options were used for building NB and
RF models whereas in J48 unpruned tree option and in
SMO buildlogisticmodels option was employed. For J48,
MetaCost is used as it works better for unpruned trees.
It treats the underlying classifier as a black box requir-
ing no knowledge of its functioning. With NB, RF and
SMO the standard CostSensitiveClassifier was used.

Model Performance Evaluators

Various statistical binary classification performance mea-
sures were used to evaluate the results. A True Positive
Rate (TPR) is the proportion of actual positives which are
predicted positives (TP/TP+FN). False Positive rate (FPR)
is ratio of predicted false actives to actual number of inac-
tives (i.e. FP/FP+TN). Accuracy indicates proximity of
measurement of results to the true value. It can be calcu-
lated as (TP+TN/TP+TN+FP+FN). Sensitivity (TP/TP
+FN) relates to the test’s ability to identify positive results
whereas Specificity (TN/TN+EP) relates to the test’s ability
to identify negative results. A test with high sensitivity and
specificity has a low error rate. A Balanced Classification
Rate (BCR) (0.5*(sensitivity+specificity)) defined as mean
of sensitivity and specificity gives a combined criteria of
measurement that gives a balanced accuracy for unba-
lanced datasets. In addition to BCR, Matthews correlation
coefficient (MCC) is also employed to judge performance
of unbalanced datasets. Its value ranges from -1 to +1. A
Receiver Operating Characteristic (ROC) curve is a graphi-
cal plot of TPR vs. FPR for a binary classification system.
ROC space is defined by FPR and TPR on X and Y axes
respectively. The Area under Curve (AUC) value reported
by a ROC is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a
randomly chosen negative one.

Additional material

Additional file 1: List of descriptors before and after data
processing. Microsoft DOC file containing a table on detailed list of
descriptors before and after data processing for all the three datasets

Additional file 2: ROC plot of SMO, J48 and NB. Microsoft DOC file
containing ROC graphs of SMO, J48 and NB

Additional file 3: Dataset details. Microsoft DOC file containing a table
on number of compounds in each dataset and their minority class ratios
used in present analysis.

Additional file 4: List of descriptors. Microsoft DOC file enlisting the
descriptive account of various descriptors calculated for each dataset
using PowerMV [22]

Additional file 5: Comparative account of molecular descriptors.
Contribution of each descriptor to molecular properties of all
compounds
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