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Abstract

Background: Circular Binary Segmentation (CBS) is a permutation-based algorithm for array Comparative Genomic
Hybridization (aCGH) data analysis. CBS accurately segments data by detecting change-points using a maximal-t
test; but extensive computational burden is involved for evaluating the significance of change-points using
permutations. A recent implementation utilizing a hybrid method and early stopping rules (hybrid CBS) to improve
the performance in speed was subsequently proposed. However, a time analysis revealed that a major portion of
computation time of the hybrid CBS was still spent on permutation. In addition, what the hybrid method provides
is an approximation of the significance upper bound or lower bound, not an approximation of the significance of
change-points itself.

Results: We developed a novel model-based algorithm, extreme-value based CBS (eCBS), which limits
permutations and provides robust results without loss of accuracy. Thousands of aCGH data under null hypothesis
were simulated in advance based on a variety of non-normal assumptions, and the corresponding maximal-t
distribution was modeled by the Generalized Extreme Value (GEV) distribution. The modeling results, which
associate characteristics of aCGH data to the GEV parameters, constitute lookup tables (eXtreme model). Using the
eXtreme model, the significance of change-points could be evaluated in a constant time complexity through a
table lookup process.

Conclusions: A novel algorithm, eCBS, was developed in this study. The current implementation of eCBS
consistently outperforms the hybrid CBS 4× to 20× in computation time without loss of accuracy. Source codes,
supplementary materials, supplementary figures, and supplementary tables can be found at http://ntumaps.cgm.
ntu.edu.tw/eCBSsupplementary.

Background
Copy number alterations (CNAs) are genomic disorders
that closely correlate with many human diseases [1]. For
instance, 17q23 was found to be a common region of
amplification associated with breast cancers with poor
prognosis [2], and copy number losses at 13q and gains
at 1q and 5p were frequently observed in a prostate can-
cer study [3]. While some CNAs are well studied, most
CNAs and their relation to genetic disorders remain lar-
gely unknown. Identifying regions of DNA copy number

gains or losses is thus a critical step for studying the
pathogenesis of cancer and many other diseases.
Array comparative genomic hybridization (aCGH) is a

high throughput and high-resolution technique for mea-
suring CNAs [4,5], and the main purpose of aCGH data
segmentation is to detect CNAs precisely and efficiently
by utilizing neighboring probes’ characteristics. Many
algorithms have been proposed for this purpose, such as
the Clustering Method Along Chromosomes (CLAC)
[6], Hidden Markov Model methods [7,8], and Bayesian
segmentation approaches [9,10]. Among these algo-
rithms, Circular Binary Segmentation (CBS) [11] has the
best operational characteristics in terms of its sensitivity
and false discovery rate (FDR) for change-point detec-
tion [12,13].
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CBS performs consistently [13] and has been widely
used by researchers [14,15], but the major weakness of
heavy computational cost prohibits CBS for high-density
aCGH microarrays with millions of probes. The original
CBS relies fully on a permutation-based maximal-t test
to detect change-points. Through a recursive cut and
test process, reliable results can be derived but require
extensive computational burden. Realizing the defi-
ciency, a hybrid version of CBS that mixes the permuta-
tions and a mathematical approximation was recently
proposed [16]. Along with additional early stopping
rules for approximating the significance of change-
points, the hybrid CBS can detect change-points in a
linear time and provides a substantial gain in speed.
However, further improvements in CBS are still

urgently needed. First, the computation time of the
hybrid CBS needs to be improved because of the grow-
ing density of commercial microarrays. A time con-
sumption investigation of the hybrid CBS revealed that
the majority of the computation time, about 94% of
total time, was spent on significance evaluation, with the
bulk of the time being consumed by permutations
(shown in Table 1). This finding indicates that limiting
permutations may be necessary. Without the improve-
ment, for example, it might take days to segment 500
samples generated by the most recently completed ovar-
ian cancer study by the Cancer Genome Atlas (TCGA)
research network [17]. Second, what the mathematical
approximation in the hybrid method provides is an
approximation of significance upper bound or lower
bound, not an approximation of the significance of
change-points itself. As indicated in [16], using an sig-
nificance upper bound to reject the null hypothesis may
result in fewer change-points.
In this study, we proposed a model-based version of

CBS, termed extreme-value based CBS (eCBS). Instead
of evaluating an significance upper bound or a lower

bound, eCBS approximates the significance of change-
points using a Generalized Extreme Value (GEV) distri-
bution model (eXtreme model). The eXtreme model
consists of a set of lookup tables built in advance
through simulation. Considering a variety of non-normal
aCGH data, we simulated thousands of data without
change-points using the Pearson system. The corre-
sponding maximal-t distribution was then modeled by
the GEV distribution, and the modeling results in the
form of the GEV parameters constituted the eXtreme
model. Using the eXtreme model, the significance of
change-points can be approximated through a table
lookup process in a constant time complexity. As a
result, permutations are limited and computation time
can be significantly reduced. The performance of seg-
mentation in speed and segmentation results using both
the hybrid CBS and eCBS were compared via simulation
and real data analysis.

Methods
Algorithm - Finding Change-Points
Similar to CBS, the newly proposed algorithm, eCBS,
detects change-points relying on a sequence of maxi-
mal-t tests. Before getting into the details of the maxi-
mal-t test, we first introduce the maximal-t statistic as
follows. Let r1,..., rN be log2 ratios of signal intensities
indexed by N ordered genomic markers. Let Si = r1 + ...
+ ri, 1 ≤ i ≤ N, be the partial sums, and let

Sij = Sj − Si =
∑j

l=i+1 rl . Statistics Tij are given by [11]

Tij =
(
Sij
k

− SN − Sij
N − k

)
/

(
s

√
1
k
+

1
N − k

)
, (1)

where 1 ≤ i < j ≤ N, s refers to the standard deviation
of r1,..., rN, and k = j - i. Among all values of Tij derived
from all possible permutes of i and j under

Table 1 The percentage of time consumed on each step of segmentation using the hybrid CBS

Consumed Time

Array Candidate Location (%) Significance Evaluation (%) Edge Effect Correction (%)

Array #10 1.21 88.24 10.56

Array #19 2.32 91.53 6.14

Array #22 1.63 96.21 2.16

Array #28 1.01 95.95 3.05

Array #42 0.87 97.54 1.59

Array #45 0.99 96.43 2.58

Array #48 1.48 98.48 0.04

Array #65 1.11 97.63 1.26

Array #72 1.89 83.92 14.19

Array #78 2.01 91.51 6.48

Ten breast cancer aCGH data were segmented using the hybrid CBS. The time consumed on each of the three steps involved in segmentation, namely,
candidate location, significance evaluation, and edge effect correction, was analyzed and listed. Here, significance evaluation was done by a hybrid method and
early stopping rules.
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consideration, the maximal statistic, Tmax, is referred to
as the maximal-t statistic, and the corresponding loca-
tions, ic and jc, are termed candidate change-points,
which are given by(

ic, jc
)
= arg max

1≤i<j≤N
|Tij|, 1 ≤ ic < jc ≤ N.

Based on the maximal-t statistic, a maximal-t test with
two hypotheses (H0: there is no change-point, H1: there
are change-points locating at ic and jc) is formulated.
We reject the null hypothesis H0 and declare locations
ic and jc as change-points if Tmax exceeds a significance
threshold.
For a chromosome under consideration, similar to

CBS, eCBS detects the regions with equal DNA copy
numbers by recursively invoking a change-point func-
tion, named “finding change-points“, in which two ends
of a sequential data are first connected and then ternary
splits are determined using the maximal-t test. The
function of finding change-points contains three steps:
1) apply maximal-t statistic to locate candidate change-
points ic and jc; 2) determine whether the candidate
change-points are significant or not; and 3) if significant
change-points occur, a t-test is applied to remove errors
near the edges. We refer to these three steps as candi-
date location, significance evaluation, and edge effect
correction.
The implementation of the process for finding change-

points in eCBS is basically the same as CBS except the
method for significance evaluation. More precisely, in
the original CBS, maximal-t distribution (distribution of
the maximal-t statistics under null hypothesis) and the
significance of change-points are evaluated using permu-
tations; in the hybrid CBS, the significance of change-
points is approximated using a mixed procedure, consti-
tuted of permutations, a mathematical approximation,
and early stopping rules. In this study, eCBS approxi-
mates the significance of change-points using the
eXtreme model through a table lookup process. Indexed
by the measures of skewness and kurtosis estimated
from the array and the number of probes in the sequen-
tial data under consideration, the eXtreme model pro-
vides an approximation of maximal-t distribution in the
form of GEV parameters. We will introduce the GEV
distribution and the GEV parameters later in the next
subsection. We herein demonstrate the implementation
of the function - finding change-points - in eCBS as
Algorithm 1. Please note that the input variables, gev-
Params, represent the approximated maximal-t distribu-
tion provided by the eXtreme model. Additionally,
gevcdf(Tmax, gevParams) is a function returning the
cumulative distribution function of GEV distribution

with parameters gevParams at the value Tmax. See Fig-
ure 1 for the overall concept.
Algorithm 1 - finding change-points
change points = finding change-points (data,

gevParams)
Input: data: aCGH data to be segmented, 1 × N vec-

tor

gevParams: GEV parameters, g, s, μ.

Output: change-points: a list of change-points
Step:
1. Compute statistics, Tij, for all possible locations i

and j by Eq.(1);
2. Find candidate change-points ic and jc with maximal

statistic, Tmax;
3. Evaluate the significance of change-points, p-value,

using

p-value = 1-gevcdf(Tmax, gevParams);

4. Edge effect correction;
5. If change-points are detected, list change-points

into change-points; also, cut and define new
subsegments.

The Table Lookup Process
Accurate approximations of maximal-t distribution
using the eXtreme model depend on robust estimators
of skewness and kurtosis; incorrect estimates of skew-
ness and kurtosis from aCGH data render the table
lookup process incapable of finding correct values. Since
the estimation of skewness and kurtosis could be biased
due to extremely large values [18], a pre-segmentation
process - scanning obvious change-points quickly before
segmentation - is selected (see Additional File 1: Supple-
mentary Materials). The pre-segmentation process (see
Algorithm 2) is quite similar to formal segmentation,
but with lower resolution and no edge effect correction.
After subtracting the changes of mean values from copy
number amplifications or deletions, skewness and kurto-
sis can be estimated without bias due to CNAs. Since
no permutations are involved, the pre-segmentation pro-
cess is done in a short time.
Algorithm 2 - parameter estimation
[sk, ku] = parameter_estimation(data)
Input: data: aCGH data to be segmented, 1 × N

vector
Output: sk, ku: estimates of skewness and kurtosis.
Step:
1. Execute pre-segmentation process without edge

effect correction;
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2. Discard small segments;
3. Subtract all segments’ mean values;
4. Derive measures of skewness and kurtosis after

removing segments’ mean values.
The table lookup process for deriving approximations

of maximal-t distribution can be done by sending three
indexes, namely, estimates of skewness and kurtosis and
the number of probes under consideration, to the
eXtreme model. If these indexes do not fall exactly on
the table grid, linear interpolation is applied to accom-
plish the approximation. We apply linear interpolation
because the GEV parameters change smoothly with
increasing or decreasing values of skewness, kurtosis,
and number of probes (shown later). Through the table
lookup process, the eXtreme model can provide accu-
rate approximations of maximal-t distribution when the
number of probes in the sequential data under

consideration is not too small (described later). We
empirically set the default minimum as 100 probes;
when number of probes is less than the minimum, the
mixed procedure applied in the hybrid CBS kicks in.
Additional improvement in computation time may be
achieved using a smaller minimum at the expense of
accuracy.

Simulating aCGH Data Using the Pearson System
The basic idea to create the eXtreme model, which
associates characteristics of aCGH data with maximal-t
distribution, was to simulate a large number of aCGH
data and then model the distribution of maximal-t sta-
tistics under null hypothesis using the GEV distribution.
While a fundamental assumption of aCGH data is Gaus-
sian normality, practical microarray data can be non-
normally distributed [19]. Additionally, as we observed
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Figure 1 The block diagram of eCBS. The block diagram demonstrates how eCBS works. The parameter N refers to the number of probes in
the sequential data under consideration; the parameters sk and ku refer to the estimates of skewness and kurtosis, respectively, from the aCGH
data.
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in Figure 2, maximal-t distribution is quite sensitive to
outliers and heavy tails of aCGH data.
Thus, in order to provide accurate modeling results

for most aCGH data, we need to consider non-normal
properties, namely, the skewness and kurtosis, when
generating synthetic datasets.
The Pearson system [20] provides a way to construct

probability distributions in which skewness and kurtosis
can be adjusted. Without knowing the probability distri-
butions from which aCGH data arose, we hypothesized
that, by providing up to 4th moments (mean, variance,
skewness and kurtosis), the Pearson system is sufficient
to simulate a wide range of aCGH data under null

condition (no change-points). This hypothesis was
clearly hold under our simulated condition by the Kol-
mogorov-Smirnov Test (KS-test) (see Additional File 1:
Supplementary Materials for details of the testing
results). Including a set of probability density functions
(PDFs), the Pearson system is the solution to the differ-
ential equation,

p′ (x)
p (x)

=
x − a

b2x2 + b1x + b0
, (2)

where p (x) is a density function and a, b0, b1, and b2
are parameters of the distribution. Correspondences
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Figure 2 Tail effect on maximal-t distribution. (a) The kernel smoothing density of the maximal-t statistics derived from 10,000 datasets
drawn from the Pearson system (Eq.(2)) with skewness = 0 and various kurtosis. Each dataset contained 250 random numbers. (b) The
smoothed probability density functions (PDFs) of the Pearson system with skewness = 0 and various kurtosis. The bottom of Figure 2b illustrates
the heaviness of right tails for various kurtosis.
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between the distribution parameters and the central
moments (θ1, θ2, θ3, θ4) [21] are denoted as

b0 = − (
θ2

(
4β2 − 3β2

1

))
/A,

b1 = −
(√

θ2β1 (β2 + 3)
)
/A,

b2 = − (
2β2 − 3β2

1 − 6
)
/A,

where β1 = θ3/
√

θ3
2 denotes the skewness, and

β2 = θ4/θ2
2 denotes the kurtosis, and

A = 10β2 − 12β2
1 − 18.

A MATLAB function,pearsrnd(), was applied to gener-
ate data with different parameters. Again, since these
data were generated under null hypothesis, they contain
no change-points. Therefore, the maximal-t statistics
generated from these data satisfy the null hypothesis. To
be specific, we generated tables of data for,

1. The number of probes, N, which varies from 10 to
10,000 with intervals of 10, 100, and 1000 for the
number of probes within 100, 1000 and 10000,
respectively;
2. Skewness, sk, selected from -1 to 1 with an inter-
val of 0.1; and
3. Kurtosis, ku, selected from 2.6 to 5.6 with an
interval of 0.2.

Please note that skewness is 0, and kurtosis is 3 for a
normal distribution. The ranges and intervals of the
simulation parameters were carefully chosen based on
typical estimates of skewness and kurtosis from real
aCGH data (see Additional File 1: Supplementary Figure.
One can always refine the table resolution when
improved computation resources are accessible. Note
that the mean and standard deviation of the simulated
data were irrelevant to GEV modeling due to the nor-
malization process in Eq.(1), we thus set the mean and
standard deviation for simulating aCGH data to be 0
and 1, respectively.

Modeling Maximal-t Distribution Using the GEV
Distribution
After simulating aCGH datasets and the subsequent
maximal-t statistics, we modeled maximal-t distribution
by the GEV distribution with parameters (described
later), g, s, and μ, using a maximal likelihood method
[22]. Please note that the GEV parameters were derived
from the maximal-t statistics, not directly from the
simulated datasets. The modeling process was done
using a MATLAB function (statistical toolbox), gevfit(),
a maximum likelihood estimator of the GEV parameters.
As a result, tables of modeling information (one table

for each GEV parameter), indexed by skewness, kurtosis
and the number of probes, were generated and saved in
the eXtreme model on which eCBS was based.
We briefly go through the GEV distribution and the

GEV parameters as follows. For a sequential indepen-
dent and identically distributed (i.i.d.) random variables,
t1,..., tn, the Fisher-Tippet theorem states that after
proper normalization, the maximum of these random
variables, tmax = max (t1,..., tn), converges in distribution
to one of three possible distributions: the Gumbel distri-
bution, the Fréchet distribution, or the Weibull distribu-
tion. The three distributions listed above are unified
under the Generalized Extreme Value (GEV) distribu-
tion [23,24]. The density function of the GEV distribu-
tion with parameters (μ, s, g) is given by

f (tmax) =

⎧⎨
⎩ σ−1w

− 1
γ

−1
e−w

− 1
γ
, w > 0, for γ �= 0

σ−1e−ze−e−z
,∀t, for γ = 0

,

where w = (1 + gz), z = (tmax - μ)/s, g is the shape
parameter, s is the scale parameter (s >0), and μ is the
location parameter.
In our setting, the statistics Tij derived from the quoti-

ent in Eq.(1), instead of being a sequential i.i.d. random
variables, form a random field spatially correlated in the
i - j plane. However, it is not difficult to show that the
covariance between any two random variables in the i -
j plane, defined by Tij, is small when the distance
between them or the number of probes, N, is large.
Furthermore, as shown in [25,26], under certain condi-
tions (independence when sufficient apart and non-clus-
tering), Extreme Value Theory (EVT) can be established
for a dependent process by constructing an independent
process with the same distribution function. The rigor-
ous mathematical derivation of the distribution of Tmax

(the maximum among all Tij) could be considerably dif-
ficult due to the complex dependency and beyond the
scope of this paper, we thus simply assume that the dis-
tribution of Tmax (i.e., maximal-t distribution) can be
modeled by the GEV distribution when N is properly
large, taking on different sets of parameters than that of
GEV distribution for i.i.d. random variables.

Simulation for Performance Validation
We validated the performance of eCBS via simulation.
Two simulation models, similar to previous models used
by Olshen et al. (2004) [11], were applied to eCBS. The
first model contains 150 probes (N = 150) and four
change-points located at 50, 70, 80 and 100. Log2 ratios
within each segment were randomly generated by nor-
mal distribution or X ~ N(mi, v

2), where v is the stan-
dard deviation and mi is the mean value of the i-th
segment, which was set to be 0, cv, -cv, cv, and 0,
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respectively. Parameter c controlled the alteration ampli-
tudes, and cases with c = 2, 3, and 4 were tested. The
second model contains 1,500 probes (N = 1,500) and
one change-point near the edges or two change-points
in the center of the chromosomes. Data were generated
exactly the same as in the first model, but the change-
point locations and amplitudes were controlled by mi =
cvI, where I is an indicator function, which equals 1 for
segments between l < × <(l + k) and 0 otherwise. Para-
meter k refers to the width of the variation, and l refers
to the location of the variation.
ROC curves were further used to evaluate the power

of detecting change-points in the simulated data drawn
from the Pearson System. A segment of copy number
variations, 15 probes in width (k = 15), was embedded
near the edges (l = 0) of every chromosome with 1,500
probes (N = 1,500). Successful detection of change-
points from these data was defined as sensitivity. Cases
without copy number variations were also tested for
deriving specificity. Different settings of variation ampli-
tudes, skewness, and kurtosis were tested, and the per-
formance of the hybrid CBS and eCBS were compared
using ROC curves.

Real aCGH Data
Two real aCGH datasets were employed to test the
hybrid CBS and eCBS on computation time and seg-
mentation accuracy. Ten unpublished breast cancer
aCGH arrays using the Agilent Human Genome CGH
105A platform with 105,072 probes, were analyzed.
Probes with unknown positions or small signal-to-noise
ratios (SNR <1) were filtered out, and more than 93,000
probes in each array were left for data segmentation.
Another aCGH dataset from GSE9177 (NCBI/GEO, 11
aCGH profiles of human glioblastoma GBM using the
Agilent 244A human CGH arrays) were also down-
loaded and processed for segmentation and performance
comparison.

Results
Computation Time of the Hybrid CBS
In the breast cancer study with ten aCGH experiments,
the percentage of time consumed by each critical step:
candidate location, significance evaluation, and edge
effect correction, are listed in Table 1. The results reveal
that significance evaluation took at least 83% (93.7% on
average) of the total time required to complete the seg-
mentation process.

The GEV Distribution Models Maximal-t Distribution
Adequately
To demonstrate whether the GEV distribution can
model maximal-t distribution well, we generated 10,000
random datasets under different distributions controlled

by skewness and kurtosis. The generated maximal-t dis-
tribution was then fitted by maximum likelihood
method with the GEV distribution. Figure 3 shows
examples of maximal-t distribution and the fitted GEV
distribution under three different conditions: (1) nor-
mally distributed random data with 250 probes; (2)
slightly skewed and heavy-tailed data with 400 probes;
and (3) severely skewed and heavy-tailed data with 550
probes. The solid lines refer to the modeling GEV distri-
bution while the dashed lines refer to the maximal-t dis-
tribution. The results clearly demonstrate that the GEV
distribution can adequately model maximal-t
distribution.

The eXtreme Model Content Changes Smoothly
For a specific number of probes N, the eXtreme model
provides three 2-dimensional tables, indexed by skew-
ness and kurtosis, for the GEV parameters, g, s, and μ,
respectively. Figure 4 shows an example of the tables in
the eXtreme model with N = 200. With two parameters,
namely, the skewnesss and kurtosis (estimated from
aCGH data), an approximation of maximal-t distribution
in the form of the GEV parameters, g, s, and μ, can be
quickly derived through the table lookup process. Addi-
tionally, as shown in the figure, since the eXtreme
model content changes smoothly, linear interpretation
can be properly applied to provide an approximation
when the query parameters (N, sk, ku) do not fall on the
grid.

eCBS Performs Equivalently Comparing to the Hybrid CBS
The performance of the eCBS algorithm was tested
according to the simulation models described early.
Using the second simulation model, it is revealed that
eCBS has a negligible effect on change-points detection
from data with normal noise. In Additional File 1: Sup-
plementary Table, the “Exact” column accounts for the
cases (among 1,000 simulations) that the segmentation
results exactly match the desired number (1 for edge
and 2 for center) and locations of change-points. As
shown in the table, eCBS performed as good as the
hybrid CBS wherever change-points were located. In
addition, eCBS outperformed when the aberration width
was small (k = 2).

eCBS Performs Adequately under Severely Skewed/Heavy-
Tailed Conditions
The detection of genomic aberrations from data with
skewed and heavy-tailed noises were further evaluated
via simulation. ROC curves, obtained from an average of
10,000 simulations, were used to assess the effectiveness
of both the hybrid CBS and eCBS. Three different con-
ditions were studied in the performance comparison:
normal distribution, mildly skewed/heavy-tailed
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probes N = 200. (b) The GEV parameter s spanned by the skewness and kurtosis when N = 200. (c) The GEV parameter μ spanned by the
skewness and kurtosis when N = 200.
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distribution, and severely skewed/heavy-tailed distribu-
tion. The simulation results shown in Figure 5 reveal
that the difference between the hybrid CBS and eCBS is
minimal.

eCBS Performs 4× to 20× Faster than the Hybrid CBS
To study the performance of eCBS in terms of the
speed, ten breast cancer aCGH arrays were analyzed by
both the hybrid CBS and eCBS, and the total time con-
sumed on segmentation was compared and listed in
Table 2. The time consumed on the pre-segmentation
was taken into consideration when eCBS was applied.
As shown in the table, it took eCBS much less computa-
tion time for segmenting: only about 10 seconds were
required to analyze a dataset with eCBS, while on aver-
age, 68.68 seconds were needed for the hybrid CBS. The
performance of eCBS in speed can be 4-fold faster, or
even better. Taking arrays #28 and #45 for example,
eCBS performed 20-fold faster than the hybrid CBS.
The segmentation results for eCBS were slightly differ-

ent from those of the hybrid CBS. In samples #10, #19
and #72, eCBS detected more change-points than the
hybrid CBS, while in the other experiments, eCBS

detected fewer change-points. However, the segmenta-
tion results were mostly the same. The eCBS algorithm
was also applied to a GSE9177 dataset of GBM samples.
As shown in Table 3, eCBS performed four times faster
than the hybrid CBS.

Discussion
Circular Binary Segmentation (CBS) performs consis-
tently in detecting change-points and thus provides us a
good framework for further improvements. The frame-
work of CBS is mainly constituted of three steps: candi-
date location, significance evaluation, and edge effect
correction. The first step, candidate location, locates
candidate change-points by a maximal-t statistic. The
second step, significance evaluation, approximates the
significance of change-points by permutations or a
hybrid method; the last step, edge effect correction,
removes errors near the edges due to a circling process.
Of these steps, significance evaluation was the major
component that made the algorithm time-consuming. A
time consumption study (shown in Table 1) on the
hybrid CBS that involved analyzing ten breast cancer
microarrays supported the above statement: among the
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Figure 5 The comparison of ROC curves between the hybrid CBS and eCBS. The ROC curves obtained from the segmentation results of
10,000 simulated datasets. Each dataset contained 1,500 probes. Case 1 refers to the performance of analyzing normally distributed data with sk
= 0, ku = 3. Case 2 refers to the performance of analyzing mildly skewed and heavy-tailed data with sk = 0.2, ku = 3.5. Case 3 refers to the
performance of analyzing severely skewed and heavy-tailed data with sk = 0.5, ku = 4.0. (a) The performance of segmentation using the hybrid
CBS and eCBS with large signal-to-noise ratios (SNR) (c = 2), and (b) with small SNR (c = 1.5).
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ten experiments, up to 98% of time consumed was attri-
butable to significance evaluation, in which permuta-
tions took the majority of the time for evaluating p-
values, even when early stopping rules were applied. To
improve the performance of the hybrid CBS in speed,

we significantly reduce computation time using the
eXtreme model.
The eXtreme model contains lookup tables which

associates characteristics of aCGH data with the para-
meters of GEV distribution. The simulation, which
applied the Pearson system to generate synthetic aCGH
data, was done in advance rather than invoked on
demand, such as the permutations for the hybrid CBS.
Since maximal-t distribution is sensitive to heavy tails
and outliers (shown in Figure 2), non-normal aCGH
data distribution was considered for the simulation.
Thousands of non-normal aCGH data under null
hypothesis (without change-points) were simulated. The
corresponding maximal-t distribution was then modeled
by the GEV distribution, and the modeling results in the
form of the GEV parameters, g, s, and μ , were saved in
the eXtreme model (lookup tables).
Using the eXtreme model, maximal-t distribution can

be approximated given the estimates of skewness (sk)
and kurtosis (ku) from the aCGH data and the number
of probes (N) under consideration. If the input para-
meters (sk, ku, N) fall right on the table grid, the output
GEV parameters (g, s, μ) are directly derived through a
table lookup process. Otherwise, since the table content
changes smoothly (shown in Figure 4), linear interpola-
tion from eight closest points in the 3-dimensional
tables was applied. Through the table lookup process,
maximal-t distribution and the subsequent approxima-
tion of the significance of change-points can be evalu-
ated in O(1).
Deriving robust estimates of skewness and kurtosis

from aCGH data is a critical step before using the
eXtreme model, since estimating bias and variations
may lead to incorrect approximations of maximal-t dis-
tribution and increase false positive or negative. In addi-
tion to the noise from microarray experiments, CNAs
greatly increase the difficulties in estimating these para-
meters. Recognized what we needed here were estimates
of skewness and kurtosis under null condition (the con-
dition rarely exists because there are always CNAs
within tumor samples), we selected a pre-segmentation
step (see Additional File 1: Supplementary Materials) to
rapidly pre-cut large regions of amplification or deletion.
After removing the mean values of gain and loss seg-
ments, skewness and kurtosis can be accurately
estimated.
Based on the eXtreme model, a novel algorithm,

eCBS, has been developed. First, eCBS pre-segments
data and estimates the skewness and kurtosis from the
aCGH data. These estimates will be utilized later by the
eXtreme model to provide approximations of maximal-t
distribution. Once the estimates are provided, eCBS
detects the maximal statistic, Tmax, and locates candi-
date change-points in a similar way operated by CBS.

Table 2 Comparison of performance in speed using the
hybrid CBS and eCBS - 1

Time(sec.) # of change-
points

Array eCBS hybrid
CBS

eCBS hybrid
CBS

# of same
detection

Array
#10

11.30 82.56 66 55 53

Array
#19

10.16 53.89 169 163 160

Array
#22

6.45 77.94 101 110 97

Array
#28

4.13 82.64 53 74 49

Array
#42

4.02 74.44 31 51 31

Array
#45

3.91 81.59 30 35 30

Array
#48

2.16 29.18 1 1 1

Array
#65

5.98 78.64 109 130 105

Array
#72

12.90 56.83 106 103 95

Array
#78

9.18 69.06 99 108 99

The computation time and segmentation results using the hybrid CBS and
eCBS in a breast cancer study with 10 aCGH experiments. The time consumed
in pre-segmentation was taken into consideration when eCBS was applied.

Table 3 Comparison of performance in speed using the
hybrid CBS and eCBS - 2

Time(sec.) # of change-
points

Array eCBS hybrid
CBS

eCBS hybrid
CBS

# of same
detection

GSM231848 52.26 226.7 557 607 531

GSM231849 62.27 227.5 1208 1217 1118

GSM231850 78.48 203.8 2383 2577 2296

GSM231851 43.87 166.8 123 117 109

GSM231852 57.34 181.0 101 142 100

GSM231853 41.62 259.2 455 520 420

GSM231854 53.16 245.0 968 1010 920

GSM231855 49.91 249.1 1091 1174 1017

*GSM231856 32.09 297.8 291 625 291

GSM231857 91.86 223.2 2163 2116 2041

GSM231858 94.39 203.1 2476 2483 2376

The computation time and segmentation results using the hybrid CBS and
eCBS in a human glioblastoma GBM study with 11 aCGH experiments. The
time consumed in pre-segmentation was taken into consideration when eCBS
was applied. Array GSM231856 is noted by a star (*) because the data is
severely skewed and heavy-tailed. Thus, errors might occur.
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Please note that the maximal-t statistic is derived from
the original aCGH data, not from the data after pre-seg-
mentation. After candidate change-points are located,
the p-value, or the significance of change-points, is eval-
uated based on the maximal-t distribution approximated
using the eXtreme model. After edge effect correction
further removes errors due to the circling process,
change-points and the consequent subsegments are
found. The process of finding change-points repeats
iteratively until no more change-points can be detected.
Rather than providing an upper bound or a lower
bound of p-values, as implemented in the hybrid CBS,
eCBS outperforms the hybrid CBS by approximating p-
values for Tmax directly and reducing required permuta-
tions for significance evaluation.

Conclusions
A novel algorithm, eCBS, was developed in this study, in
which the significance of change-points is evaluated
using the eXtreme model. The eXtreme model provides
approximations of maximal-t distribution for hypothesis
testing. With limited utilization of permutations, eCBS
evaluates the significance of change-points through a
table lookup process and achieves the best performance
in speed. Via real aCGH data analysis and simulations,
we showed that eCBS can perform as robustly as CBS,
but with much less computation time. The eCBS algo-
rithm with eXtreme model was implemented in an R
package and is available from the supplementary
website.

Availability and Requirements
The eCBS algorithm was developed using Linux (version
2.6.11-1.1369 FC4smp) and R (version 2.8.0), and the
source code is freely available at http://ntumaps.cgm.
ntu.edu.tw/eCBSsupplementary. In order to execute
properly, a compatible version of Linux operating sys-
tem with R environment is required. Installation instruc-
tions are included in the manual (\eCBS\inst\doc\eCBS.
pdf).

Additional material

Additional file 1: This additional file contains supplementary
materials, supplementary figures and supplementary tables.
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