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TFRC and ACTB as the best reference genes
to quantify Urokinase Plasminogen Activator
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Abstract

Background: Biomedical researchers have long looked for ways to diagnose and treat cancer patients at the early
stages through biomarkers. Although conventional techniques are routinely applied in the detection of biomarkers,
attitudes towards using Real-Time PCR techniques in detection of many biomarkers are increasing. Normalization of
quantitative Real-Time PCR is necessary to validate non-biological alteration occurring during the steps of RNA
quantification. Selection of variably expressed housekeeping genes (HKs) will affect the validity of the data. The aim
of the present study was to identify uniformly expressed housekeeping genes in order to use in the breast cancer
gene expression studies. Urokinase Plasminogen Activator was used as a gene of interest.

Findings: The expression of six HKs (TFRC, GUSB, GAPDH, ACTB, HPRT1 and RPLP0) was investigated using geNorm
and NormFinder softwares in forty breast tumor, four normal and eight adjacent tissues. RPLP0 and GAPDH
revealed maximum M value, while TFRC demonstrated lowest M value.

Conclusions: In the present study the most and the least stable genes were TFRC and RPLP0 respectively. TFRC
and ACTB were verified as the best combination of two genes for breast cancer quantification. The result of this
study shows that in each gene expression analysis HKs selection should be done based on experiment conditions.

Introduction
Worldwide, breast cancer is the most frequent cancer
among women. It affects more than one million women
globally, accounting for more than 400,000 deaths
annually [1]. In Iran as an Asian country, among
women over 30, the incidence and prevalence rate of
breast cancer is 22 and 120 per 100,000, respectively [2].
For a long time, biomedical scientists have been inter-

ested in finding ways to diagnose and to treat cancer
patients at early stages. Research aimed at developing
robust biomarkers and reliable assays, has made pro-
gress in the detection, diagnosis, and treatment of breast
cancer. Only a limited number of biomarkers for breast
cancer are currently available which assist in making
breast cancer management decisions. Oncotype DX; a
diagnostic panel commercially available; is indicated for
specified breast cancer patients that predicts the risk of

a patient experiencing a recurrence [3]. Estrogen recep-
tor (ER), progesterone receptor (PR) and Her2/neu sta-
tus are routinely measured to decide about hormone
and targeted therapy. In addition, recommendations
concerning the role of urokinase plasminogen activator
(uPA) in detecting the invasive nature of the tumors
have been recently added to the clinical guidelines [4].
Current routine assays for quantifying biomarkers,

such as immunohistochemistry (IHC) and Enzyme-
linked immunosorbent assay (ELISA) are approved and
valid, and are reproducible between different labora-
tories [5-8]. However, unquantifiable results and long
procedure time are among the drawbacks of these meth-
ods which have persuaded researchers to seek alterna-
tive modern molecular based techniques such as
quantitative Real-Time PCR (Q-RT-PCR) [9,10]. Q-RT-
PCR is highly cost-effective, very fast, and one of the
most sensitive and specific quantification methods for
gene expression analysis [11,12].
To be approved as a routine alternative method for

conventional techniques; however, a number of
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validations are necessary for Q-RT-PCR including HK
validation. Differences occurring during the steps of
RNA quantification would be normalized by endogenous
controls (ECs). There are large scale gene expression
profiling studies in which hundreds of HKs were identi-
fied [13-15]. During the years of using Q-RT-PCR,
based on this belief that housekeeping genes have uni-
form expression regardless of biological conditions, they
have been applied for quantification. Several studies
have revealed significant alterations in the expression of
a number of ECs affecting validity of expression analysis
[16-20]. Since reliability of ECs affects the accuracy of
the normalized data, reference gene selection plays an
important role in this matter. HK validations have been
performed for a number of genes but, to the best of our
knowledge, no report has been found for uPA in breast
cancer. The uPA is involved in various biological pro-
cesses. Along with some other genes, elevated expres-
sion of uPA in plasminogen activation system takes part
in tumor cell invasion and metastatic process. High level
expression of this marker represents an unfavorable
prognostic factor for metastasis in breast cancer [6,21].
The aim of the present study was to validate reference
genes in order to select the most appropriate ECs for
uPA quantification in breast cancer tissues.

Methods
Breast tumor tissues (n = 40), normal tissues (n = 4)
and normal adjacent tissues (n = 8), were taken from
Iranian Center for Breast Cancer Biobank (ICBC-BB).
According to the protocols followed by ICBC-BB, imme-
diately after excisional biopsy or surgery, sample tissues
were snap-frozen in liquid nitrogen and stored at -70°C.
ICBC-BB is obliged to ethical guidelines and recommen-
dations for biobanks on the storage and use of human
biological samples. Clinical and histopathological fea-
tures of patients are summarized in table 1.
Tissues (8-20 mg) were excised on dry ice and homo-

genized in 1 ml of RnxPlus (Cinnagen, Iran) to extract
RNA according to manufacturer directions. Extracted
RNAs were quantified by spectrophotometer (Hitachi,
U-0080D, Japan) and the Absorbance ratio at 260/280
and 260/230 were measured to control the purity of the
RNA. The integrity of RNA was confirmed by checking
ribosomal RNA with electrophoresis on a 1% agarose
gel. Then, 3.6 μg of RNA was treated with 18 unit of
RNase-free DNase (Fermentas AB, Vilnius, Lithuania),
20 units of RNase inhibitor (Fermentas AB, Vilnius,
Lithuania) and 2.4 μl of 25 mM MgCl2. The total
volume of reaction was 30 μl. The reaction was incu-
bated in 37°C for 15 min and then 90°C for 5 min to
inactivate the DNase.1 μg of total RNA was transcribed
to cDNA using Precision™reverse transcription kit (Pri-
merDesign Ltd, UK).

Six common housekeeping genes in breast cancer;
TFRC, GUSB, GAPDH, ACTB, HPRT1 and RPLP0;
were selected and their stability were examined in order
to normalize expression of uPA. All primers and probes
were designed using Gene Runner v.3.05 and confirmed
with primer express 3.0 (Table 2). Amplification effi-
ciency for each primer was approximated using 10 fold
cDNA serial dilutions and calculated using 7500 soft-
ware system ver. 2.0. The serial dilutions were per-
formed using pooled cDNA from 15 tumor cDNAs with
equal proportion. CDNA synthesis was done as men-
tioned above.

Quantitative Real-Time PCR
Q-RT-PCR was carried out in triplicate format within
the same 96-well plate for each sample using preci-
sion™ 2 × qPCR Mastermix (PrimerDesign Ltd, UK) in
20 μl reactions. Primer and probe concentrations were
0.5 μM and 0.3 μM, respectively. Fluorescent detection
was performed using Applied Biosystems 7500 System.
Data were analyzed using SDS software, vers.2.0
(Applied Biosystems).

Data analysis and endogenous control stability
Raw data of Q-RT-PCR was analyzed using SDS soft-
ware, vers.2.0 (Applied Biosystems). Samples with stan-
dard deviation greater than 0.5 from the mean threshold
cycle (CT) of the replicates were excluded. In order to
find the most stable housekeeping gene, the data were
transformed to linear scale values with Excel. Analyses
were done by pairwise comparison approach applying
geNorm software[19] as well as combined estimation of
the intra and inter group validation using NormFinder
software[22]. UPA expression measurement was per-
formed using ΔΔCT method with RPLP0 or combina-
tion of ACTB and TFRC as endogenous control.
Comparison between the mean of each group was done
using paired sample t-test (SPSS v.13) with 95% confi-
dence interval.

Results
Threshold cycle (CT) values of endogenous controls and
uPA are shown in table 3.
The range of threshold cycles (CT Range) was

between 8.61 and 22.68 among endogenous candidate
genes with a mean value ranging from 25.1 (± 0.5 s.e.m)
for ACTB to 32.61(± 0.43 s.e.m) for GUSB. The maxi-
mum and minimum expression ranges were 22.68 cycles
for GUSB and 8.61 cycles for ACTB respectively
(Table3).
Data were analyzed using geNorm and NormFinder

software programs. GeNorm calculates pairwise varia-
tion to find the most stable expressed ECs, and thereby
computing the average expression stability value (M)
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Table 1 Clinical and histological data of malignant and normal adjacent breast tissues.

Tissue type Age Size (mm) Tumor stage grade Histological type Menoposal status ER PR Her2/neu P53

Adjacent 50

Adjacent 38 - - - +

Malignant 38 18 IIA III IDC pre + + -

Malignant 38 20 III IDC pre 3+ 3+ 2+

Malignant 58 35 IIIA II IDC post - - - +

Malignant 80 10 I IDC post + + -

Malignant 54 30 IIB II IDC post

Adjacent + + 3+ +

Malignant 40 25 IIB II IDC pre + + - +

Malignant 35 20 III IDC post

Adjacent

Malignant + + - +

Malignant 52 21 IIA II IDC post + + - +

Malignant III IDC + - - +

Malignant 82 50 IIB III IDC post

Adjacent 43 + + - -

Malignant 50 50 IIA II IDC pre 3+ 3+ -

Malignant 44 20 IIIA III IDC pre + + -

Malignant 51 20 IIA II IDC post

Malignant + + - -

Malignant 37 60 IIIB II IDC post

Malignant 45 IDC pre + + -

Malignant 40 15 IB II IDC pre - - - +

Malignant 42 20 IV III IDC pre + + - +

Malignant 52 21 IIA II IDC post + + - -

Malignant 50 8 IIA II IDC post + + -

Malignant 54 30 IIA II IDC post - - - -

Malignant 45 IV IDC pre

Adjacent 45

Adjacent 40

Adjacent 52

Adjacent 42 - - - -

Malignant 53 IDC+DCIS pre + + 3+ -

Malignant 34 10 IIB II IDC+DCIS pre - - - +

Malignant 56 38 IIB II IDC post + + -

Malignant 71 20 IV II IDC post - - - -

Malignant 34 30 IIA II IDC pre + + 3+

Malignant 37 II IDC pre - - -

Malignant 48 30 IIB ILC pre + + - +

Malignant 43 18 I pre - + -

Malignant 45 20 II II ILC pre - - 3+ +

Malignant 39 100 IIIA II IDC pre

Malignant 34 60 III IDC pre

Malignant

Normal 25

Normal 38

Normal 32

Normal + + - -

Malignant 50 15 IB I IDC pre - - 3+ +

Malignant 32 10 IV II IDC pre + - -

Malignant 60 30 IV II IDC post + + - -

Malignant 41 50 IV I IDC pre

Stage grouping are based on American Joint Committee on Cancer (AJCC). Estrogen receptor(ER), progesterone receptor (PR), Her2/neu and P53 status are based
on IHC results. Invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC)
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and plotting it for each gene. In this study, RPLP0 and
GAPDH revealed maximum M while TFRC demon-
strated lowest M value (Figure 1). The most stable
expressed gene was TFRC. The GeNorm software also
calculates normalization factor (V); the point at which
addition of extra endogenous control is unnecessary; to
find the optimal number of required ECs. According to
GeNorm software manual, recommended V-value cut-
off was 0.15 but it was also mentioned that proposed
value must not be taken as a too strict cut-off. In this
study the V-values of using 3 and 4 ECs were calculated
as 0.5 and 0.4, respectively (Figure 2).
NormFinder software; an algorithm for identifying the

optimal normalization gene among a set of candidates;
was used to rank the set of candidate normalization
genes according to their expression stability in a given

sample set. In this study, NormFinder determined TFRC
as the most stable EC Followed by GUSB and ACTB
genes (Table 4).
Statistical comparison of “uPA expression results nor-

malized with RPLP0” in one group and “the combina-
tion of TFRC and ACTB” in another group showed
significant difference in uPA expression amounts (p-
value < 0.05).

Discussion
During recent years traditional attitudes towards thera-
peutic care has been replaced with individualized medi-
cine especially in the cancer field. It is recommended to
assess approved markers in order to select the best ther-
apeutic models instead of blind administration of similar
regimens for all patients.
Among current systems, gene expression profiling plays

a major role in tailoring treatment to the individual strat-
egy. Despite the accuracy of routinely used approved
methods for detection of biomarkers such as IHC for mea-
surement of Her2 and ER biomarkers and ELISA for uPA,
there are still disadvantages. For instance, ELISA requires
a substantial amount of tissue and small tissues of early
stage cancer would be difficult to be analyzed [4]. Several
studies using various types of design have been conducted
to determine whether novel molecular techniques like Q-
RT-PCR may be added to routine approved methods for
detection and quantification of biomarkers [23-31].

Table 2 Primer probe sets.

Target Accession No. Sequence Melting TM efficiency

GAPDH NM_001002 F GAAGGTGAAGGTCGGAGTC 61.3 94

R GGGTGGAATCATATTGGAACA 63.2

P ATTTGGTCGTATTGGGCGCCTGGT 74.9

TFRC NM_003234 F ACCGGCACCATCAAGCT 64.5 94

R TGATCACGCCAGACTTTGC 65.2

P TGAAAATTCATATGTCCCTCGTGAGGCT 72.1

RPLP0 NM_001002 F CGGACGAGGATATGGGATTTG 67.2 89

R AGAAGTAAGCCTTTATTTCCTTGTTT 64.7

P TCACCAAAAAGCAACCAACTTAGCCAGT 72

GUSB NM_000181 F GCGTTCCTTTTGCGAGGAGA 68.6 74

R GGTGGTATCAGTCTTGCTCAA 64.7

P ACCAGGTATCCCCACTCAGTAGCCAAG 72

HPRT1 NM_000194 F TGGACTAATTATGGACAGGACTGAA 64.4 103

R GTAATCCAGCAGGTCAGCAA 62.8

P CTTGCTCGAGATGTGATGAAGGAGATGG 73.7

UPA NM_002658 F AGGGCAGCACTGTGAAATAGATAAGT 65.7 97

R CATGGTACGTTTGCTGAAGGA 64.8

P TTACCGAGGAAAGGCCAGCACTGACA 75.3

ACTB NM_001101 F CAGCAGATGTGGATCAGCAAG 65.9 95

R GCATTTGCGGTGGACGAT 67.1

P AGGAGTATGACGAGTCCGGCCCC 73.8

Probes were labeled with 5’ FAM and 3’ TAMRA.

Table 3 threshold cycle (CT) values of endogenous
controls and uPA.

Gene CT Range CT Min CT Max Mean ± s.e.m

RPLP0 22.68 19.52 42.2 29.69 ± 0.81

GUSB 8.61 27.59 36.2 31.99 ± 0.33

TFRC 15.64 25.27 40.92 31.7 ± 0.5

HPRT1 14.25 26.42 40.67 32.61 ± 0.43

ACTB 14.05 16.93 30.98 25.1 ± 0.5

GAPDH 19.2 22.69 41.89 29.3 ± 0.5

UPA 10.65 28.13 38.78 31 ± 0.38
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To our knowledge this is the first study on determining
reference gene in breast cancer for quantification of uPA.
We found that TFRC and ACTB is the best combination
of two genes with the greatest expression stability. GeN-
orm and NormFinder without sub grouping had a similar
performance in detecting the most and the least stable
genes. TFRC and RPLP0 were the most and the least sati-
able genes. GAPDH and ACTB were among the least and
the most stable genes which a in concordance with other

breast cancer studies [17,32-35]. Both softwares recognized
the same order of stability for all of the genes (Table4).
Other Studies suggest different genes. Mc Neill et al in a
study for ER quantification, suggested MRPL19 and PPIA
as the most stable and RPLP0 as the least stable genes,
while in the study by Lyng et al TBP, RPLP0 and PUM1
were recommend for normalization [36]. Moreover, 18S
rRNA and HPRT1 have been suggested for breast cancer
normalization in quantification of Her2/neu [18,34].

Figure 1 GeNorm analysis of candidate genes: genes with low Average expression stability M which are plotted in the right side of x-
axis indicate greater stability.

Figure 2 Determination of the optimal number of ECs for normalization: Inclusion of additional reference gene is not required for
pairwise variation values (V value) below 0.15.
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Housekeeping selection is a critical step in Q-RT-PCR
analysis. The idea that housekeeping genes (ECs) pose
constant expression in different cells may influence
their selection in various studies. In the study by Mc
Neill et al the data of housekeeping gene selection in
colorectal and ovarian cancer was used to decide about
selection of an EC for breast cancer [17]. It should be
noted that instability of one housekeeping gene in spe-
cific cancer does not mean instability in other cancers.
The important key is that housekeeping gene expres-
sion patterns are influenced by cancer mechanism and
EC selections should be made for each cancer sepa-
rately [37,38]. Housekeeping generalization may result
in inappropriate set of ECs because some genes may
be included or excluded erroneously based on other
cancer evidences.
It is also noteworthy that various experiment condi-

tions in the studies may change the expression of the
housekeeping genes. As a result, dissimilar genes may
be found as the best reference for normalization in dif-
ferent studies with different conditions.

Conclusions
To conclude, it appears that identifying a universal
housekeeping for gene expression analysis is far from
reality. Thus, stability of controls should be checked
based on the tissue type and experiment design. On the
basis of our findings, we suggest that TFRC is the most
stable EC, ACTB and TFRC is the best combination of
two reference genes to quantify uPA, and that using
RPLP0 and GAPDH are not recommendable for breast
cancer. The authors also suggest testing with large sam-
ple size and more candidate reference gene to find more
stable ECs.
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