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Abstract

Background: Several methods have been presented for the analysis of complex
interactions between genetic polymorphisms and/or environmental factors. Despite
the available methods, there is still a need for alternative methods, because no single
method will perform well in all scenarios. The aim of this work was to evaluate the
performance of three selected rule based classifier algorithms, RIPPER, RIDOR and
PART, for the analysis of genetic association studies.

Methods: Overall, 42 datasets were simulated with three different case-control
models, a varying number of subjects (300, 600), SNPs (500, 1500, 3000) and noise
(5%, 10%, 20%). The algorithms were applied to each of the datasets with a set of
algorithm-specific settings. Results were further investigated with respect to a) the
Model, b) the Rules, and c) the Attribute level. Data analysis was performed using
WEKA, SAS and PERL.

Results: The RIPPER algorithm discovered the true case-control model at least once
in >33% of the datasets. The RIDOR and PART algorithm performed poorly for model
detection. The RIPPER, RIDOR and PART algorithm discovered the true case-control
rules in more than 83%, 83% and 44% of the datasets, respectively. All three
algorithms were able to detect the attributes utilized in the respective case-control
models in most datasets.

Conclusions: The current analyses substantiate the utility of rule based classifiers
such as RIPPER, RIDOR and PART for the detection of gene-gene/gene-environment
interactions in genetic association studies. These classifiers could provide a valuable
new method, complementing existing approaches, in the analysis of genetic
association studies. The methods provide an advantage in being able to handle both
categorical and continuous variable types. Further, because the outputs of the
analyses are easy to interpret, the rule based classifier approach could quickly
generate testable hypotheses for additional evaluation. Since the algorithms are
computationally inexpensive, they may serve as valuable tools for preselection of
attributes to be used in more complex, computationally intensive approaches.
Whether used in isolation or in conjunction with other tools, rule based classifiers are
an important addition to the armamentarium of tools available for analyses of
complex genetic association studies.
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Background
Genetic association studies aim to identify the contribution of genetic polymorphisms

to specific phenotypes such as disease status, drug responder status, and adverse drug

reactions [1]. Association studies have been gaining interest as genotyping costs have

significantly decreased and as more association-based success stories are reported [2,3].

In addition to the impact of a single genetic locus, more complex interactions

between genetic polymorphisms and/or environmental factors, such as age, weight, and

drug exposure can provide more accurate models for the prediction of complex pheno-

types [4]. Several methods are currently available for the analysis of gene-gene and

gene-environment interactions, e.g. random forests, focused interaction testing frame-

works, stepwise logistic regression, explicit logistic regression, Multifactor Dimension-

ality Reduction (MDR) and Neural Networks (NN) [5,6].

One of the most frequently used algorithm, MDR, allows an exhaustive search for

complex interactions [7]. MDR has a good sensitivity to detect gene-gene and gene-

environment interactions; however, the algorithm faces two challenges. First, large

computational resources are required to perform the exhaustive searching, and the

search for higher interaction models can be time consuming for large SNP panels

(such as genome-wide association studies). Second, continuous variables have to be

binned into categories to be considered for analysis, potentially leading to a loss of

information. However, there are some approaches to alleviate this problem [8,9]. An

alternative approach for the analysis of genetic association studies is the use of neural

networks (NN) and their modifications, e.g. genetic programming neural networks

(GPNN) [10] and grammatical evolution neural networks (GENN) [11]. If well trained,

neural network models yield good predictivity and allow for the incorporation of con-

tinuous variables. However, neural network models are often perceived to have a

“black box character” where deconvoluting the contribution and interaction between

genetic markers can be challenging. A recent comparison of methods showed that

each method demonstrates strengths and weaknesses and there is still a need for alter-

native methods, because no single method will perform well in all scenarios [4].

Thus, rule based classifier algorithms which have proven performance with non-

genetic datasets [12], could provide a valuable complementary method for the analysis

of genetic association studies. Rule based classifiers generate classification models

using a collection of “if ... then ...” rules [12]. The algorithms are computationally inex-

pensive, are capable of incorporating categorical and continuous variables and the

developed models are usually easy to interpret.

The aim of the current study was to evaluate the performance of three selected rule

based classifier algorithms, RIPPER [13], RIDOR [14] and PART [15], for the analysis

of genetic association studies. Simulated datasets with varying statistical power and

three different case-control models were generated in order to perform these

evaluations.

Methods
Algorithms

Three different deterministic rule based classifier algorithms, for which the mathematical

background is extensively described in the literature, were evaluated in the current study:

(a) RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [13] (b) RIDOR
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(RIpple-DOwn Rule) [14] and (c) PART [15]. The RIPPER algorithm is a direct method,

i.e. RIPPER extracts the rules directly from the data. The algorithm progresses through

four phases: i) growth, ii) pruning, iii) optimization, iv) selection. In the growth phase, one

rule is generated by greedily adding attributes to the rule until the rule meets stopping cri-

teria. In the following prune phase, each rule is incrementally pruned, allowing the prun-

ing of any final sequence of the attributes, until a pruning metric is fulfilled. In the

optimization stage each generated rule is further optimized by a) greedily adding attributes

to the original rule and b) by independently growing a new rule undergoing a growth and

pruning phase, as described above. Finally, in the selection phase, the best rules are kept

and the other rules are deleted from the model. RIDOR is also a direct method, first gen-

erating a default rule (e.g. “all patients are controls”) and then exceptions ("except if rs5 =

AB and rs10 = AB then patients are cases”) to the default rule with the least error rate.

The “best” exceptions for each exception are generated and iterated until pure. Thus, a

tree-like expansion of exceptions is generated. The exceptions are a set of rules that pre-

dict classes other than the default. PART is an indirect method for rule generation. PART

generates a pruned decision tree using the C4.5 statistical classifier [16] in each iteration.

From the best tree, the leaves are translated into rules.

In the current study, the WEKA open-source software was used to implement the

three rule-based classifier methods [17]. In WEKA, the RIPPER algorithm is implemen-

ted and named as JRIP (i.e. Java implementation of RIPPER).

Datasets

For the evaluation of the algorithms, three different case-control models (A, B & C)

(Table 1) were used for dataset simulation. Model A consisted of four case rules con-

structed by the interaction of two SNPs, rs5 and rs10. Model B consisted of two case

rules constructed by the interaction of rs5 and rs10 and by the interaction between

SNP rs15 and the area under the curve (AUC) of a hypothetical compound X, as an

environmental factor. For model C cases were assigned randomly without any relation-

ship to a genotype or environmental factor, i.e. a “null model”.

The case-control models A, B and C were used to simulate in total 42 various data-

sets: the number of subjects (300, 600), the number of SNPs (500, 1500, 3000) and the

noise of the case-control model with varying false positive (FP) and false negative (FN)

rates (5%, 10%, 20%) was varied for models A and B resulting in 18 different datasets

for each case-control model (A and B) and 6 different datasets for model C (Table 2).

Table 1 Case-Control Models

Model A Model B Model C

Rule1: Rule1: Rule1:

If rs5 = AA and rs10 = AB then Case If rs5 = BB and rs10 = AA
then Case

If random number > “threshold”
then Case

Rule2: Rule2: Rule 2:

If rs5 = AB and rs10 = AA then Case If rs15 = AA and AUC >105 then Case Else Control

Rule3: Rule3:

If rs5 = AB and rs10 = BB then Case Else Control

Rule4:

If rs5 = BB and rs10 = AB then Case

Rule 5:

Else Control
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SNPs simulated in the datasets were named with a consecutive dbSNP [18] reference

SNP identifier number (rs) from rs1 to rs1200. The reported rs numbers do not refer

to their biological functionality as described in the dbSNP database [18]. For all other

SNPs not used in the case-control models, no influence on the phenotype (i.e. case sta-

tus) was assumed. The genotype frequencies were simulated randomly, uncorrelated

and under assumption of Hardy-Weinberg Equilibrium (HWE) [19-21]. For the minor

Table 2 Datasets investigated

Dataset Model # SNPs #Patients$ Ratio Control/Case FP [%] FN [%]

1 A 500 300 2 5 5

2 A 1500 300 2 5 5

3 A 3000 300 2 5 5

4 A 500 600 2 5 5

5 A 1500 600 2 5 5

6 A 3000 600 2 5 5

7 A 500 300 2 10 10

8 A 1500 300 2 10 10

9 A 3000 300 2 10 10

10 A 500 600 2 10 10

11 A 1500 600 2 10 10

12 A 3000 600 2 10 10

13 A 500 300 2 20 20

14 A 1500 300 2 20 20

15 A 3000 300 2 20 20

16 A 500 600 2 20 20

17 A 1500 600 2 20 20

18 A 3000 600 2 20 20

19 B 500 150+150 2 5 5

20 B 1500 150+150 2 5 5

21 B 3000 150+150 2 5 5

22 B 500 300+300 2 5 5

23 B 1500 300+300 2 5 5

24 B 3000 300+300 2 5 5

25 B 500 150+150 2 10 10

26 B 1500 150+150 2 10 10

27 B 3000 150+150 2 10 10

28 B 500 300+300 2 10 10

29 B 1500 300+300 2 10 10

30 B 3000 300+300 2 10 10

31 B 500 150+150 2 20 20

32 B 1500 150+150 2 20 20

33 B 3000 150+150 2 20 20

34 B 500 300+300 2 20 20

35 B 1500 300+300 2 20 20

36 B 3000 300+300 2 20 20

37 C 500 300 2 n.a. n.a.

38 C 1500 300 2 n.a. n.a.

39 C 3000 300 2 n.a. n.a.

40 C 500 600 2 n.a. n.a.

41 C 1500 600 2 n.a. n.a.

42 C 3000 600 2 n.a. n.a.
$ For case rule A patients are equally distributed for the 4 case rules; for case rule B the first number indicates the
number for rule 1, the second number for rule 2; n.a: not applicable.

Lehr et al. BioData Mining 2011, 4:4
http://www.biodatamining.org/content/4/1/4

Page 4 of 14



allele frequency (MAF) [22] a uniform distribution was selected ranging from 0 - 0.5

with randomly varying minor alleles. The environmental factor AUC was simulated by

a uniform distribution with medians at 110 and 95 resulting in a binomial distribution

of the AUC. For the simulation of each of the 42 datasets different random seeds were

used. Dataset generation was performed using SAS (SAS Institute Inc., Cary, NC, V

9.1.3). Simulated datasets are available upon request.

Data Analysis

Data analyses were performed using WEKA, version 3.7.0. For each algorithm, a vary-

ing set of algorithm specific options was applied resulting in 18, 30, and 9 different set-

tings for RIPPER, PART and RIDOR, respectively (Table 3). The settings were chosen

based on theoretical evaluations and based on previous experiences with the algorithms

on similar datasets. Each of the settings (Table 3) was applied to each of the 42 simu-

lated datasets (Table 2) using WEKA (command line mode). A customized Perl script

Table 3 Settings of Algorithm Options

Nr RIPPER RIDOR PART

1 -F 3 -N 2.0 -O 10 -F 3 -S 1 -N 2.0 -A -R -B -M 2 -N 3

2 -F 3 -N 5.0 -O 10 -F 3 -S 1 -N 5.0 -A -R -B -M 5 -N 3

3 -F 3 -N 10.0 -O 10 -F 3 -S 1 -N 10.0 -A -R -B -M 10 -N 3

4 -F 10 -N 2.0 -O 10 -F 10 -S 1 -N 2.0 -A -R -B -M 2 -N 10

5 -F 10 -N 5.0 -O 10 -F 10 -S 1 -N 5.0 -A -R -B -M 5 -N 10

6 -F 10 -N 10.0 -O 10 -F 10 -S 1 -N 10.0 -A -R -B -M 10 -N 10

7 -F 100 -N 2.0 -O 10 -F 20 -S 1 -N 2.0 -A -R -B -M 2 -N 100

8 -F 100 -N 5.0 -O 10 -F 20 -S 1 -N 5.0 -A -R -B -M 5 -N 100

9 -F 100 -N 10.0 -O 10 -F 20 -S 1 -N 10.0 -A -R -B -M 10 -N 100

10 -F 3 -N 2.0 -O 100 -R -M 2 -N 3

11 -F 3 -N 5.0 -O 100 -R -M 5 -N 3

12 -F 3 -N 10.0 -O 100 -R -M 10 -N 3

13 -F 10 -N 2.0 -O 100 -R -M 2 -N 10

14 -F 10 -N 5.0 -O 100 -R -M 5 -N 10

15 -F 10 -N 10.0 -O 100 -R -M 10 -N 10

16 -F 100 -N 2.0 -O 100 -R -M 2 -N 100

17 -F 100 -N 5.0 -O 100 -R -M 5 -N 100

18 -F 100 -N 10.0 -O 100 -R -M 10 -N 100

19 -B -M 2 -C 0.25

20 -B -M 2 -C 0.1

21 -B -M 5 -C 0.25

22 -B -M 5 -C 0.1

23 -B -M 10 -C 0.25

24 -B -M 10 -C 0.1

25 -M 2 -C 0.25

26 -M 2 -C 0.1

27 -M 5 -C 0.25

28 -M 5 -C 0.1

29 -M 10 -C 0.25

30 -M 10 -C 0.1

RIPPER: F: number of folds for reduced error pruning; N: minimal weights of instances within a split; O: number of
optimization runs.

RIDOR: F: number of folds for reduced error pruning; S: number of shuffles for randomization; A: Flag set to use the
error rate of all the data to select the default class in each step. N: minimal weight of instances within a split.

PART: C: confidence threshold for pruning; M: minimum number of instances per leaf; R: use reduced error pruning;
N: number of folds for reduced error pruning; B: Use binary splits for nominal attributes.
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was used to extract the most important information (e.g. file name, model, statistics,

etc.) from the WEKA result files and to summarize the information in a comma sepa-

rated file. A grading system (A - D) was created (Table 4), to further compare the

results at three different levels: a) the Model level, b) the Rules level, and c) the Attri-

bute level.

On the Model level, each developed model was compared to the true model. At the

Rules level, each rule was extracted individually from each developed model and com-

pared to the true case-control rule. At both levels, the “best” grade was always assigned

to each model, where A is better than B, B better than C, etc.

On the Attribute level, all SNPs and other attributes used as case-control predictors

were extracted from the respective models. The appearance of each marker was

counted for each dataset and algorithm. The most frequent marker was ranked as 1st,

the second most frequent marker was ranked as 2nd, and so forth. Subsequently, the

grading system was applied (Table 4). If the attribute ranking fulfilled a grading specifi-

cation, the dataset and algorithm was assigned the “best” grade, where A is better than

B, B better than C, etc. For the evaluation of the “null model” (model C), the same

procedure as described above was applied. The true model was assumed to be either

model A and/or model B. For the rule and attribute evaluation, the respective rules

and attributes from models A and/or B were applied.

Results
In total, 2394 models (= 42 datasets × 57 algorithm options) were generated and ana-

lyzed as described in the methods section. A summary statistic on the number of rules

Table 4 Grading System

Grade Model Rules Attribute

A 100% accordance
Example:
If rs5 = BB and rs10 = AA then
Case; If rs15 = AA and AUC >105
then Case; Else Control

100% accordance
Example:
If rs5 = BB and rs10 = AA
then Case

All attributes were present (i.e.
detected) and ranked as most
frequent, i.e. top 2 for model A
and top 4 for model B.
Example:
rs5 ® Nr. 1; rs10 ® Nr. 3; rs15 ®
Nr.2; AUC ® Nr. 4

B One attribute was missing or an
additional attribute was identified
by the generated model
Example:
If rs5 = BB and rs10 = AA and rs234
= BB then Case; If rs15 = AA and
AUC >105 then Case; Else Control

One attribute was missing or
an additional attribute was
identified by the generated
model
Example:
If rs5 = BB and rs10 = AA and
rs234 = BB then Case

All attributes were present but not
ranked as most frequent
Example:
rs5 ® Nr. 5; rs10 ® Nr. 3; rs15 ®
Nr.7; AUC ® Nr. 4

C Two attributes were different
between the generated and the
true model,
Example:
If rs5 = BB and rs10 = AA and
rs234 = BB then Case; If rs15 = AA
and AUC >105 and rs56 = AA then
Case; Else Control

Two attributes were different
between the generated and
the true model
Example:
If rs5 = BB and rs234 = BB
then Case

One attribute was not present,
remaining attributes were present
and rank was not considered
Example:
rs5 ® not detected; rs10, rs15 and
AUC ® detected

D Three attributes were different
between the generated and the
true model
Example:
If rs5 = BB and rs234 = BB and rs56 =
AA then Case; If rs15 = AA and AUC
>105 then Case; Else Control

Three attributes were
different between the
generated and the true
model
Example:
If rs5 = BB and rs56 = AA and
rs234 = BB then Case

Two attributes were not present,
remaining attributes were present
and ranked as most frequent
Example:
rs5 and AUC ® not detected; rs10
and rs15 ® detected

Comparison of the generated versus true model, rules and attributes. (Model B was used for the example.)
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per model and the number of attributes per model is presented in Table 5. A qualita-

tive summary of the results is shown in Table 6. Detailed quantitative results at the

Model, Rule and Attribute level are presented in Tables 7, 8, & 9.

Models Level Analyses

The models generated had in median 4 to 47 unique attributes per model (Table 5).

The RIPPER algorithm utilized the fewest number of attributes (median: 4 to 15)

whereas RIDOR and PART had a significantly higher number of attributes per model

(median: 16 to 47). The number of attributes was approximately two times higher for

the “null model” (model C) compared to models A and B. The number of rules per

model was comparable between all three algorithms (median: 3 to 9.5).

The RIPPER algorithm performed well and was able to discover the true model

(Grade A) at least once, 33% of the time with case-control model A and 56% of the

time with case-control model B (Table 6). The RIDOR and PART algorithm performed

poorly in model detection. Case-control model A was not discovered in any dataset by

the two algorithms. Case-control model B was identified at least once in 11% and 33%

of the datasets by RIDOR and PART, respectively.

When minor deviations from the true model were considered (Grades B - D), RIP-

PER was again able to detect significantly more models compared to the RIDOR and

PART algorithms. Overall, case-control model B was better discovered by all three

algorithms, compared to case-control model A. None of the methods detected for

model C a false positive finding.

Table 7 provides a detailed summary of model level algorithm performance. In gen-

eral, algorithms performed worse if the power of the dataset decreased, i.e. less subjects

and/or more SNPs and/or higher FP/FN rates.

Rules Level Analyses

At the rules level, the RIPPER algorithm performed well and was able to discover the true

case rules (Grade A) at least once, 83% of the time with case-control model A and 100%

of the time with case-control model B (Table 6). The RIDOR and PART algorithms also

Table 5 Statistics

RIPPER RIDOR PART

Model
A

Model
B

Model
C

Model
A

Model
B

Model
C

Model
A

Model
B

Model
C

# Min 1 3 1 2 3 1 1 1 2

Attributes* per
model

5th
Percentile

2 3 1 4 5 4 2 4 7

Median 7 4 15 16 17 28 24 24 47

95th
Percentile

28 13 42 46 50 70 102 109 144

Max 43 21 63 65 62 73 245 240 259

# rules$ per
model

Min 2 3 2 3 3 1 1 1 1

5th
Percentile

3 3 2 4 4 2 2 2 1

Median 6 3 6 8 8 9.5 7 6 9

95th
Percentile

11 7 14 16 17 19 25.5 24.5 37.5

Max 16 9 18 20 20 20 45 43 46

* unique SNP or unique environmental variable; $ Case and control rules combined.
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Table 6 Qualitative Results - Summary

RIPPER RIDOR PART

Evaluation Level Grade Model
A

Model B Model C Model
A

Model B Model C Model
A

Model B Model C

Models A 33% (6) 56% (10) 0% (0) 0% (0) 11% (2) 0% (0) 0% (0) 33% (6) 0% (0)

B 33% (6) 50% (9) 0% (0) 0% (0) 6% (1) 0% (0) 0% (0) 33% (6) 0% (0)

C 22% (4) 56% (10) 0% (0) 0% (0) 6% (1) 0% (0) 0% (0) 22% (4) 0% (0)

D 6% (1) 22% (4) 0% (0) 0% (0) 17% (3) 0% (0) 6% (1) 11% (2) 0% (0)

Rules A 83% (15) 100% (18) 0% (0) 83% (15) 94% (17) 0% (0) 44% (8) 78% (14) 0% (0)

B 89% (16) 72% (13) 0% (0) 94% (17) 100% (18) 0% (0) 50% (9) 100% (18) 0% (0)

C 67% (12) 67% (12) 0% (0) 56% (10) 100% (18) 0% (0) 78% (14) 89% (16) 0% (0)

D 50% (9) 56% (10) 0% (0) 67% (12) 100% (18) 0% (0) 56% (10) 94% (17) 0% (0)

Attributes A 83% (15) 56% (10) 0% (0) 50% (9) 72% (13) 0% (0) 11% (2) 0% (0) 0% (0)

B 17% (3) 28% (5) 0% (0) 50% (9) 17% (3) 0% (0) 61% (11) 78% (14) 0% (0)

C 0% (0) 17% (3) 0% (0) 0% (0) 11% (2) 0% (0) 6% (1) 22% (4) 0% (0)

D 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 22% (4) 0% (0) 0% (0)

Summary of the results, separated by algorithm, case-control model, and grading. Number represents the percent frequency of datasets where a respective grade was achieved at least once (absolute number is in
brackets).
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performed well in rule detection. For case-control model A, the true rules were discovered

at least once 83% and 44% of the time with the RIDOR and PART algorithms, respectively.

With case-control model B the RIDOR and PART algorithms were able to discover the

true rule at least once in 94% and 78% of the datasets, respectively.

Table 7 Quantitative Results - Models Level

RIPPER RIDOR PART

Model Dataset SNPs Patients Error [%] A B C D A B C D A B C D

A 1 500 300 5 0 1 7 0 0 0 0 0 0 0 0 0

A 2 1500 300 5 0 0 0 0 0 0 0 0 0 0 0 2

A 3 3000 300 5 0 0 0 0 0 0 0 0 0 0 0 0

A 4 500 600 5 3 1 0 0 0 0 0 0 0 0 0 0

A 5 1500 600 5 7 5 0 0 0 0 0 0 0 0 0 0

A 6 3000 600 5 1 2 2 0 0 0 0 0 0 0 0 0

A 7 500 300 10 0 0 0 0 0 0 0 0 0 0 0 0

A 8 1500 300 10 0 1 0 0 0 0 0 0 0 0 0 0

A 9 3000 300 10 0 0 0 0 0 0 0 0 0 0 0 0

A 10 500 600 10 8 0 1 0 0 0 0 0 0 0 0 0

A 11 1500 600 10 0 0 0 7 0 0 0 0 0 0 0 0

A 12 3000 600 10 1 0 1 0 0 0 0 0 0 0 0 0

A 13 500 300 20 0 0 0 0 0 0 0 0 0 0 0 0

A 14 1500 300 20 0 0 0 0 0 0 0 0 0 0 0 0

A 15 3000 300 20 0 0 0 0 0 0 0 0 0 0 0 0

A 16 500 600 20 6 3 0 0 0 0 0 0 0 0 0 0

A 17 1500 600 20 0 0 0 0 0 0 0 0 0 0 0 0

A 18 3000 600 20 0 0 0 0 0 0 0 0 0 0 0 0

B 19 500 150+150 5 11 7 0 0 2 0 1 0 1 1 0 0

B 20 1500 150+150 5 15 0 3 0 0 1 0 0 2 0 0 0

B 21 3000 150+150 5 4 4 2 0 0 0 0 3 0 0 1 1

B 22 500 300+300 5 14 0 4 0 0 0 0 0 5 0 0 0

B 23 1500 300+300 5 18 0 0 0 0 0 0 0 0 2 0 0

B 24 3000 300+300 5 17 1 0 0 0 0 0 0 1 1 0 0

B 25 500 150+150 10 7 10 0 0 0 0 0 0 1 0 2 0

B 26 1500 150+150 10 0 2 2 0 0 0 0 1 0 1 2 1

B 27 3000 150+150 10 0 3 2 1 0 0 0 0 0 0 0 0

B 28 500 300+300 10 18 0 0 0 1 0 0 0 1 1 0 0

B 29 1500 300+300 10 17 1 0 0 0 0 0 0 0 1 1 0

B 30 3000 300+300 10 13 1 0 0 0 0 0 0 0 0 0 0

B 31 500 150+150 20 0 0 7 1 0 0 0 1 0 0 0 0

B 32 1500 150+150 20 0 0 1 0 0 0 0 0 0 0 0 0

B 33 3000 150+150 20 0 0 4 4 0 0 0 0 0 0 0 0

B 34 500 300+300 20 0 4 1 0 0 0 0 0 0 0 0 0

B 35 1500 300+300 20 0 0 1 0 0 0 0 0 0 0 0 0

B 36 3000 300+300 20 0 0 0 7 0 0 0 0 0 0 0 0

C 37 500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 38 1500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 39 3000 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 40 500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 41 1500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 42 3000 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

Summary of the results at the model level, separated by algorithm, case-control model, dataset and grading. Number
expresses the absolute frequency of the respective grading assignment.
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When deviations (Grades B - D) from the true case rules were allowed, all algorithms

performed with high discovery rates. Overall the case rules of case-control model B were

slightly better discovered by all three algorithms, compared to the case rules of case-control

model A. None of the methods detected for the rules of model C a false positive finding.

Table 8 Quantitative Results - Rules Level

RIPPER RIDOR PART

Model Dataset SNPs Patients Error [%] A B C D A B C D A B C D

A 1 500 300 5 44 14 3 0 4 6 2 3 12 13 2 2

A 2 1500 300 5 0 36 0 0 4 16 0 3 3 4 1 2

A 3 3000 300 5 0 1 7 0 0 1 0 0 0 0 0 0

A 4 500 600 5 46 14 0 0 30 20 0 0 25 28 27 10

A 5 1500 600 5 72 0 0 0 12 29 4 1 2 4 3 2

A 6 3000 600 5 28 32 0 0 8 27 0 0 12 6 2 1

A 7 500 300 10 23 27 4 7 2 5 0 1 2 3 2 0

A 8 1500 300 10 19 13 0 3 2 12 0 2 2 0 2 0

A 9 3000 300 10 1 11 12 11 0 1 3 3 0 0 0 0

A 10 500 600 10 46 16 0 0 11 23 7 0 25 20 11 2

A 11 1500 600 10 35 10 15 6 6 19 11 2 0 11 16 9

A 12 3000 600 10 48 5 20 0 7 7 0 0 0 0 3 1

A 13 500 300 20 11 21 8 3 1 4 3 6 0 0 4 2

A 14 1500 300 20 5 1 6 9 0 1 3 0 0 0 0 0

A 15 3000 300 20 3 0 1 0 1 0 0 7 0 0 0 0

A 16 500 600 20 48 17 7 1 8 6 17 4 0 2 1 0

A 17 1500 600 20 25 18 26 2 8 4 15 4 0 0 2 4

A 18 3000 600 20 0 19 1 3 1 6 2 4 0 0 1 0

B 19 500 150+150 5 29 4 3 0 8 13 5 5 31 17 9 2

B 20 1500 150+150 5 30 6 0 0 8 8 7 5 12 13 19 3

B 21 3000 150+150 5 27 5 13 8 7 5 11 7 4 21 8 8

B 22 500 300+300 5 36 0 0 0 8 35 9 3 41 41 15 10

B 23 1500 300+300 5 36 0 0 0 9 21 12 5 20 27 11 4

B 24 3000 300+300 5 35 1 0 0 9 19 10 10 13 22 25 8

B 25 500 150+150 10 25 11 1 1 4 4 17 20 12 20 14 1

B 26 1500 150+150 10 16 5 19 9 1 9 14 7 17 13 3 3

B 27 3000 150+150 10 18 4 11 14 0 14 3 9 0 5 1 1

B 28 500 300+300 10 36 0 0 0 17 8 9 8 28 18 14 10

B 29 1500 300+300 10 35 1 0 0 7 14 16 6 7 27 7 4

B 30 3000 300+300 10 31 7 2 0 7 9 12 9 2 17 14 7

B 31 500 150+150 20 18 0 13 10 4 3 9 5 0 1 3 2

B 32 1500 150+150 20 10 8 21 11 2 8 5 6 0 1 0 0

B 33 3000 150+150 20 9 7 18 2 1 2 7 9 0 1 0 1

B 34 500 300+300 20 18 17 3 13 4 5 18 13 2 1 6 1

B 35 1500 300+300 20 18 0 9 31 4 3 12 13 2 4 7 2

B 36 3000 300+300 20 16 2 23 20 5 3 5 8 1 3 1 1

C 37 500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 38 1500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 39 3000 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 40 500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 41 1500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 42 3000 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

Summary of the results at the rules level, separated by algorithm, case-control model, dataset and grading. Number
expresses the absolute frequency of the respective grading assignment.
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Table 9 Quantitative Results - Attributes Level

RIPPER RIDOR PART

Model Dataset SNPs Patients Error [%] A B C D A B C D A B C D

A 1 500 300 5 1 0 0 0 0 1 0 0 0 1 0 0

A 2 1500 300 5 1 0 0 0 1 0 0 0 0 1 0 0

A 3 3000 300 5 0 1 0 0 0 1 0 0 0 0 0 0

A 4 500 600 5 1 0 0 0 1 0 0 0 1 0 0 1

A 5 1500 600 5 1 0 0 0 1 0 0 0 0 1 0 0

A 6 3000 600 5 1 0 0 0 1 0 0 0 0 1 0 0

A 7 500 300 10 1 0 0 0 0 1 0 0 0 1 0 0

A 8 1500 300 10 1 0 0 0 1 0 0 0 0 1 0 0

A 9 3000 300 10 1 0 0 0 0 1 0 0 0 0 0 1

A 10 500 600 10 1 0 0 0 1 0 0 0 1 0 0 0

A 11 1500 600 10 1 0 0 0 1 0 0 0 0 1 0 0

A 12 3000 600 10 1 0 0 0 0 1 0 0 0 1 0 0

A 13 500 300 20 1 0 0 0 0 1 0 0 0 1 0 0

A 14 1500 300 20 0 1 0 0 0 1 0 0 0 0 0 1

A 15 3000 300 20 0 1 0 0 0 1 0 0 0 0 0 1

A 16 500 600 20 1 0 0 0 1 0 0 0 0 1 0 0

A 17 1500 600 20 1 0 0 0 1 0 0 0 0 1 0 0

A 18 3000 600 20 1 0 0 0 0 1 0 0 0 0 1 0

B 19 500 150+150 5 1 0 0 0 1 0 0 0 0 1 0 0

B 20 1500 150+150 5 1 0 0 0 1 0 0 0 0 1 0 0

B 21 3000 150+150 5 1 0 0 0 1 0 0 0 0 1 0 0

B 22 500 300+300 5 1 0 0 0 1 0 0 0 0 1 0 0

B 23 1500 300+300 5 1 0 0 0 1 0 0 0 0 1 0 0

B 24 3000 300+300 5 1 0 0 0 0 1 0 0 0 1 0 0

B 25 500 150+150 10 1 0 0 0 0 0 1 0 0 1 0 0

B 26 1500 150+150 10 0 1 0 0 1 0 0 0 0 1 0 0

B 27 3000 150+150 10 0 0 1 0 0 0 1 0 0 1 0 0

B 28 500 300+300 10 1 0 0 0 1 0 0 0 0 1 0 0

B 29 1500 300+300 10 1 0 0 0 1 0 0 0 0 1 0 0

B 30 3000 300+300 10 1 0 0 0 1 0 0 0 0 1 0 0

B 31 500 150+150 20 0 1 0 0 1 0 0 0 0 0 1 0

B 32 1500 150+150 20 0 0 1 0 0 1 0 0 0 0 1 0

B 33 3000 150+150 20 0 0 1 0 0 1 0 0 0 0 1 0

B 34 500 300+300 20 0 1 0 0 1 0 0 0 0 1 0 0

B 35 1500 300+300 20 0 1 0 0 1 0 0 0 0 1 0 0

B 36 3000 300+300 20 0 1 0 0 1 0 0 0 0 0 1 0

C 37 500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 38 1500 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 39 3000 300 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 40 500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 41 1500 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

C 42 3000 600 n.a. 0 0 0 0 0 0 0 0 0 0 0 0

Summary of the results at the attribute level, separated by algorithm, case-control model, dataset and grading. A “1”
reflects an affiliation to the respective grading, whereas a “0” reflects no affiliation.
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Table 8 provides a detailed summary of rule level algorithm performance. All algo-

rithms performed worse in rule detection if the power of the dataset decreased, i.e. less

subjects and/or more SNPs and/or higher FP/FN rates.

Attributes Level Analyses

At the attributes level, the RIPPER algorithm performed well. RIPPER yielded an “A”

grade (all attributes present and ranked as the top 2 (model A) or the top 4 (model B)

attributes) in 83% of the time with case-control model A and 56% of the time with

case-control model B (Table 6). The RIDOR algorithm demonstrated satisfactory per-

formance at the attribute level with 50% and 72% of the datasets yielding an “A” grade

in case-control models A and B, respectively. The PART algorithm did not perform as

well. With case-control model A, the grade “A” designation occurred only 11% of the

time and with case-control model B, the “A” grade did not get assigned to any of the

outputs. For model C, all grading (A-D) were zero across all methods.

Table 9 provides a detailed summary of attribute level algorithm performance. All

algorithms performed worse in attribute detection, if the power of the dataset

decreased, i.e. less subjects and/or more SNPs and/or higher FP/FN rates.

Discussion
At the model level, the RIPPER algorithm outperformed the other two evaluated algo-

rithms. RIPPER discovered the true model (grade “A”) or a slight variation of the true

model (grade “B”) >40% of the time with case-control model A and >70% of the time with

case-control model B. The RIDOR and PART algorithms were not able to detect the true

case-control model A. Even under less stringent conditions of evaluation (Grade B), allow-

ing minor deviations from the true model, the two algorithms were not able to discover the

true case-control model. For case-control model B the RIDOR and PART algorithms per-

formed better, however, RIPPER still outperformed the two. In general, the RIDOR and

PART algorithms tended to build overly complex prediction models with a median of 2 to

3 times more predictors compared to the RIPPER algorithm. This complexity was probably

caused by the nature of the algorithm. The PART algorithm derives rules from decision

trees and decision trees tend to build overly complex models [12]. With the RIDOR algo-

rithm, the “exception from the exception” principle is utilized for data investigation, this

may not be appropriate to analyze complex gene-gene or gene-environment interactions.

All three algorithms performed well in detecting case-control rules. As with model

level analyses, the RIPPER algorithm was superior to the RIDOR and PART algorithms

in rule level analyses. The RIPPER algorithm discovered rules at a much higher fre-

quency, even when corrected for the number of options tested (Table 3). If the fre-

quency of each rule is counted and the rules ordered according to their frequencies

(analogous to the attribute level analyses), the RIPPER algorithm identified more top-

ranked rules than the other two algorithms.

At the attribute level, the RIPPER algorithm performed slightly better than RIDOR. The

RIPPER algorithm discovered and top-ranked the true attributes 83% and 56% of the time

for case-control models A and B, respectively. In contrast, the RIDOR algorithm discov-

ered and top-ranked the true attributes 50% and 72% of the time for case-control models

A and B, respectively. The PART algorithm performed the worst of the three algorithms

but still identified the true attributes 72% and 78% of the time for case-control models A

Lehr et al. BioData Mining 2011, 4:4
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and B, respectively. The PART algorithm did not rank the true attributes in the top 2

(model A) or 4 (model B) as consistently as the RIPPER and RIDOR algorithms.

In addition to the two case-control models A and B datasets without relationships

between genotypes and phenotypes (model C, “null model”) were also tested. The null

model results were not useful in further discriminating between the three rule based clas-

sifiers. For all datasets and with all methods, no false positive number of models, attributes

or rules were identified. Nevertheless, the models derived from the “null model” datasets

showed that the median number of attributes per model was twice as high compared to

the real case-control models A and B. The number of attributes per model might therefore

be a mechanism to discriminate true models from false positive models.

The RIPPER algorithm appears to be superior to the PART and RIDOR algorithm at

all levels: models, rules and attributes. The tested set of algorithm options (Table 3)

provides an adequate toolset for comparison; however, this work could be expanded

and further optimized using simulated and non-simulated data.

Based on the analysis presented, questions may arise on how to best translate the rule

based classifier into practice and how to apply the classifiers to non-simulated data. In

data analysis practice, one would apply a selected classifier, preferably RIPPER, to one

dataset with a battery of options, e.g. as provided in Table 3. Thus, for RIPPER this would

result in 18 different models, one for each setting. For each of the 18 models standard sta-

tistics, e.g. numbers of rules, sensitivity, specificity, accuracy, etc., are provided. The next

steps would be mainly triggered by the purpose of the analysis, depending on whether the

analyst aims to use the classifiers as model builders or as filters. If the classifier is to be

used for model building, the revealed models should be further investigated, e.g. by thor-

ough review considering statistics such as sensitivity, specificity and complexity of the

models. If classifiers are to be used as filters for attributes, similar procedures as described

in the methods section could be applied. Additional research is required regarding practi-

cal considerations and evaluation methods, such as cross validation or external prediction.

In the presented analyses, the size of the datasets tested was limited to 3000 SNPs

and 600 patients. Technically, rule based classifiers are neither limited by number of

SNPs nor by number of patients. Thus, the methods should be scalable to whole gen-

ome levels. However, the size of the dataset analyzed in WEKA may be limited by the

available computational memory and has to be taken into account.

Conclusions
The current analyses substantiate the utility of rule based classifiers such as RIPPER,

RIDOR and PART for the detection of gene-gene and gene-environment interactions

in genetic association studies. These methods could provide a valuable new method,

complementing existing approaches, in the analysis of genetic association studies. The

methods provide an advantage in being able to handle both categorical and continuous

variable types, and since the outputs of the analyses are easy to interpret the rule

based classifier approach could quickly generate testable hypotheses for further evalua-

tion. In addition, since the algorithms are computationally inexpensive to run, they

may serve as valuable tools for preselection of attributes to be used in more complex,

computationally intensive approaches such as MDR. Whether used in isolation or in

conjunction with other tools, rule based classifiers are an important addition to the

armamentarium of tools available for analyses of complex genetic association studies.
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As a next step, the most promising algorithm RIPPER should be benchmarked against

other popular analysis methods, such as MDR or Random Forests.
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