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Abstract

Background: High-throughput molecular interaction data have been used effectively
to prioritize candidate genes that are linked to a disease, based on the observation
that the products of genes associated with similar diseases are likely to interact with
each other heavily in a network of protein-protein interactions (PPIs). An important
challenge for these applications, however, is the incomplete and noisy nature of PPI
data. Information flow based methods alleviate these problems to a certain extent,
by considering indirect interactions and multiplicity of paths.

Results: We demonstrate that existing methods are likely to favor highly connected
genes, making prioritization sensitive to the skewed degree distribution of PPI
networks, as well as ascertainment bias in available interaction and disease
association data. Motivated by this observation, we propose several statistical
adjustment methods to account for the degree distribution of known disease and
candidate genes, using a PPI network with associated confidence scores for
interactions. We show that the proposed methods can detect loosely connected
disease genes that are missed by existing approaches, however, this improvement
might come at the price of more false negatives for highly connected genes.
Consequently, we develop a suite called DADA, which includes different uniform
prioritization methods that effectively integrate existing approaches with the
proposed statistical adjustment strategies. Comprehensive experimental results on
the Online Mendelian Inheritance in Man (OMIM) database show that DADA
outperforms existing methods in prioritizing candidate disease genes.

Conclusions: These results demonstrate the importance of employing accurate
statistical models and associated adjustment methods in network-based disease gene
prioritization, as well as other network-based functional inference applications. DADA
is implemented in Matlab and is freely available at http://compbio.case.edu/dada/.

Introduction
Identification of disease-associated genes is an important step toward enhancing our

understanding of the cellular mechanisms that drive human diseases, with profound

applications in modeling, diagnosis, prognosis, and therapeutic intervention [1]. Gen-

ome-wide linkage and association studies (GWAS) in healthy and affected populations

identify chromosomal regions potentially containing hundreds of candidate genes pos-

sibly associated with genetic diseases [2]. Investigation of these candidates using

experimental methods is an expensive task, thus not always a feasible option. Conse-

quently, computational methods play an important role in prioritization and
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identification of the most likely disease-associated genes by utilizing a variety of data

sources such as gene expression [3,4], functional annotations [4-7], and protein-protein

interactions (PPIs) [3,8-14]. The scope of methods that rely on functional annotations

is limited because only a small fraction of genes in the genome are currently

annotated.

In recent years, several algorithms have been proposed to incorporate topological

properties of PPI networks in understanding genetic diseases [3,8,13]. These algorithms

mostly focus on prioritization of candidate genes and mainly exploit the notion that

the products of genes associated with similar diseases have a higher chance of being

connected in the network of PPIs. However, an important challenge for these applica-

tions is the incomplete and noisy nature of the PPI data [15]. Missing interactions and

false positives affect the accuracy of methods based on local network information such

as direct interactions and shortest distances. Few global methods based on simulation

of information flow in the network (e.g., random walks [8,13] or network propagation

[14]) get around this problem to a certain extent by considering multiple alternate

paths and whole topology of PPI networks. Nevertheless, as we demonstrate in this

paper, these methods favor genes whose products are highly connected in the network

and perform poorly in identifying loosely connected disease genes.

In this study, we propose novel statistical adjustment methods to correct for degree

bias in information flow based disease gene prioritization. These methods aim to assess

the statistical significance of the network connectivity of a candidate gene to known

disease genes. For this purpose, we use three reference models that take into account

the degree distribution of the PPI network: (i) reference model based on degree distri-

bution of known disease gene products, (ii) reference model based on the degree of

candidate gene products, and (iii) likelihood ratio test using eigenvector centrality as

the reference model.

We present comprehensive experimental results demonstrating that the proposed

statistical adjustment methods are very effective in detecting loosely connected disease

genes which are generally less studied, thus potentially more interesting in terms of

generating novel biological knowledge. However, we observe that these methods might

perform less favorably in identifying highly connected disease genes. Consequently, we

develop three uniform prioritization methods that effectively integrate existing algo-

rithms with the proposed statistical adjustment methods, with a view of delivering high

accuracy irrespective of the network connectivity of target disease genes. These meth-

ods choose the measure to rank candidate genes (raw scores vs. statistically adjusted

scores), based on several criteria that take into account the network degree of candi-

dates. Finally, we present comprehensive experimental results in the Results section.

These results show that the resulting prioritization methods, implemented in Matlab

as a suite called DADA, outperform existing approaches in identifying disease-asso-

ciated genes.

Background
In this section, we introduce the network-based disease gene prioritization problem in

a formal framework. We then discuss two information flow based disease gene prioriti-

zation algorithms that represent the state of the art in network-based disease gene

prioritization. These algorithms are random walk with restarts and network
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propagation. Next, we present detailed experimental results to demonstrate the limita-

tions of these algorithms in the context of the degree distribution of PPI networks and

ascertainment bias in interaction data. Based on these observations, we motivate our

approach of applying statistical adjustment to the scores computed by these

algorithms.

Network-based candidate disease gene prioritization

There exists a wide range of disease gene prioritization methods that are based on the

analysis of the topological properties of PPI networks. These methods commonly rely

on the observation that the products of genes that are associated with similar diseases

have a higher likelihood of physically interacting [11]. It is important to note here the

distinction between genes and their products. Genome-wide association studies focus

on identifying genes that are associated with a disease of interest. Network-based prior-

itization aims to aid this effort by inferring functional associations between genes

based on the interactions among their products, i.e., proteins. For this reason, any

reference to interactions between genes in this paper refers to the interactions between

their products.

Existing methods for network-based disease gene prioritization can be classified into

two main categories; (i) localized methods, i.e., methods based on direct interactions

and shortest paths between known disease genes and candidate genes [3,9,16], (ii) glo-

bal methods, i.e., methods that model the information flow in the cell to assess the

proximity and connectivity between known disease genes and candidate genes. Several

studies show that global approaches, such as random walk and network propagation,

clearly outperform local approaches [13,14,17]. For this reason, we focus on global

methods in this paper.

For a given disease of interest D, the input to the disease gene prioritization problem

consists of two sets of genes, the seed set S and the candidate set C. The seed set S
specifies prior knowledge on the disease, i.e., it is the set of genes known to be asso-

ciated with D and diseases similar to D. Each gene v ∈ S is also associated with a simi-

larity score s(v, D), indicating the known degree of association between v and D. The

similarity score for gene v is computed as the maximum phenotypic similarity between

D and any other disease associated with v, based on clinical description of diseases (a

detailed discussion on computation of phenotypic similarity scores can be found in the

Methods section below). The candidate set C specifies the genes, one or more of which

are potentially associated with disease D (e.g., these genes might lie within a linkage

interval that is identified by association studies). The overall objective of network

based disease prioritization is to use a human PPI network G = (V , ε,w), to compute a

score a(v, D) for each gene v ∈ C, such that a(v, D) represents the likelihood of v to be

associated with D.

The PPI network G = (V , ε,w) consists of a set of gene products V and a set of

undirected interactions E between these gene products, where uv ∈ E represents an

interaction between u ∈ V and v ∈ V. Since PPI data might be obtained from various

resources, interactions are often assigned confidence scores indicating their reliability.

In other words, the network is also associated with a function w : E → (0, 1], such that

w(uv) indicates the reliability of interaction uv ∈ E. Finally, the set of interacting part-

ners of a gene product v ∈ V is defined as N (v) = {u ∈ V : uv ∈ ε} and the total
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reliability of known interactions of v is defined as W(v) =
∑

u∈N (v)
w(uv) which we

refer as weighted degree throughout this paper. Global prioritization methods use this

network information to compute a by propagating s over G. Candidate proteins are

then ranked according to a and novel genes that are potentially associated with the

disease of interest are identified based on this ranking.

Random walk with restarts

This method simulates a random walk on the network to compute the proximity

between two nodes by exploiting the global structure of the network [18,19]. It is used

in a wide range of applications, including identification of functional modules [20] and

modeling the evolution of social networks [21]. Recently, random walk with restarts

has also been applied to candidate disease gene prioritization [8,13].

In the context of disease gene prioritization, random walk with restarts is applied as

follows. A random walk starts at one of the proteins in S. At each step, the random

walk either moves to a randomly chosen neighbor u ∈ N of the current protein v or it

restarts at one of the proteins in the seed set S. The probability of restarting at a given

time step is a fixed parameter denoted by r. For each restart, the probability of restart-

ing at v ∈ S is a function of s(v, D), i.e., the degree of association between v and the

disease of interest. For each move, the probability of moving to interacting partner u

of the current protein v is proportional to the reliability of the interaction between u

and v, i.e., w(uv). After a sufficiently long time, the probability of being at node v at a

random time step provides a measure of the functional association between v and the

genes known to be associated with D [8,13]. Algorithmically, random-walk based asso-

ciation scores can be computed iteratively as follows:

xt+1 = (1 − r)PRWxt + rρ. (1)

Here, r denotes the restart vector with ρ(u) = σ (u,D)/
∑

v∈S σ (v,D) for u ∈ S and

0 otherwise. PRW denotes the stochastic matrix derived from G, i.e., PRW(u, v) = w(uv)/

W(v) for vu ∈ E and 0 otherwise. For each v ∈ V, xt(v) denotes the probability that the

random walk will be at v at time t, where x0 = r. For each gene v, the resulting ran-

dom-walk based association score is defined as aRW(v, D) = limt®∞ xt(v). The elements

in the resulting vector a represent the proximity of each protein to the proteins in the

seed set.

Network propagation

Propagation based models have been previously shown to be effective in network based

functional annotation of proteins [22]. In recent work, Vanunu et al. [14] propose a

network propagation algorithm to compute the association between candidate proteins

and known disease genes. They define a prioritization function which models an infor-

mation pump that originates at the seed sets. This idea is very similar to that of ran-

dom walk with restarts, with one key difference. Namely, in network propagation, the

flow of information is normalized by not only the total outgoing flow from each node,

but also the total incoming flow into each node.
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In other words, the matrix PRW is replaced by a matrix PNP, in which each entry is

normalized with respect to row and column sums. The resulting propagation based

model can also be simulated iteratively as follows:

yt+1 = (1 − r)PNPyt + rρ. (2)

Here, the propagation matrix PNP is computed as PNP(u, v) = w(uv)/
√
W(u)W(v) for

uv ∈ E, 0 otherwise. For each v ∈ V, yt(v) denotes the amount of disease association

information at node v at step t, where y0 = r. For each gene v, the resulting network

propagation based association score is defined as aNP(v, D) = limt®∞ yt(v). In this

model, 0 ≤ r ≤ 1 is also a user-defined parameter that is used to adjust the relative

importance of prior knowledge and network topology.

Role of network degree

In order to motivate our approach, we evaluate here the performance of random walk

with restarts and network propagation with respect to the network degree (number of

known interactions) of candidate genes. As shown in Figure 1, these methods are

clearly biased toward scoring highly connected proteins higher. In this figure, the per-

formance measure is the average rank of the true candidate protein among other 99

proteins in the same linkage interval (please see the Methods section for a description

of the experimental set-up used to generate these results). As evident in the figure,

existing global methods work very well in predicting highly connected proteins,

whereas they perform quite poorly for loosely connected proteins, especially for those

with degree less than 6. Furthermore, as seen in Figure 2, the degree distribution of

known disease genes is slightly biased toward highly connected genes, however there

exist many disease genes that are loosely connected as well. For this reason, it is at
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Figure 1 The effect of connectivity of the target gene on the performance of existing methods. The
performance of existing information flow based methods depends on the number of known interactions
of the true disease gene. x-axis represents number of interactions, y-axis represents the average rank of
true disease genes with the corresponding degree.
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least as important to correctly identify loosely connected disease genes as to identify

those that are highly connected, in order to remove the effect of ascertainment bias in

PPI data and known disease associations. In this context, the term ascertainment bias

refers to the distortion in the degree distribution of PPI networks that might result

from the difference in how different proteins are assayed for interactions. In particular,

it is expected that highly studied proteins in the literature generally have more known

interactions and disease associations compared to those that are less studied.

The dependency of performance on network degree can be understood by carefully

inspecting the formulation of random walk and network propagation models. Random

walk with restarts is actually a generalization of Google’s well-known page-rank algo-

rithm [23]. Indeed, for r = 0, a is solely a measure of network centrality. Therefore, for

any r >0, a(v, D) contains a component that represents the network centrality of v, in

addition to its association with D. Network propagation alleviates this problem by nor-

malizing the incoming flow into a gene, therefore provides a slightly more balanced

performance compared to random walk with restarts. However, as evident in the fig-

ure, its performance is still influenced heavily by node degrees. Motivated by these

insights, we argue that the association scores computed by these algorithms have to be

statistically adjusted with respect to reference models that take into account the degree

distribution of the network.

Methods
In this section, we propose several reference models for assessing the significance of

network-based disease association scores. Subsequently, we discuss how these models

can be used in conjunction with existing methods to obtain uniform prioritization

methods that can deliver high accuracy regardless of the centrality of candidate genes.

Next, we introduce the disease and PPI datasets and the details of the experimental

settings used.

Reference Models for Statistical Adjustment

Here, we consider three different reference models for assessing the significance of dis-

ease association scores obtained by an information flow based prioritization algorithm:
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Figure 2 Histogram of the number of interactions of disease genes and all genes in the network.
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(i) a model that compares the association scores of candidate genes computed using

the original seed set with an empirical distribution that is obtained by using randomly

generated seed sets that match the degree distribution of the original seed set, (ii) a

model that compares the association scores of candidate genes to an empirical distri-

bution that is derived from other genes with similar degree in the network, using a

fixed seed set, (iii) a model that assesses the likelihood-ratio of the association of a

gene with the seed set with respect to its network centrality. Here, for the sake of

clarity, we describe each model assuming that random walk based restarts is used to

compute raw association scores, however, the methods are directly applicable to net-

work propagation as well (we also drop the subscript RW from our notation for

simplicity).

Reference model based on seed degrees

The objective here is to generate a reference model that captures the degree distribu-

tion of seed proteins accurately. To this end, we compare the association score a(v, D)
for each protein with scores computed using random seed sets (by preserving the

degree distribution of the seed genes). The expectation here is that false positives that

correspond to centralized and highly connected proteins will have high association

scores even with respect to these randomly generated seed sets. Such an observation

implies that their observed association with the actual seed set is most likely artificial,

thus the statistical significance of their association score is low. On the other hand,

loosely connected proteins that lie close to the seed proteins will be assigned high sig-

nificance although their association scores are generally lower than that of highly con-

nected proteins.

Given a disease D, seed set S, and candidate set C, this reference model is implemen-

ted as follows:

• We first compute network-based association scores a(v, D) for the original seed

set S, using the procedure described by Equation 1.

• Then, based on the original seed set S, we generate a random instance S(i) that

represents S in terms of weighted degree distribution. S(i) is generated as follows:

- First, a bucket B(u) is created for each protein u ∈ S.
- Then, each protein v ∈ V is assigned to bucket B(u) if W (v) − W (u) < W (v)

− W (u’) for all u′ ∈ S, where ties are broken randomly.

- Subsequently, S(i) is generated by choosing a protein from each bucket uni-

formly at random. It can be observed that each protein in S is represented by

exactly one protein in S(i), thus the total weighted degree of proteins in S(i) is

expected to be very close to that of S.
• For 1 ≤ i ≤ n, the association scores a(i) for seed set S(i) are computed using

Equation 1. Here, n is a sufficiently large number that is used to obtain a represen-

tative sampling {a(1), a(2), a(3), ..., a(n)} of the population of association scores for

seed sets that match the size and degree distribution of S (we use = 1000 in our

experiments).

• We then estimate the mean of this distribution as μS =
∑

1≤i≤n
α(i)/n and the

standard deviation as σ 2
S =

∑
1≤i≤n

((α(i) − μS)(α(i) − μS)
T
)/(n − 1).
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• Finally, we compute the adjusted score for each gene v as

αSD(v,D) = (α(v,D) − μS)/σS.

This statistical adjustment strategy is illustrated in Figure 3. Note that, since the mul-

tiple hypotheses being tested here are compared and ranked against each other (as

opposed to accepting/rejecting individual hypotheses), it is not necessary to perform

correction for multiple hypothesis testing.

Reference model based on candidate degree

This reference model aims to assess the statistical significance of the association score

of a protein v with respect to a population of association scores that belong to proteins

with weighted degree similar to that of v. For protein v, if other proteins with similar

weighted degrees usually have high association scores for a given seed set, the statisti-

cal significance of the association score of v can be considered low. On the other hand,

loosely connected proteins are compared to other loosely connected proteins, which

potentially have lower association scores, thus the artificial advantage of the highly

connected proteins is removed.

This reference model is generated as follows:

• First, we compute the network-based association vector a with respect to the

given seed set S, again using Equation 1.

• Then, for each candidate gene v ∈ C, we select the n genes in the network with

smallest W (v) − W (u) to create a representative set M(v) that contains the n

genes most similar to v in terms of their weighted degree (n = 1000 in our

experiments).

Figure 3 Statistical adjustment based on seed degrees. First, the association score of a candidate with
respect to the original seed set is computed. After generating a large number of random seed sets that
represent the original set in terms of the degree distribution and size, association score of the candidate is
computed using each of these random sets separately. Adjusted score of the candidate protein is then
calculated as the statistical significance of the original association score, using this random population of
association scores.
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• Subsequently, for each gene v ∈ C, we estimate the mean association score of its

representative population as μ(v) =
∑

u∈M(v) α(u)/|M(v)| and the standard devia-

tion of association scores as σ 2(v) =
∑

u∈M(v)
(αS(u) − μ(v))/(|M(v)| − 1).

• Finally, we compute the adjusted score of each candidate gene v as

αCD(v,D) = (αS(v,D) − μ(v))/σ (v).

In Figure 4, we illustrate this statistical adjustment strategy.

Likelihood-ratio test using eigenvector centrality

Here, we assess the association of a gene with the seed set using a likelihood-ratio test.

More precisely, considering aRW(v, D) as the likelihood of v being associated with the

seed set S for disease D, we compare this likelihood with the likelihood of v being

associated with any other gene product in the network. To compute the likelihood of

v’s association with any other gene in the network, we use eigenvector centrality [23],

which is precisely equal to the random walk based association score of v for zero

restart probability (r = 0).

The objective here is to remove the bias introduced by network centrality, since

central nodes are favored in the prioritization process by existing methods. The

centrality score of a protein is computed again by simulating random walks, but

this time with no restarts. More formally, the vector a that contains the association

of each protein to the seed set is computed as in Equation 1 with restart probability

r >0 (the selection of a particular value of r is discussed in detail in the Results sec-

tion), while the centrality score of each protein is computed by setting r = 0.

Indeed, setting r = 0 corresponds to the case where the seed set is empty, thereby

making the resulting association score solely a function of the proteins’s network

Figure 4 Statistical adjustment based on candidate degree. First, the association score of a candidate
with respect to the original seed set is computed. Next, association scores of a large number of randomly
selected proteins with similar degree to the candidate are computed using the original seed set. Adjusted
score of the candidate protein is then calculated as the statistical significance of the original association
score, using this random population of association scores.
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centrality. For each v ∈ C, the eigenvector centrality based log-likelihood score is

computed as:

αEC(v, D) = log
α(r>0)(v,D)
α(r=0)(v,D)

. (3)

We illustrate these concepts on a small sample network in Figure 5, where we show

the relative scores of two candidates computed using (i) network proximity with

respect to seed proteins, (ii) eigenvector centrality and (iii) the log-likelihood ratio test.

Uniform Prioritization

As we demonstrate in the next section, the statistical adjustment strategies presented

above improve the performance of global prioritization algorithms in identifying

loosely connected disease genes. However, this comes at the price of increased number

of false negatives for highly connected disease genes. Motivated by this observation, we

propose several uniform scoring strategies that aim to take advantage of both raw and

Figure 5 Likelihood-ratio test using eigenvector centrality. This statistical adjustment strategy is based
on the eigenvector centrality of the candidate proteins. For the given sample network, seed proteins are
represented by blue nodes and the intensity of the color of the candidates is proportional to their scores
computed via different methods. In (i), two candidates are scored based on their proximity to seed
proteins, calculated using random walk with restarts. In (ii), candidate proteins are scored based on their
eigenvalue centrality in the network (without using any seed information). Finally in (iii), scores are
assigned to candidates using the log-likelihood ratio of the values computed in (i) and (ii). Although the
highly connected candidate (in the center of the network) is scored higher than the loosely connected
candidate in (i) and (ii), the log-likelihood ratio of both candidates is similar as illustrated in (iii) since the
association scores are adjusted by the centrality of the nodes in the network.
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statistically adjusted scores. The idea here is to derive a uniform prioritization method

that uses the adjusted scores for loosely connected candidate genes, while using the

raw scores for highly connected candidate genes.

For this purpose, we first sort the raw crosstalk scores (aRW or aNP ) of candidate

genes in descending order. Let RRAW(v) denote the rank of gene v ∈ C in this ordering.

Clearly, for u, v ∈ C, RRAW(v) < RRAW(u) indicates v is more likely to be associated with

the disease than u is. Similarly, we sort the statistically adjusted scores (aSD, aCD, or

aEC) in descending order, to obtain a rank RADJ(v) for each gene v ∈ C.
We propose three alternate strategies for merging these two rankings to obtain a

uniform ranking RUNI, where the objective is to have RUNI(v) < RUNI(u) if gene v is

associated with the disease, while gene u is not. Once RUNI(v) is obtained using one of

the following methods, we map it into the interval [1, |C|] in the obvious way.

Uniform prioritization based on the degree of candidate gene

This uniform prioritization method chooses the ranking of each candidate gene based

on its own weighted degree. Namely, for a given user-defined threshold l, we define

R(C)
UNI

as:

R(C)
UNI(v) =

{
RRAW(v) if W(v) > λ

RADJ(v) otherwise
(4)

for each v ∈ C. Thus the ranking of a highly connected gene is based on its raw asso-

ciation score, while that of a loosely connected gene is based on the statistical signifi-

cance of its association score. Note that, with respect to this definition, the ranking of

two genes can be identical, but there cannot be more than two genes with identical

ranking. In the case of a tie, the tie is broken based on the unused ranking of each

gene.

Optimistic uniform prioritization

This approach uses the best available ranking for each candidate gene, based on the

expectation that a true disease gene is more likely to show itself in at least one of the

rankings as compared to a candidate gene that is not associated with the disease.

Namely, we define R(O)
UNI

as:

R(O)
UNI(v) =

{
RRAW(v) ifRRAW(v) < RADJ(v)
RADJ(v) otherwise

(5)

for each v ∈ C. Again, ties are broken based on the unused rankings.

Uniform prioritization based on degree of known disease genes

Based on the notion that some diseases are studied more in detail compared to other

diseases, we expect the degrees of genes associated with similar diseases to be some-

what close to each other. Statistical tests on disease associations currently available in

the OMIM (Online Mendelian Inheritance in Man) database confirms this expectation

(data not shown). We take advantage of this observation to approximate the network

degree of the unknown disease gene in terms of the weighted degrees of the known

disease genes. This enables having a global criterion for choosing the preferred ranking

for all genes, as opposed to the gene-specific (or “local”) criteria described above.
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For a given seed set S, we first compute d̄(S) = (
∑

u∈S W(u))
/|S|. Subsequently, if

d̄(S) > λ (where l is defined as above), we set R(S)
UNI(v) = RRAW(v) for all v ∈ C, other-

wise, we set R(S)
UNI(v) = RADJ(v). Observe that, this approach is global, i.e. rankings used

do not depend on the weighted degree of each candidate gene, but the average

weighted degree of the seed set. On the other hand, the other two uniform prioritiza-

tion methods presented earlier are local, i.e. ranking used for each candidate gene

depends on the gene being considered.

Datasets

We test and compare the proposed methods on a comprehensive set of disease asso-

ciation data, using an integrated human PPI network in which interactions are asso-

ciated with reliability scores. We describe these datasets in detail below.

Disease Association and Phenotypic Similarity Data

We obtain disease information from the Online Mendelian Inheritance in Man

(OMIM) database. OMIM provides a publicly accessible and comprehensive database

of genotype-phenotype relationship in humans. We map genes associated with diseases

to our PPI network and remove those diseases for which we are unable to map more

than two associated genes. After this step, we have a total of 206 disease families with

at least 3 associated genes. Number of genes associated with these diseases ranges

from 3 to 36, with the average number of associations for each disease being approxi-

mately 6.

As mentioned previously, proteins associated with similar diseases or phenotypes lie

in close proximity in the PPI network. This brings the idea of utilizing disease similar-

ity information in to identification of disease genes [3,14]. Driel et al. [24] incorporate

disease similarity information using a text mining algorithm that can be summarized

as follows:

• First, each OMIM record is parsed and the keywords are searched for existence

in the anatomy (A) and the disease (C) sections of the Medical Subject Headings

Vocabulary (MeSH), which is a controlled vocabulary of U.S. National Library of

Medicine. MeSH is especially useful for applications that use information that con-

tains different terminology for identical concepts.

• Each OMIM record is then represented by binary vectors where each entry of the

vector corresponds to the existence of a term in that record.

• Similarity of two diseases is then computed by calculating the cosine of the angle

between their representative vectors.

After these calculations, a similarity score between 0 and 1 for every pair of OMIM

diseases is available. This disease similarity information is used to compute the prior

association between each gene and the disease of interest as follows: Let dc denote the

disease of interest, θ = {d1, d2, d3, ..., dt} represent the set of other diseases for which

information is available and j(di, dj ) denote the similarity between diseases di and dj.

Also, let Si denote the set of genes associated with disease di. Note that, these sets are

not always disjoint, i.e. there are some genes that are associated with multiple diseases.
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For the disease of interest dc, these methods consider other diseases di in θ such that

j(dc, di) > g where g is a user-defined threshold that is used to decide which diseases

are considered similar. We follow [14] and utilize a logistic function to represent these

similarity scores based on the empirical findings related to setting of g in [24]. Now

since vector s(v, D) in Equations 1 and 2 represent the prior information on the asso-

ciation between each gene and the disease dc, s(v, D) can be set to the similarity of

the disease that involves gene v and the disease of interest dc.

Note that, if a gene is associated with more than one disease, its prior association

score with dc is set to the maximum of the similarity scores of dc and the diseases it is

associated with.

Protein-Protein Interaction (PPI) Data

In our experiments, we use the human PPI data obtained from NCBI Entrez Gene

Database [25]. This database integrates interaction data from several other databases

available, such as HPRD, BioGrid, and BIND. After the removal of nodes with no

interactions, the final PPI network contains 8959 proteins and 33528 distinct interac-

tions among these proteins. Using a logistic regression model, we also assign reliability

scores to each of these PPIs [26,27]. In this logistic regression model, we incorporate

(i) the Pearson correlation of expression measurements across a range of different tis-

sues and conditions for the corresponding coding genes (denoted X1(uv) for proteins u

and v), (ii) the proteins’ small world clustering coefficient (denoted X2(uv)) [28], and

(iii) the proteins’ subcellular localization data (denoted X3(uv)) [29,30]. For correlation

of gene expression, the expression profiles of normal human tissues measured in the

Human Body Index Transcriptional Profiling are used (GSE7307) [31]. In total, 213

normal samples are processed, representing over 90 distinct tissue types and a global

expression correlation is acquired for each pair of interacting partners. The protein

subcellular localization data is used to eliminate interactions that are not biologically

relevant, based on the expectation that proteins that are not co-localized are not likely

to interact with each other. Although proteins travel in the cell and can coexist in mul-

tiple compartments, incorporation of subcellular localization data helps eliminate many

false negative interactions.

Once these statistics are obtained for each pair of proteins, we compute the reliabil-

ity of interaction uv ∈ E as the probability of a true interaction between u and v given

X (uv) = (X1(uv), X2(uv), X3(uv)), under the logistic distribution. Namely, we define

w(uv) = P(I(uv)|X(uv)) = 1

1+e−β0−∑3
i=1

βiXi(uv) , where I(uv) is the indicator random variable

representing the existence of a true interaction between u and v. The parameters b0,
b1, b2, and b3 are optimized to maximize the likelihood of a true interaction using

training data that includes true positive, as well as true negative interactions. For this

purose, we randomly select 1000 PPIs from the MIPS [32] database of interactions, an

accepted gold standard for true positive interactions. The negative training set is

acquired from randomly selected PPIs that are reported in Negatome, a database of

proteins that are known not to interact with each other [33]. These experiments that

involve random true positive and true negative interactions are repeated 1000 times

and optimal values for all parameters are determined. Finally, the probability of each

interaction, i.e., its reliability score, is calculated using these parameters.
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Experimental Setting

In order to evaluate the performance of different methods in terms of accurately prior-

itizing disease-associated genes, we apply leave-one-out cross-validation. For each gene

that is associated with a disease, we conduct the following experiment:

• We remove that gene from the set of genes associated with the disease. We call

the gene that is removed the target gene for that experiment. The remaining genes

associated with the disease compose the seed set S.
• We generate an artificial linkage interval, containing the target gene with other 99

genes located nearest in terms of genomic distance. The genes in this artificial link-

age interval (including the target gene) compose the candidate set C. Note that,

according to our experiments, the size of candidate set does not have a significant

effect on the performance difference between different methods as long as it is

greater than 20 (data not shown).

• Using each of the methods described in the previous section, we obtain a ranking

of candidate genes and use this ranking to predict disease genes.

In order to systematically compare the performance of different methods, we use the

following evaluation criteria:

ROC curves

We plot ROC curves, i.e., sensitivity vs. 1-specificity, by thresholding the rank to be

considered a “predicted disease gene” from 1 to 100. Sensitivity (recall) is defined as

the percentage of true disease genes that are ranked above the particular threshold,

whereas specificity is defined as the percentage of all genes that are ranked below the

threshold. The area under ROC curve (AUC) is used as a measure to assess the perfor-

mance of different methods. Note that, AUC is a conservative measure for this experi-

mental set-up since there exists only one true positive (the target gene) for each

experiment. For this reason, we also use other performance criteria that take into

account the rank of the target gene.

Average rank

This is the average rank of the target gene among all candidate genes, computed across

all disease-gene pairs in a total of ten executions of the experiments. Clearly, a lower

number for average rank indicates better performance.

Percentage of the disease genes ranked in top 1% and 5%

Percentages of true disease genes that are ranked as one of the genes in the top 1%

(practically, the top gene) and also in the top 5% among all candidates are also

reported.

Results and Discussion
In this section, we comprehensively evaluate the performance of the methods pre-

sented in the previous section. We start our discussion by investigating the effect of

selection of the restart probability in random walk with restarts and network propaga-

tion algorithms. We then discuss in detail the effect of using the statistical adjustment

methods. Next, we evaluate the performance of proposed uniform prioritization strate-

gies and show that our final uniform method outperforms existing methods for net-

work-based disease gene prioritization.
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Selection of Restart Probability

The restart probability represented by r in Equations 1 and 2 is a parameter that is

used to adjust the preference between the importance of a protein with respect to the

seed set and network topology. The effect of the selection of the restart probability is

minor unless a very small value is used [34]. The performance degrades significantly

for the values r ≤ 0.01, which is expected because the effect of the seed genes is mini-

mized in that case, thus the proximity of a protein is calculated based primarily on the

centrality of that protein in the network. We observe that r = 0.3 is optimal for the

performance of both random walk with restarts and network propagation algorithms,

after running the algorithms with small increments of r [34]. Thus, r is set to 0.3 in all

experiments presented in this paper, for all algorithms.

Performance of Statistical Adjustment Methods

As mentioned before, the performance of existing methods is highly biased with the

connectedness of the true candidate protein. The effect of the total number of interac-

tions of true disease gene on the performance of global methods is demonstrated in

Figure 1. To investigate the effect of weighted degree on the proposed statistical

adjustment strategies and existing methods, we compare the results achieved by differ-

ent methods by considering the true disease genes with low weighted degree (≤ m)

and with high weighted degree (> m) separately where m = (
∑

v∈V W(v))
/|V | is the

average weighted degree of all genes(m = 4.23 in our experiments). These results are

shown in Table 1. As seen in the table, all of the three statistical adjustment methods

outperform existing methods for loosely connected genes. On the other hand, existing

approaches (raw scores) perform better for highly connected genes compared to the

statistical adjustment methods. For this reason, when we consider the overall perfor-

mance across all genes, the performance difference appears to be minor. However, as

evident in the ROC curve in Figure 6, when all genes are considered, the statistical

adjustment methods still perform better than existing methods. Next, we investigate

how the proposed uniform prioritization methods improve the performance of these

statistical adjustment methods.

Performance of Uniform Prioritization

Here, we systematically investigate the performance of the proposed uniform prioritiza-

tion methods, by considering the combination of each of these methods with each of

Table 1 The effect of statistical adjustment on performance.

All Genes Degrees ≤ m Degrees >m

Method Avg. Rank AUROC Avg. Rank AUROC Avg. Rank AUROC

Network Propagation 22.75 0.77 30.00 0.70 15.57 0.84

Random walk w/restarts 23.75 0.76 34.76 0.65 12.82 0.88

Based on seed degree 21.42 0.78 21.51 0.79 21.35 0.79

Based on candidate degree 19.50 0.81 21.20 0.79 17.82 0.82

Based on centrality 20.40 0.80 24.35 0.75 16.47 0.84

The effect of statistical adjustment on performance. Average Rank of the true disease genes and AUC values are listed.
To demonstrate the effect of connectivity, we also provide separate results for the cases in which the weighted degree

of true disease gene is ≤ m and >m where m = (
∑

v∈V W(v))
/|V | is the average weighted degree of all genes (m

= 4.23 in our experiments).
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the three statistical adjustment methods (a total of nine combinations) applied in con-

junction with random walk with restarts. In these experiments, the degree threshold l
is set to the average weighted degree of all genes. For convenience, we refer to each

uniform prioritization method using the corresponding ranking symbol introduced in

the previous section (R(C)
UNI, R

(O)
UNI, or R

(S)
UNI).

The average rank and AUC for the nine combinations of proposed methods are

listed in Table 2. As seen in the table, it is difficult to choose between the proposed

methods. We suggest that the uniform prioritization method based on seed degree

(R(C)
UNI), combined with statistical adjustment based on centrality, can be considered the

“winner”, since this approach is the only one that outperforms existing approaches in

all performance metrics used. This setting is provided as the default combination of

statistical adjustment and uniform prioritization methods in Matlab distribution of

DADA. However, users are also given the option to configure these methods based on

their needs, since the performance of these methods can be variable on different data-

sets. We compare this combination of proposed algorithms to existing global methods

in Table 3 and Figure 7. These results reflect the best performance that can be

achieved by DADA on the OMIM dataset. These results clearly show that DADA out-

performs existing methods with respect to all performance criteria, however, the over-

all performance of DADA and Network Propagation are quite close to each other.
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Figure 6 ROC curves for the proposed statistical adjustment strategies and existing methods.

Table 2 Performance of all combinations of uniform prioritization methods.

Candidate deg. Seed deg. Centrality

R(C)
UNI R(O)

UNI R(S)
UNI R(C)

UNI R(O)
UNI R(S)

UNI R(C)
UNI R(O)

UNI R(S)
UNI

Avg. Rank 20.89 20.82 20.56 21.07 21.10 21.38 21.14 20.95 21.52

AUROC 0.80 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.79

Perc. ranked in top 1% 28.18 26.70 28.01 24.63 24.07 26.18 27.85 27.93 29.41

Perc. ranked in top 5% 52.67 52.67 52.01 51.77 51.93 50.92 53.16 52.91 53.57
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Furthermore, careful inspection of average rank with respect to the number of interac-

tions of true disease gene in Figure 8 shows that, this method almost matches the per-

formance of the best performing algorithm for each degree regime. Namely, if the

target gene is loosely connected, our uniform prioritization method performs similar to

statistically adjusted version of the random walk with restarts algorithm. On the other

hand, it performs similar to the original random walk with restarts algorithm (with raw

scores) for highly connected target genes.

Case Example

Here, we provide a real example to demonstrate the power of the proposed method in

identifying loosely connected disease genes. We focus on Microphthalmia since it pro-

vides a clear example to illustrate the power of statistical adjustment in detecting true

disease genes with few known interactions. Microphthalmia has 3 genes directly asso-

ciated with it in the PPI network, namely SIX6, CHX10 and BCOR. In our experiments,

we remove SIX6 and try to predict this gene using the other two genes, as well genes

associated with diseases similar to Microphthalmia. This experiment is illustrated in

Figure 9. The figure shows the 2-neighborhood of proteins SIX6, CHX10 and BCOR.

As seen in the figure, the global methods fail because the product of SIX6 is not a cen-

tralized protein with a degree of only 1. Thus, random walk with restarts model ranks

this true gene as 26th and network propagation ranks it 16th among 100 candidates.

On the other hand, our method is able to correctly rank this gene as the 1st candidate.

Table 3 Comparison of the proposed method with existing approaches.

METHOD Avg. Rank AUROC Perc. Ranked in top 1% Perc. Ranked in top 5%

DADA 21.52 0.79 29.41 53.57

Network propagation 22.75 0.77 28.18 51.52

Random walk w/restarts 23.75 0.76 29.25 51.76
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Figure 7 ROC curves comparing the overall performance of DADA against existing methods.
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Both random walk and network propagation rank the gene AKT1 top among all candi-

dates, which, not surprisingly, is a high degree protein (78), also connected to other

hub proteins.

Conclusions
In this paper, we have shown that approaches based on global network properties in

prioritizing disease-associated genes are highly biased by the degree of the candidate
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Figure 8 The effect of connectivity of the target gene on overall performance of DADA. Comparison
of the performances of the proposed uniform prioritization method and existing methods with respect to
the number of interactions of the target gene.

Figure 9 Case Example. Case example for the Microphthalmia disease. Products of genes associated with
Microphthalmia or a similar disease are shown by green circles, where the intensity of green is
proportional to the degree of similarity. The target disease gene that is left out in the experiment and
correctly ranked first by our algorithm is represented by a red circle. The gene that is incorrectly ranked
first for both of the existing global approaches is shown by a diamond. Other candidate genes that are
prioritized are shown by yellow circles.
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gene, thus perform poorly in detecting loosely connected disease genes. We proposed

several statistical adjustment strategies that improve the performance, particularly in

identifying loosely connected disease genes. We have shown that, when these adjust-

ment methods are used together with existing global methods, the resulting method

outperforms existing approaches significantly. These results clearly demonstrate that,

in order to avoid exacerbation of ascertainment bias and propagation of noise, net-

work-based biological inference methods have to be supported by statistical models

that take into account the degree distribution. DADA is freely available for download

at http://compbio.case.edu/dada/.
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