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Abstract

Background: The ability to accurately classify cancer patients into risk classes, i.e. to
predict the outcome of the pathology on an individual basis, is a key ingredient in
making therapeutic decisions. In recent years gene expression data have been
successfully used to complement the clinical and histological criteria traditionally
used in such prediction. Many “gene expression signatures” have been developed, i.e.
sets of genes whose expression values in a tumor can be used to predict the
outcome of the pathology. Here we investigate the use of several machine learning
techniques to classify breast cancer patients using one of such signatures, the well
established 70-gene signature.

Results: We show that Genetic Programming performs significantly better than
Support Vector Machines, Multilayered Perceptrons and Random Forests in classifying
patients from the NKI breast cancer dataset, and comparably to the scoring-based
method originally proposed by the authors of the 70-gene signature. Furthermore,
Genetic Programming is able to perform an automatic feature selection.

Conclusions: Since the performance of Genetic Programming is likely to be
improvable compared to the out-of-the-box approach used here, and given the
biological insight potentially provided by the Genetic Programming solutions, we
conclude that Genetic Programming methods are worth further investigation as a
tool for cancer patient classification based on gene expression data.

Background
Current cancer therapies have serious side effects: ideally type and dosage of the

therapy should be matched to each individual patient based on his/her risk of

relapse. Therefore the classification of cancer patients into risk classes is a very

active field of research, with direct clinical applications. Until recently patient classi-

fication was based on a series of clinical and histological parameters. The advent of

high-throughput techniques to measure gene expression led in the last decade to a

large body of research on gene expression in cancer, and in particular on the possi-

bility of using gene expression data to improve patient classification. A gene signa-

ture is a set of genes whose levels of expression can be used to predict a biological

state (see [1]): in the case of cancer, gene signatures have been developed both to

distinguish cancerous from non-cancerous conditions and to classify cancer patients
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based on the aggressiveness of the tumor, as measured for example by the probabil-

ity of relapsing within a given time.

While many studies have been devoted to the identification of gene signatures in

various types of cancer, the question of the algorithms to be used to maximize the

predictive power of a gene signature has received less attention. To investigate this

issue systematically, we considered one of the best established gene signatures, the

70-gene signature for breast cancer [2], and we compared the performance of four

different machine learning algorithms in using this signature to predict the survival

of a cohort of breast cancer patients. The 70-gene signature is a set of microarray

features selected in [2] based on correlation with survival, on which the molecular

prognostic test for breast cancer “MammaPrint"™ is based. While several machine

learning algorithms have been used to classify cancer samples based on gene expres-

sion data [3-8], in this work we performed a systematic comparison of the perfor-

mance of four machine learning algorithms using the same features to predict the

same classes. In our comparison, feature selection is thus not explicitly performed as

a pre-processing phase before executing the machine learning algorithms1. We con-

sidered GP, Support Vector Machines, Multilayered Perceptrons and Random For-

ests, and we applied them to the problem of using the 70-gene signature to predict

the survival of the breast cancer patients included in the NKI dataset [9]. This is

considered one of the gold-standard datasets in the field, and the predictive power

of the 70-gene signature on these patients was already shown in [9]. In this prelimin-

ary study we tried to use all the methods in an “out-of-the-box” version so as to

obtain a first evaluation, as unbiased as possible, of the performance of the methods.

Previous and Related Work
Many different machine learning methods [10] have already been applied for microar-

ray data analysis, like k-nearest neighbors [11], hierarchical clustering [12], self-orga-

nizing maps [13], Support Vector Machines [14,15] or Bayesian networks [16].

Furthermore, in the last few years Evolutionary Algorithms (EA) [17] have been used

for solving both problems of feature selection and classification in gene expression

data analysis. Genetic Algorithms (GAs) [18] have been employed for building selec-

tors where each allele of the representation corresponds to one gene and its state

denotes whether the gene is selected or not [19]. GP on the other hand has been

shown to work well for recognition of structures in large data sets [20]. GP was

applied to microarray data to generate programs that reliably predict the health/malig-

nancy states of tissue, or classify different types of tissues. An intrinsic advantage of

GP is that it automatically selects a small number of feature genes during the evolu-

tion [21]. The evolution of classifiers from the initial population seamlessly integrates

the process of gene selection and classifier construction. In fact, in [8] GP was used

on cancer expression profiling data to select potentially informative feature genes,

build molecular classifiers by mathematical integration of these genes and classify

tumour samples. Furthermore, GP has been shown a promising approach for discover-

ing comprehensible rule-based classifiers from medical data [22] as well as gene

expression profiling data [23]. The results presented in those contributions are

encouraging and pave the way to a further investigation of GP for this kind of data-

sets, which is the goal of this paper.
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Results and Discussion
Predictive Power of Machine Learning Methods

We used the NKI breast cancer dataset [9], providing gene expression and survival

data for 295 consecutive breast carcinoma patients. We considered only the expression

data for the genes included in the “70-gene” signature [2].

Both survival and gene expression data were transformed into binary form. For the

survival data, we defined the outcome as the survival status of the patient at time tend
= 10.3 years. By choosing this particular endpoint we balanced the number of dead

and alive patients: out of 148 patients for which the status at tend is known, 74 were

dead and 74 were alive. Binary expression data were obtained by replacing all positive

logarithmic fold changes in the original dataset with 1 and all negative and missing

ones with 0.

Our dataset is a matrix H = [H(i , j)] of binary values composed by 148 rows

(instances) and 71 columns (features), where each line i represents the gene signature

of a patient whose binary target (0 = survived after tend years, 1 = dead for breast can-

cer before tend years) has been placed at position H(i,71). In this way, the last column of

matrix H represents all the known target values. Our task is now to generate a map-

ping F such that F (H(i,1), H(i,2) , ..., H (i,70)) = H(i,71) for each line i in the dataset. Of

course, we also want F to have a good generalization ability, i.e. to be able to assess

the target value for new patients, that have not been used in the training phase. For

this reason, we used a set of machine learning techniques, as discussed in Section

Methods. To compare the predictive power of the computational methods, we per-

formed 50 independent choices of training and test set, the training set including 70%

of the patients and the test set the remaining 30%. The various prediction methods

were then run on these datasets, so that the choice of training and testing sets in each

run was the same for all methods.

Table 1 summarizes the results returned by each machine learning method on the 50

runs. The first line indicates the different methods, the second line shows the best (i.e.

lowest) value of the incorrectly classified instances obtained on the test set over the 50

runs, and the third line reports the mean performances of each group of 50 runs on

their test sets, together with the corresponding standard error of mean (SEM).

As Table 1 clearly shows, the best solutions were found by GP and Multilayered Per-

ceptrons and the best average result was found by GP. Moreover, statistical analysis

indicates that GP consistently outperforms the other methods except SVM using poly-

nomial kernel with degree 2. In fact, as it can be seen in Table 2, the difference

between the various average results is statistically significant (P-value 3.05 × 10-5 for

Table 1 Experimental comparison between the number of incorrectly classified instances
found on the test sets by the different machine learning methods.

GP SVM-K1 SVM-K2 SVM-K3 MP RF

best 10 13 14 15 10 12

average (SEM) 16.40 (0.30) 18.32 (0.37) 16.76 (0.18) 17.62 (0.17) 18.08 (0.39) 17.60 (0.35)

Each method was independently run 50 times using each time a different training/test partition of the validation dataset
(see text for details). The first line indicates the method: Genetic Programming (GP), Support Vector Machine with
exponent for the polynomial kernel 1.0 (SVM-K1), 2.0 (SVM-K2), and 3.0 (SVM-K3), Multilayer Perceptrons (MP), and
Random Forest (RF). The second line shows the best value of the incorrectly classified instances obtained on the test set
over the 50 runs, and the third line reports the average performances of each group of 50 runs on their test sets
(standard error of mean is shown in parentheses).
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ANOVA test on the 4 samples of solutions found by each method). Finally, pairwise 2-

tailed Student t-tests comparing GP with each other method demonstrate its general

better performance. These statistical tests were performed since there was no evidence

of deviation from normality or unequal variances.

The solutions found by GP typically use a rather small number of features (i.e. term-

inals). In fact, the solutions of the 50 GP runs are functions of a number of terminal

that ranges from 1 to 23, with a median value of 4, and first and third quartiles of 2

and 7 respectively. Few of these features tend to recur in several solution as it can be

seen in Table 3, where the gene symbol, the gene name of each feature, together with

the number of solutions where the feature occurs are shown.

Comparison with the Scoring Method

The authors of Ref. [9] used the seventy-gene signature by computing the correlation

coefficient between the expression profile of the patient (limited to the 70 genes of the

signature) and a previously computed typical expression profile of a good prognosis

patient. To compare the performance of the various machine learning algorithms with

this scoring system we proceeded as follows:

• We obtained the prognostic score s of the patients (excluding the ones used to

train the signature in [2]) from the Supplementary Material of [9], and classified as

good prognosis the patients with s > 0.4 and as bad prognosis the ones with s ≤

0.4. This is the cutoff used in [9].

• We generated 50 random lists of 44 patients from this set, to match the statistic

used for machine learning techniques, and computed for each list the number of

false predictions given by the scoring method.

Table 2 Statistical significance of the difference in performance between the methods.

ANOVA
P = 3.05 × 10-5

GP vs. SVM-K1
P = 0.0001

GP vs. SVM-K2
P = 0.3107

GP vs. SVM-K3
P = 0.0008

GP vs. MP
P = 0.0009

GP vs. RF
P = 0.0103

First line shows ANOVA test on the 6 samples of solutions found by each method, while second line depicts pairwise 2-
tailed Student t-tests comparing GP with each other method.

Table 3 The 10 most recurring features in the solutions found by GP.

Accession ID Gene name Gene description Solutions

NM_003981 PRC1 protein regulator of cytokinesis 1 48

NM_002916 RFC4 replication factor C (activator 1) 4, 37 kDa 23

AI992158 - - 16

AI554061 - - 10

NM_006101 NDC80 NDC80 homolog, kinetochore complex component (S. cerevisiae) 9

NM_015984 UCHL5 ubiquitin carboxyl-terminal hydrolase L5 7

NM_020188 C16orf61 chromosome 16 open reading frame 61 6

NM_016448 DTL denticleless homolog (Drosophila) 6

NM_014791 MELK maternal embryonic leucine zipper kinase 6

NM_004702 - - 6

The four columns show: accession ID, gene name, gene description, and number of solutions where that feature occurs.
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The mean number of false predictions was 16.24, with a SEM of 0.37. Therefore the

scoring method appears to be superior to all machine learning algorithm other than

GP, and slightly superior to GP. The difference between the performances of GP and

the scoring method are not statistically significant (P = 0.49, 2-tailed Student t-test).

The Role of Feature Selection

To determine to what extent feature selection is responsible for the good performance

of GP, we identified the 10 features most often selected by GP among the 70 initial

features and ran again both GP and SVM with quadratic kernel using only these fea-

tures. The performance of both methods significantly improved: for GP, the number of

incorrectly identified features decreased from 16.40 (SEM 0.30) to 12.86 (0.40); for the

SVM it went from 16.76 (0.18) to 14.96 (0.41). Using this preliminary round of feature

selection the performance of GP becomes significantly better than both SVM and the

original scoring method.

These results suggests on one hand, that the feature selection performed by GP has

intrinsic value, not necessarily tied to the use of syntax trees, since the SVM can take

advantage of the feature selection performed by GP to improve its performance. Sec-

ond, that a recursive use of GP, in which a first run is used to select the best features

to be used in a second run, might be a promising way of optimizing the method.

Performance on Unbalanced Datasets

To check whether the performance of the GP is tied to the choice of a balanced data-

set, we repeated the analysis using different time cutoffs (5 and 7.5 years) and com-

pared the performance of GP with the SVM using polynomial kernel with degree 2,

which was the best performing method after GP in the balanced dataset. The results

are reported in Table 4. At 7.5 years there is again no significant difference between

the performance of the two methods. However, at 5 years GP performs significantly

better than the SVM (P = 6.46 × 10-6 from two-sided t-test). We conclude that the bal-

ancing of the dataset is not crucial to obtain a good performance from GP.

Performance on an Independent Dataset

An important feature of any predictor based on gene expression data is its robustness

with respect to the choice of dataset, since gene expression data from cancer patients

come from studies using different protocols and/or microarray platforms. We thus

applied the best predictors found by GP in each of the 50 runs to an independent

breast cancer dataset [24]. It includes 251 breast cancer samples hybridized onto the

Affymetrix HG-U133A and HG-U133B plat-forms. Gene expression and clinical data

are publicly available in the Gene Expression Omnibus archive [25] under accession

Table 4 Experimental comparison between the number of incorrectly classified instances
found on the test sets by GP and Support Vector Machine with exponent 2 on
unbalanced datasets.

5 yrs 7.5 yrs

GP SVM-K2 GP SVM-K2

best 9 10 12 13

average (SEM) 15.04 (0.41) 17.84 (0.42) 21.18 (0.49) 20.7 (0.46)

The datasets are defined by survival status at endpoints 5 and 7.5 years.
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GSE3494. Due to the difference in gene content between platforms, only 17 of the 50

best solutions found by GP could be applied to the new dataset. We then constructed,

for each GP solution, a 2 × 2 contingency table comparing the GP prediction to the

true outcome at 10 years and applied the exact Fisher test to the table. All 17 GP solu-

tions showed statistically significant predictive power (P-values between 7.6 × 10-3 and

2.9 × 10-4). Since this result was obtained with no further training, it shows the robust-

ness of the solutions obtained by GP with respect to the choice of dataset and microar-

ray platform.

Assessment of Sensitivity

When using gene signatures to predict the survival of a cohort of breast cancer

patients, one of the main goal in clinical applications is to minimize the number of

false negative predictions. Table 5 summarizes the false negative predictions returned

by each machine learning method on the 50 runs. The first line indicates the different

methods, while the second and the third lines show the best (i.e. lowest) and mean

performances (together with the corresponding SEM)values of incorrectly classified

instances.

The best solutions were found by GP, and statistical analysis indicates that GP con-

sistently outperforms the other five methods as it can be seen in Table 6. The differ-

ence between the various average results is statistically significant (P-value 2.75 × 10-9

for ANOVA test on the 4 samples of solutions found by each method). Finally, pair-

wise 2-tailed Student t-tests comparing GP with each other method demonstrate its

better performance.

The original scoring method of [2,9], and in particular the suggested cutoff of 0.4,

was chosen in such a way as to minimize the number of false negatives. Therefore it is

not surprising that in this respect the scoring method is far superior to all machine

learning methods, including GP. Indeed the average number of false negatives given by

the scoring method is 1.78, to be compared to the numbers reported in Table 6.

Maximizing Sensitivity in GP

It is well know that the fitness function driving the evolutionary dynamics in a GP fra-

mework can be modified in order to let emerge solutions with different characteristics.

The results presented and discussed in the previous section were obtained with the

goal of minimizing all incorrectly classified instances, summing both false negative and

false positive predictions obtained by the solutions. However, when using gene signa-

tures to predict the survival of a cohort of breast cancer patients, minimizing the num-

ber of false negative predictions is recognized as one of the most important goals.

Table 5 Experimental comparison between the number of false negatives found on the
test sets by the different machine learning methods.

GP SVM-K1 SVM-K2 SVM-K3 MP RF

best 2 6 6 6 5 6

average (SEM) 9.82 (0.44) 13.26 (0.51) 12.60 (0.35) 14.08 (0.39) 12.88 (0.51) 13.38 (0.49)

Each method was independently run 50 times using each time a different training/test partition of the validation dataset
(see text for details). The first line indicates the method: Genetic Programming (GP), Support Vector Machine (SVM),
Multilayer Perceptrons (MP), and Random Forest (RF). The second line shows the best value of the incorrectly classified
instances obtained on the test set over the 50 runs, and the third line reports the average performances of each group
of 50 runs on their test sets (standard error of mean is shown in parentheses).
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For all these reasons, we modified the GP fitness function so that false negatives

(positives) are penalized more than errors of the other type, hoping to tune the algo-

rithm towards better sensitivity (sensibility). In particular, solutions with greater sensi-

tivity can emerge if larger weights are assigned to false negatives compared to false

positives. In general, we can transform the fitness function in a weighted average of

the form:

Fitness = 0.9× FalseNegative + 0.1× FalsePositive

With respect to this new formulation, the fitness function of the GP algorithm whose

results were presented in the previous section can be expressed as 0.9 × FalseNegative

+ 0.1 × FalsePositive. The results of 50 runs of this new version of the GP technique

showed an average of 16.04 (with SEM = 0.44) of total incorrectly classified instances.

Compared with the performances of the previous GP algorithm, no statistically signifi-

cant difference can be highlighted (Student t-test P = 0.50). When looking only at the

number of false negative incorrectly classified instances, the average performance of

4.32 (SEM = 0.346) is better than the one of standard GP reported in table 6 (Student

t-test P = 6.62 × 10-16), even if still worse than that of the original scoring method.

Conclusions
The goal of our investigation was to refine the set of criteria that could lead to better

risk stratification in breast cancer. To reach this goal we started from the well known

“70-genes signature” and proceeded with the application of several machine learning

schemes, in order to perform a comparison between them. We made some simplifying

assumptions, preprocessed the data accordingly and ran several evaluation experiments.

Our results showed that while all the machine learning algorithms we used do have

predictive power in classifying breast cancer patients into risk classes, GP clearly out-

performs all other methods with the exception of SVM with polynomial kernel of

degree 2, whose performance is not significantly different from GP. Of course there is

no way to do such a comparison in a completely unbiased way, as one could always

argue that the levels of optimization are uneven. To minimize the possible bias, we

tried to use default implementation of all the methods.

The survival endpoint was initially chosen so as to produce a balanced dataset with

the same number of samples in each outcome class. However this choice turned out

not to be crucial to the good performance of GP since also on unbalanced datasets GP

turned out to perform comparably to or better than the SVM. Moreover, the predictive

solutions found by GP in a dataset turned out to be significantly predictive of survival

also in another, independent dataset without any further training.

A unique characteristic of GP is its ability to perform automatic feature selection.

We showed that the feature selection performed by GP was quite dramatic (the

Table 6 False negative prediction: statistical significance of the difference in
performance between the methods.

ANOVA
P = 2.75 × 10-9

GP vs. SVM-K1 GP vs. SVM-K2 GP vs. SVM-K3 GP vs. MP GP vs. RF

P = 2.74 × 10-6 P = 3.32 × 10-6 P = 1.27 × 10-10 P = 8.53 × 10-6 P = 4.65 × 10-7

First line shows ANOVA test on the 6 samples of solutions found by each method, while second line depicts pairwise 2-
tailed Student t-tests comparing GP with each other method.
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median number of features used by the best GP solution was ~4 out of a total of 70

features available) and of intrinsic value, i.e. not necessarily tied to the use of syntax

trees: indeed the performance of both GP and SVM significantly improved when run

using only the features selected most often in a preliminary GP run.

The improvement in performance shown by GP compared to the original scoring

method was rather small and not statistically significant. As expected, the scoring

method was superior to all machine learning algorithms in minimizing false negatives.

In a second phase, we tried to enrich GP by changing its fitness function into a

weighted average between false negatives and false positives. We showed that, when

larger weight is given to false negatives, it is possible to tune the GP algorithm towards

greater sensitivity. While the sensitivity of GP is still less than the original scoring

method, the possibility of tuning the fitness function is another intrinsic advantage of

this technique with respect to the other machine learning ones considered in this

article.

Nevertheless we believe our results warrant further investigation into the use of GP

in this context for at least three reasons:

• As stated above, our implementation of GP was purposely not optimized, and we

can expect substantial improvements in performance from further work aimed at

tuning the various GP parameters.

• Maybe more importantly, GP can potentially offer biological insight and generate

hypotheses for experimental work (see also [8]). Indeed an important result of our

analysis is that the trees produced by GP tend to contain a limited number of fea-

tures, and therefore are easily interpretable in biological terms. For example, the

bestperforming tree is shown in Figure 1 and includes 7 genes (features).

• Finally within the context of GP there is a natural way to tune the algorithm

towards better sensitivity (specificity), simply by defining a fitness function in

which false negatives (positives) are penalized more than errors of the other type.

Future work along these lines should therefore focus on both improving the perfor-

mance of GP and interpreting the results from the biological point of view. An obvious

first step towards optimization would be to abandon the binarization of the data

(which here was used to produce trees that are easier to interpret) and build a GP

based on continuous expression values. The biological interpretation might benefit

from a statistical and functional analysis of the most recurring subtrees in optimal GP

solutions.

Figure 1 The best-fitness model. Tree representation and the traditional Lisp representation of the
model with the best fitness found by GP over the studied 50 independent runs.
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In conclusion we have shown that Genetic Programming outperforms other machine

learning methods as a tool to extract predictions from an established breast cancer

gene signature. Given the possibility of generating biological insight and hypotheses

that is intrinsic to the method, it deserves deeper investigation along the lines

described above. Finally, it will be our task to test the GP approach on other features/

gene sets that account for other cancers or other diseases, always with the objective of

providing clinicians with more precise and individualized diagnosis criteria.

Methods
The machine learning methods we considered are described here, with references to

more detailed expositions.

Genetic Programming

Genetic Programming (GP) [26-28] is an evolutionary approach which extends Genetic

Algorithms (GAs) [17,18] to the space of programs. Like any other evolutionary algo-

rithm, GP works by defining a goal in the form of a quality criterion (or fitness) and

then using this criterion to evolve a set (also called population) of solution candidates

(also called individuals) by mimic the basic principles of Darwin’s theory of evolution

[29]. The most common version of GP, and also the one used here, considers indivi-

duals as abstract syntax tree structures2 that can be built recursively from a set of

function symbols ℱ = {f1, f2, ..., fn} (used to label internal tree nodes) and a set of term-

inal symbols T = {t1, t2, . . . , tm} (used to label tree leaves). GP breeds these solutions to

solve problems by executing an iterative process involving the probabilistic selection of

the fittest solutions and their variation by means of a set of genetic operators, usually

crossover and mutation.

We used a tree-based GP configuration inspired by boolean problems introduced in

[26]: each feature in the dataset was represented as a boolean value and thus our set of

terminals T was composed by 70 boolean variables (i.e. one for each feature of our

dataset). Potential solutions (GP individuals) were built using the set of boolean func-

tions ℱ = {AND, OR, NOT}. The fitness function is the number of incorrectly classified

instances, which turns the problem into a minimization one (lower values are better)3.

Finally no explicit feature selection strategy was employed, since we want to point

out GP’s ability to automatically perform an implicit feature selection. The mechanism

allowing GP to perform feature selection, already pointed out for instance in

[21,30-32], is simple: GP searches over the space of all boolean expressions of 70 vari-

ables. This search space includes the expressions that use all the 70 variables, but also

the ones that use a smaller number of variables. In principle there is no reason why an

expression using a smaller number of variables could not have a better fitness value

than an expression using all the 70 variables. If expressions using smaller number of

variables have a better fitness, they survive into the population, given that fitness is the

only principle used by GP for selecting genes. If it happens that GP finds expressions

using a small number of variables with a better fitness value than the ones using all

variables, the former expressions survive into the population, while the latter ones are

extinguished.

The parameters used in our GP experiments are reported in Table 7, together with

the parameters used by the other machine learning methods we studied. There is no
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particular justification for the choice of those parameter values, if not the fact that they

are standard for the computational tool we used, i.e. GPLab: a public domain GP sys-

tem implemented in MatLab (for the GPLab software and documentation, see [33]).

Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning methods used

for classification and regression. They were originally introduced in [34]. Their aim is

to devise a computationally efficient way of identifying separating hyperplanes in a

high dimensional feature space. In particular, the method seeks separating hyperplanes

maximizing the margin between sets of data. This should ensure a good generalization

ability of the method, under the hypothesis of consistent target function between train-

ing and testing data. To calculate the margin between data belonging to two different

classes, two parallel hyperplanes are constructed, one on each side of the separating

hyperplane, which are “pushed up against” the two data sets. Intuitively, a good separa-

tion is achieved by the hyperplane that has the largest distance to the neighboring data

points of both classes, since in general the larger the margin the lower the generaliza-

tion error of the classifier. The parameters of the maximum-margin hyperplane are

derived by solving large quadratic programming (QP) optimization problems. There

exist several specialized algorithms for quickly solving these problems that arise from

SVMs, mostly reliant on heuristics for breaking the problem down into smaller, more

manageable chunks. In this work we used the implementation of John Platt’s [35]

Table 7 Parameters used in the experiments.

GP Parameters

population size 500 individuals

population initialization ramped half and half [26]

selection method tournament (tournament size = 10)

crossover rate 0.9

mutation rate 0.1

maximum number of generations 5

algorithm generational tree based GP with no elitism

SVM Parameters

complexity parameter 0.1

size of the kernel cache 107

epsilon value for the round-off error 10-12

exponent for the polynomial kernel 1.0,2.0, 3.0

tolerance parameter 0.001

Multilayered Perceptron Parameters

learning algorithm Back-propagation

learning rate 0:03

activation function for all the neurons in the net sigmoid

momentum 0.2 progressively decreasing until 0.0001

hidden layers (number of attributes + number of classes)/2

number of epochs of training 500

Random Forest Parameters

number of trees 2500

number of attributes per node 1
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sequential minimal optimization (SMO) algorithm for training the support vector clas-

sifier. SMO works by breaking the large QP problem into a series of smaller 2-dimen-

sional sub-problems that may be solved analytically, eliminating the need for numerical

optimization algorithms such as conjugate gradient methods. The implementation we

used is the one contained in the Weka public domain software [36]. This implementa-

tion globally replaces all missing values and transforms nominal attributes into binary

ones. It also normalizes all attributes by default (in that case the coefficients in the out-

put are based on the normalized data, not the original data and this is important for

interpreting the classifier).

The main parameter values used in this work are reported in Table 7. All these para-

meter values correspond to the standard values offered by the Weka software [36] and

they are defined for instance in [35]. Being aware that in several application domains,

SVM have been shown to outperform competing techniques by using nonlinear ker-

nels, which implicitly map the instances to very high (even infinite) dimensional spaces,

we used polynomials kernels with degrees 1, 2, and 3.

Multilayered Perceptron

Multilayered Perceptron is a feed-forward artificial neural network model [37]. It is a

modification of the standard linear perceptron in that it uses three or more layers of

neurons (nodes) with nonlinear activation functions, and is more powerful than simple

perceptron in that it can distinguish data that are not linearly separable, or separable

by a hyperplane. It consists of an input and an output layer with one or more hidden

layers of nonlinearly-activating nodes. Each node in one layer connects with a certain

weight to every other node in the following layer. The implementation we have

adopted is the one included in the Weka software distribution [36]. We used the Back-

propagation learning algorithm [37] and the values used for all the parameters are

reported in Table 7. As for the previously discussed machine learning methods, also in

the case of Multilayered Perceptron it is important to point out that we used a para-

meter setting as standard as possible, without doing any fine parameter tuning for this

particular application. Our goal is, in fact, to compare different computational methods

under standard conditions and not to solve in the best possible way the application

itself. In particular, all the values reported in Table 7 correspond to the default ones

adopted by the Weka software.

Random Forests

Random Forests denotes an improved Classification and Regression Trees method [38].

It works by creating a large number of classification trees or regression trees. Every

tree is built using a deterministic algorithm and the trees are different owing to two

factors. First, at each node, a best split is chosen from a random subset of the predic-

tors rather than from all of them. Secondly, every tree is built using a bootstrap sample

of the observations. The out-of-bag data, approximately one-third of the observations,

are then used to estimate the prediction accuracy. Unlike other tree algorithms, no

pruning or trimming of the fully grown tree is involved. In this work we use the Brei-

man model presented in [39] and implemented in the Weka software [36]. As it can

be seen from Table 7, this method, compared to the other ones, has the advantage of a

smaller amount of parameter setting required. In order to allow a fair comparison with
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GP, we have considered random forests composed by 2500 trees (given that the GP

population is composed by 500 trees and it runs for 5 generations, 2500 trees are glob-

ally inspected by GP too) and such that each node corresponds to exactly one feature

(as it is for GP). All the other parameters eported in Table 7 were set to the standard

values offered by the Weka software.

Endnotes
1. As we will discuss later, Genetic Programming (GP) is the only method, among the

ones studied in this paper, hat is able to perform automatically a further feature selec-

tion and thus identify small subsets of the original signature characterized by high pre-

dictive power.

2. Traditionally represented in Lisp notation.

3. We are aware that, in case of minimization problems, the term “fitness” might be

inappropriate, given that a fitness is usually a measure that has to be maximized.

Nevertheless, we chose to use this term for simplicity.
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