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Abstract

Cancer cell lines are used extensively to study cancer biology and to test hypotheses in translational research. The
relevance of cell lines is dependent on how closely they resemble the tumors being studied. Relating tumors and
cell lines, and recognizing their similarities and differences are thus very important for translational research. Rapid
advances in genomics have led to the generation of large volumes of genomic and transcriptomic data for a
diverse set of primary cancer samples, normal tissue samples and cancer cell lines. Hepatocellular Carcinoma (HCQ)
is one of the most common tumors worldwide, with high occurrence in Asia and sub-Saharan regions. The current
effective treatments of HCC remain limited. In this work, we compared the gene expression measurements of 200
HCC tumor samples from The Cancer Genome Atlas and over 1000 cancer cell lines including 25 HCC cancer cell
lines from Cancer Cell Line Encyclopedia. We showed that the HCC tumor samples correlate closely with HCC cell
lines in comparison to cell lines derived from other tumor types. We further demonstrated that the most
commonly used HCC cell lines resemble HCC tumors, while we identified nearly half of the cell lines that do not
resemble primary tumors. Interestingly, a substantial number of genes that are critical for disease development or
drug response are either expressed at low levels or absent among highly correlated cell lines; additional attention
should be paid to these genes in translational research. Our study will be used to guide the selection of HCC cell
lines and pinpoint the specific genes that are differentially expressed in either tumors or cell lines.

Introduction

Cancer cell lines are widely used to study cancer biology
and to test hypotheses in translational research [1,2].
Numerous cancer cell lines are derived from tumors, and
are used for various purposes such as understanding dis-
ease progression, developing diagnostics, and screening
anti-tumor drugs. However, the relevance of a cell line is
dependent on how closely it resembles the tumors being
studied, while the in vitro cell culture environment differs
from that of in vivo tumor tissue. Moreover, not all can-
cer cell lines have equal value or relevance as tumor
models [3]. Therefore, relating tumors and cell lines, and
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recognizing their similarities and differences is of critical
importance in translational research and understanding
cancer biology.

It has been shown that genetic and epigenetic changes
including gene mutations, deletions, amplifications,
translocations and methylation status found in lung
tumors are retained in lung cancer cell lines [4]. Pro-
longed cell culture is more likely to cause the secondary
genomic changes such as copy number variation and
gene expression [3]. Several previous studies have com-
pared the genomic and transcriptomic differences
between tumors and cell lines, but their sample size has
been very limited [5-8]. Integrating disease tissue gene
expression and drug gene expression profiled in cancer
cell lines for therapeutic discovery has been extensively
applied by our lab and others [9-13]. Rapid advances in
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the field of genomics have led to the generation of a high
volume of molecular data across various tumors and cell
lines. Of particular note, The Cancer Genome Atlas
(TCGA) Research Network has characterized the geno-
mic and gene expression profiles of over 10,000 human
tissue samples cross 32 tumor types [14]. The Cancer
Cell Line Encyclopedia (CCLE) provides the genomic and
gene expression profiles of over 1000 cell lines [15].
Domcke et al. recently evaluated ovarian cell lines as
tumor models by comparing their genomic profiles pub-
lished in CCLE and TCGA, and they found that some
rarely used cell lines might be more appropriate to study
ovarian cancers [16]. To our knowledge, here we present
the first comprehensive comparison of tumor and cell
line samples using gene expression data specifically for
liver cancer.

Liver cancer is the sixth most frequent cancer globally
with higher occurrences in Asia and sub-Saharan
regions and is the second leading cause of global cancer
deaths. The incidence and mortality of liver cancer have
increased in the United States and Europe in the past
decade. It was projected to become the third leading
cause of cancer-related death by 2030 in the USA [17].
While HCC is the most common type of liver cancer,
the current effective treatments of HCC remain limited.
HCC tumors are insensitive to conventional chemother-
apy, although limited benefits have been shown from
the targeted drug sorafenib on only a small subset of
tumors [18]. Meanwhile, a large number of liver cell
lines have been developed and used to screen com-
pounds, and many drugs are showing promising in vitro
models. However, that these best drug candidates fail to
be effective clinically [19] indicates the necessity to
examine the correlation between HCC tumors and can-
cer cell lines and elucidate their similarities and differ-
ences for more effective translation of bench-side
discovery into clinical utility.

In this work, we compared 200 HCC tumor samples
from TCGA to over 1000 cancer cell lines from CCLE
using their gene expression profiles, and we found that
most HCC cell lines are significantly correlated to the
primary tumors in comparison to other cancer cell lines.
However, from the set of 25 HCC cell lines, nearly half
are not significantly correlated to the tumors. We also
found that a small subset of the tumors is not signifi-
cantly correlated to HCC cell lines. We further identified
the differentially expressed genes between the tumor
samples and cell lines, and we found that a substantial
number of differentially expressed genes are located in
the extra cellular space. The genes that are over-
expressed in the tumor samples are related to immune
response, drug metabolism and ABC transporter. This
work helps guide us in optimal selection of cell lines and
highlights the differentially expressed genes that play an
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essential role in translating from in vitro to in vivo and
clinical research.

Results

Correlation of gene expression between HCC tumor
samples and cancer cell lines

We compared 200 HCC tumors profiled by RNASeq
from TCGA with 1019 cancer cell lines profiled by
microarray from CCLE using the top 5000 varying genes
(see Methods). There are 28 cancer cell lines derived
from liver tissues and 25 of them are related to HCC.
Fourteen HCC related cell lines are significantly corre-
lated to the tumors, and 7 non-liver cancer cell lines are
correlated (P value < 0.05, Figure 1a). Of particular
note, pancreatic cell line TCC-PAN2 (median correla-
tion coefficient of 0.49, P value = 8.8E-3) and stomach
cell line FU97 (median correlation coefficient of 0.50, P
value = 5.5E-3) are even more correlated with the HCC
tumors than some of the HCC cell lines. This suggests
that quite a few cell lines originated from another site
share similar gene expression profiles with HCC tumors,
and they may be used to inform the study of HCC
as well.

Among 24 cell line groupings differentiated by their tis-
sue of origin, we found liver cancer cell lines are most
correlated to the HCC tumors (median correlation coeffi-
cient of 0.44, Figure 1b). The overall correlation is signifi-
cantly higher than the second and third most correlated
cell types, which are the kidney and biliary tract cancer
cell lines (median correlation coefficient of 0.41, P value
< 1E-16; 0.40, P value < 1E-16, respectively). The three
least correlated cell line types are autonomic ganglia
(median correlation coefficient of 0.22), hematopoietic
and lymphoid tissue (median correlation coefficient of
0.31) and small intestine (median correlation coefficient
of 0.32). According to TCGA tissue sample requirements,
all tumors were taken at the initial site of cancer. Thus
we conclude that HCC cell lines retain the characteristics
of the liver origins.

Correlation of gene expression between HCC tumors and
HCC cell lines

However, when looking closely at the distribution of the
correlations between HCC tumors and HCC cell lines,
we notice that the variation is rather high, with value
ranging from 0.19 to 0.66, and standard deviation 0.07
(Figure 1b).

Moreover, we observe that there are two groups of
cell lines and one group is more correlated with the
tumor samples than the other on the hierarchical clus-
tering of the individual cell lines (Figure 2a). The four
most commonly used cell lines (i.e., HepG2, HuH 7,
Hep3B and PLC/PRE/5) [19] have significantly high cor-
relations with the tumor samples (P value < 0.05).
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Figure 1 Spearman correlation between HCC tumors and all cancer cell lines (a) individual pairs (b) grouped by cell line primary site.
In the heatmap, each row represents one tumor sample; each column represents one cell line. The correlation level is represented by color:
higher correlation shown in red, lower in yellow. The HCC cell lines are labeled in green. In the boxplot, each dot represents the correlation
between one tumor sample and one cell line and the red line is the median.

Interestingly, HepG2, one of the most widely used cell
line, has the highest correlation (median correlation
coefficient of 0.55, P value = 3.4E-4). However, 11 out
of 25 cell lines are not significantly correlated to the
tumor samples by comparing to other cell lines (P value
> 0.05).

Table 1 lists all HCC cell lines and the medians of
their correlation coefficients across the 200 HCC
tumors, ranked by their correlation coefficient value.
Although we could not find any factors that could be
associated with the correlations due to the small sample
size as well as incomplete information about some cell
lines, several observations are noteworthy. The cell lines
sharing high SNP identity (e.g., HepG2 & C3A, PLC/
PRF/5 & Alexander cells, and HLF & HLE) tend to have
similar correlations. We find that for the SNU series, all
the most recently established cell lines (i.e., SNU-878,

SNU-761, and SNU-886) are highly correlated but none
of the older ones are significantly correlated. The publi-
cation of the newer established cell lines did not report
the explicit difference between the two versions of cell
lines [20]. The cells that are not well differentiated in
HLF and HLE may account for their low correlations
with the tumors.

Additionally, we find that the majority of the tumor
samples are individually significantly correlated to the
HCC cell lines (a few samples are exampled in Figure 3a).
We identify 8 tumor samples as outliers (Figure 3b), after
using tissue samples randomly selected from the Expres-
sion Project for Oncology [21] to compute the false dis-
covery rate (FDR < 0.05, see Methods). Interestingly,
these 8 tumors are similar with each other and are differ-
ent from the majority of tumors according to the princi-
pal component analysis of their gene expression profiles
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Figure 2 Spearman correlation between HCC tumors and HCC cancer cell lines (a) individual pairs (b) grouped by cell line. In the
heatmap, each row represents a tumor sample; each column represents one HCC cell line. The correlation level is represented by color: higher
correlation shown in red, lower in yellow. In the boxplot, each dot represents the correlation between one tumor sample and one cell line and
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(Figure 3c). This suggests that the current cell lines may
be incapable of modeling this subset of tumors based on
gene expression analysis. In addition, based on the analy-
sis of clinical features of the outlier samples (Table 2) we
are not able to identify any clinical features that are sig-
nificantly associated with this subset of tumors due to
the small sample size.

Difference of gene expression between HCC tumors and
HCC cell lines
Most HCC tumors and cell lines share remarkably similar
gene expression profiles. However, since the environment
of cells growing in vitro is different from that in a hetero-
geneous tissue, the prolonged process of cell culture may
induce substantial changes of the expression of some
genes. Furthermore drug response in vitro is different
from that in vivo or in the clinic. For example, HCC
tumors are often insensitive to some chemotherapy drugs
while HCC cell lines are sensitive to those drugs [22].
Therefore, we hypothesize that differentially expressed
genes between tumors and cell lines may play important
roles in disease development or drug response.

In this regard, we first rank the commonly measured
genes between HCC tumor samples and HCC cell line

samples based on their expression values in individual
samples. For each gene, we computed the difference of
the ranks between tumor samples and cell lines to iden-
tify differentially expressed genes. Among 17,386
commonly measured genes, 385 are over expressed in
tumors compared to cell lines and 279 are over
expressed in cell lines compared to tumors (P values <
0.01, log 2 fold change > 2, data in the additional file 1:
Table S1-2). We then ask if these genes are relevant to
disease development. We reason that the differentially
expressed genes between tumors and non-tumors are
related to the disease development. We find 1003 genes
being significantly differentially expressed between the
tumor samples and non-tumor samples from TCGA. A
significant number of over expressed genes in tumors
compared to cell lines are dysregulated in tumors com-
pared to non-tumors (30 common genes, P value
0.008, hypergeometric test, data in the additional file 1:
Table S3-5). This suggests that the over expressed genes
in tumors compared to cell lines are indeed important
for the disease development.

We further perform GO and KEGG pathway enrich-
ment analysis of the differentially expressed genes
between tumor samples and cell lines using DAVID [23].
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Cell Line Correlation Sex Ethnicity/Race Age Known cancer etiology or other characteristics
(P value)

HepG2 0.55 (34E-4) M Caucasian/NA 15 No evidence of a Hepatitis B virus genome

C3A 053 (1.1E-3) M Caucasian/NA 15 No evidence of a Hepatitis B virus genome; derivative of HepG2

huH-1 0.52 (19E-3) M  Asian/Japanese 53 HBs-antigen carrier

JHH-5 1 (33E-3) M  Asian/Japanese 50 Small liver cancer observed in the chronic hepatitis; integration of the HBV-DNA was
not observed

SNU-878 051 (33E3) F Asian/Korean 54 One of newer cell lines in the SNU series

SNU-761 05 (5.5E-3) M Asian/Korean 49 One of newer cell lines in the SNU series

HuH-7 049 (88E-3) M  Asian/Japanese 57 Well differentiated hepatocellular carcinoma

SNU-886 048 (14E-2) M Asian/Korean 57 One of newer cell lines in the SNU series

JHH-7 047 21E-2) M Asian/Japanese 53 HBs-Ag positive hepatocellular carcinoma with liver cirrhosis

PLC/PRF/5 047 2182) M NA 24 Malignant liver cancer with HBsAg positive

Alexander cells 046 (3.1E-2) M NA 24 Malignant liver cancer with HBsAg positive

Hep 3B2.1-7 046 (3.1E-2) M Black/NA 8 Hepatitis B virus DNA was detected

Li-7 046 3.1E-2) NA NA NA NA

JHH-2 045 (45E-2) M Asian/Japanese 57 Integration of the HBV-DNA was not observed

SNU-387 044 (006) F  Asian/Korean 41 Patient treated by transcatheter arterial embolization with lipoidol plus a combination
of doxorubicin and mitomycin-C

SNU-475 042 (0.12) M Asian/Korean 43 Taken from a patient prior to cytotoxic therapy

JHH-4 042 (012) M Asian/Japanese 51 HBs antigen-negative; HCV was not detected

JHH-1 041 (0.16) M Asian/Japanese 50 Complication of hepatic cirrhosis and hepatocellular carcinoma

SNU-449 041 (0.16) M Asian/Korean 52 Hepatitis B virus DNA was detected; taken from a patient prior to cytotoxic therapy

JHH-6 039 (025 F Asian/Japanese 57 HBV-DNA was not integrated; undifferentiated hepatocellular carcinoma

SNU-423 036 (044) M Asian/Korean 40 Hepatitis B virus DNA was detected; treated by transcatheter arterial embolization with
lipoidol plus doxorubicin

SNU-182 035 (0.51) M Asian/Korean 24 Taken from a patient prior to cytotoxic therapy

HLF 033 (064 M NA 68 Hepatoma, non-differentiated

HLE 032 (0700 M NA 68 Hepatoma, non-differentiated

SNU-398 028 (089) M  Asian/Korean 42 Hepatitis B virus (HBV) DNA was detected; treated by transcatheter arterial

embolization with lipoidol plus a combination of doxorubicin and mitomycin-C

Median of correlation coefficients is used.

For those genes over expressed in tumors compared to
cell lines, the top three enriched cellular components are
extracellular region, extracellular space and extracellular
region part, the top three enriched biological processes
are immune response, response to wounding and defense
response, and the top three enriched pathways are com-
plement and coagulation cascades, drug metabolism and
ABC transporters (Table 3). For those genes over
expressed in cell lines compared to tumors, the top three
enriched cellular components are intermediate filament,
intermediate filament cytoskeleton, and extracellular
region, the top three enriched biological processes are
G-protein coupled receptor protein signaling pathway,
cell surface receptor linked signal transduction and sen-
sory perception of smell, and the top one enriched path-
way is Olfactory transduction (Table 4).

We find that the differentially expressed genes are pri-
marily located in the extracellular space. Moreover, the

genes related to immune systems are over expressed in
tumors; an observation was previously reported [8].
Interestingly, many genes related to drug metabolism
are also over expressed in HCC tumors as well. Liver is
the primary organ for drug metabolism, whereas, the
cell lines fail to express some of these genes. For exam-
ple, CYP2CS, the primary enzyme for drug Paclitaxel, is
expressed very low across all the HCC cell lines. Pacli-
taxel has very good sensitivity in vitro (with median
IC50 100 nm, accessed in ChEMBL) but has no signifi-
cant anti-tumor effect clinically [24]. The difference of
its metabolism profiles between cell lines and tumors
may shed light on different drug responses. The expres-
sion and activity of drug metabolism enzymes are
demonstrated to be extremely low in HCC cell lines,
particularly in HepG2 [25-28]. Although we see that the
cell lines retain the expression of most genes, the differ-
entially expressed genes between tumors and cell lines
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Figure 3 Example tumor samples significantly/poorly correlated to the HCC cell lines. (a) Ten tumor samples significantly correlated with

the HCC cell lines. (b) Outlier tumor samples poorly correlated with the HCC cell lines. (c) Principal Component Analysis of the tumors (dark blue
and green) and non-tumor samples (light blue) from TCGA, the outlier samples in (b) are shown in green.

PC1

are very important to investigate while we translate our
discovery from in vitro to in vivo.

Discussion

An increasing number of HCC cell lines have been devel-
oped for the study of cancer biology and translational
research [29], however, only a few cell lines are often

Table 2. Eight tumors poorly correlated to HCC cell lines

chosen for in vitro or in vivo studies due to limited
experimental capability. Choosing appropriate cell lines
for experimental testing is thus of critical importance.
Unfortunately, crucial information about cell lines (e.g.,
metastasis status, hepatitis virus status, drug treatment,
mutation) is often missing or ambiguous in cell line data-
bases and relevant publications, which further confounds

Sample ID Gender Race Tumor status Vital status Grade Residual Metastasis stage Pathologic tumor stage
TCGA-BC-A10Q-01A  Female  White With Tumor Dead NA R1 MX NA
TCGA-CC-5260-01A Female  Asian Tumor Free Alive G1 RX MO Stage IlIC
TCGA-G3-A25T-01A Female  White Tumor Free Alive G2 RO MO Stage IlIA
TCGA-CC-A3M9-01A Male Asian Tumor Free Alive G3 RO MO Stage IlIA
TCGA-FV-A3I0-01A Female  White Tumor Free Alive G2 RO MO Stage Il
TCGA-DD-A3A6-01A  Female  White Tumor Free Dead G2 RO MO Stage |l
TCGA-CC-A7IJ-01A NA NA NA NA NA NA NA NA
TCGA-ED-A82E-01A Female Asian Tumor Free Alive G2 RO MO Stage IIIA
Fisher test (P value) 0.01 0.69 0.68 0.76 0.16 045 1 0.16

Two-tailed Fisher's exact test was used for associating clinical features to the tumors.
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Term P Value Benjamini (<0.1)
Cellular Component  GO:0005576~extracellular region 8.85E-11 2.22E-08
GO:0005615~extracellular space 2.87E-08 3.60E-06
GO:0044421~extracellular region part 549E-08 4.59E-06
GO:0031226~intrinsic to plasma membrane 3.24E-05 2.03E-03
GO:0005887~integral to plasma membrane 4.03E-05 2.02E-03
GO:0005886~plasma membrane 5.35E-04 2.21E-02
GO:0005626~insoluble fraction 6.52E-04 2.31E-02
GO:0005624~membrane fraction 7.56E-04 2.35E-02
GO:0044459~plasma membrane part 1.44E-03 3.94E-02
GO:0000267~cell fraction 1.62E-03 3.98E-02
GO:0005792~microsome 2.90E-03 642E-02
GO:0042598~vesicular fraction 3.65E-03 7.36E-02
Biological Process GO:0006955~immune response 4.00E-11 6.31E-08
GO:0009611~response to wounding 9.12E-10 7.19E-07
GO:0006952~defense response 3.32E-09 1.75E-06
GO:0002253~activation of immune response 2.74E-07 1.08E-04
GO:0006954~inflammatory response 4.09E-07 1.29E-04
GO:0050778~positive regulation of immune response 9.19E-07 242E-04
GO:0006956~complement activation 1.26E-06 2.83E-04
GO:0002541~activation of plasma proteins involved in acute inflammatory response 1.52E-06 2.99E-04
GO:0006959~humoral immune response 2.98E-06 5.22E-04
GO:0006958~complement activation, classical pathway 1.70E-05 2.68E-03
GO:0002684~positive regulation of immune system process 1.77E-05 2.54E-03
GO:0002526~acute inflammatory response 2.09E-05 2.75E-03
GO:0002455~humoral immune response mediated by circulating immunoglobulin 2.55E-05 3.09E-03
GO:0048584~positive regulation of response to stimulus 6.24E-05 7.00E-03
GO:0045087~innate immune response 8.20E-05 8.58E-03
KEGG pathway hsa04610:Complement and coagulation cascades 1.40E-07 1.66E-05
hsa00982:Drug metabolism 1.78E-03 9.99E-02
hsa02010:ABC transporters 2.12E-03 8.02E-02

Table 4. Enriched GO terms and KEGG pathways for over expressed genes in cell lines
Term P Value Benjamini (<0.1)

Cellular Component GO:0005882~intermediate filament 4.05E-09 6.65E-07
GO:0045111~intermediate filament cytoskeleton 5.54E-09 4.54E-07
GO:0005576~extracellular region 2.00E-08 1.10E-06
GO:0045095~keratin filament 3.11E-06 1.27E-04
Biological Process GO:0007186~G-protein coupled receptor protein signaling pathway 7.66E-11 8.79E-08
GO:0007166~cell surface receptor linked signal transduction 1.82E-07 1.04E-04
GO:0007608~sensory perception of smell 4.78E-07 1.83E-04
GO:0007606~sensory perception of chemical stimulus 5.94E-07 1.70E-04
GO:0050877~neurological system process 7.86E-07 1.80E-04
GO:0007600~sensory perception 9.35E-07 1.79E-04
GO:0050890~cognition 8.63E-06 141E-03
GO:0042742~defense response to bacterium 5.24E-04 7.24E-02
KEGG pathway hsa04740:0lfactory transduction 4.46E-09 2.14E-07
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the selection process. As the genomic and transcriptomic
profiles of cancer cell lines and tumors become more
publically available, using gene expression to relate can-
cer cell lines to tumor samples becomes a more useful
tool to inform cell line selection and has been applied to
other cancers (e.g., ovarian cancer [16]). Although gene
expression is not the only factor, it can be used to
exclude certain cell lines that do not share similar profiles
with the tumors being studied.

Our gene expression analysis of tumors and cell lines
demonstrates that HCC cell lines are very tissue specific.
They resemble the majority of HCC tumors using top
5000 varying genes. This conclusion still holds if top
1000 varying genes are used (data not shown). The four
widely used cell lines (i.e., HepG2, HuH 7, Hep3B and
PLC/PREF/5) are highly correlated to the tumors. How-
ever, nearly half of the cell lines are strikingly not signif-
icantly correlated to the tumors. Poor differentiation or
genomic damage by chemotherapy drugs may account
for the poor correlations of some cell lines.

Our analysis also shows that there is substantial varia-
tion of individual tumor samples in regards to their cor-
relations with cell lines. Intrinsic heterogeneity among
samples may account for the variation. Specifically, we
identify 8 out of 200 tumor samples as outliers that
have poor correlations with the known HCC cell lines.
It may suggest that the drug tested in these cell lines
will most likely have a different clinical effect in the out-
lier patients. It is interesting to further associate these
tumors to clinical features so that this subset of tumors
can be easily identified clinically and personalized treat-
ments can be designed. However, the current 8 samples
are insufficient to draw a robust conclusion. It may be
also interesting to associate them to other genetic
features.

Even though many HCC cell lines have overall high
correlations with HCC tumors, a large number of genes
are actually absent or lowly expressed in cell lines. A
significant number of these genes are involved in disease
development. Some genes are related to immune system
and pharmacokinetics including drug metabolism and
drug transportation. It’s known that immune system and
pharmacokinetics are related to drug response [30].
Inducing missing or low expressed genes in cell lines by
external agents may be a way to improve cell line mod-
els [26,31].

In summary, by leveraging publicly available transcrip-
tomic data, we relate individual HCC tumors and cancer
cell lines. We demonstrate that the most commonly
used HCC cell lines closely resemble HCC tumors based
on their gene expression, and we also identify nearly half
of HCC cell lines do not resemble HCC tumors. Even in
the highly correlated cell lines, a significant number of
genes that are critical for disease development or drug
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response are absent or expressed at low levels, therefore,
additional attention should be paid to these genes in
translational research. Our future work includes cover-
ing more tumor samples from pubic sources (e.g., Gene
Expression Omnibus) and more cell lines (the Sanger
Cancer Cell Line project [32]), analyzing genetic features
(e.g., mutation, copy number variation, single nucleotide
polymorphism), and linking the subtype of patients clas-
sified by clinical features or molecular features to cancer
cell lines. Finally, this work serves as a model analysis
that can be extended to other tumor types of interest.

Methods

Datasets

We downloaded the cell line gene expression file
(CCLE_Expression_Entrez_2012-09-29.gct) and the
annotation file (CCLE_sample_info_file_2012-10-18.txt)
from the CCLE website (http://www.broadinstitute.org/
ccle). Gene symbols in the expression file were con-
verted into GenelDs using AILUN [33]. In total, we ana-
lyzed 1019 cell lines with gene expression and
annotation data. We collected relevant data of the cell
lines including age, sex, race and other characteristics
from ATCC (http://www.atcc.org), HSRRB (http://cell-
bank.nibio.go.jp/english/), and KCLB (http://cellbank.
snu.ac.kr).

The level 3 released gene expressions for RNASeqV2
of HCC were downloaded from GDAC (http://gdac.
broadinstitute.org). The RSEM abundance estimation
processed by the TCGA workgroup was used in the fol-
lowing analysis. The sample clinical data was down-
loaded from TCGA (https://tcga-data.nci.nih.gov/tcga/).
In total, we analyzed HCC 200 tumor samples and 50
non-tumor samples. According to TCGA, tumors sam-
ples are the primary tumors, namely the tumors at the
initial site of cancer. Normal tissue samples are matched
to the anatomic site of the tumor but usually not
matched to the participant. Without any notes, tumor
samples are specifically referred to HCC. We also down-
loaded all the samples in expO (GSE2109) from Gene
Expression Omnibus.

Correlation between tumor samples and cell lines

The top 5000 genes ranked by interquartile range across
all cell lines were chosen. Among them, 136 genes that
are not matched to any genes in tumor samples were
ignored in the following analysis. Since the expressions of
tumor samples and cell lines were derived from two dif-
ferent technologies and were transformed via different
methods [34], we used the ranked-based spearman corre-
lation to assess the similarity between cell lines and
tumor samples. For each cell line, the median of its cor-
relations with all tumors was computed. The medians of
all cancer cell lines were normally distributed. According
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to the distribution of the correlations, the significance of
the correlation of each cell line with tumor samples was
computed (P value < 0.05).

For each tumor sample, Mann-Whitney test was used
to test the difference of its correlations with HCC cell
lines and with all other cell lines. Random 1000 tissue
samples from different origins were taken from expO
and further used to correct the P value from the Mann-
Whitney test. Only the tumors with P value better than
95% of the random tissue samples were considered as
being significantly correlated to the HCC cell lines.

Differentially expressed genes between tumors and cell
lines

The common genes between tumor samples and cell
lines samples were ranked based on their expression in
individual samples. T-test was used to assess the differ-
ence of the ranks between tumor samples and cell lines
for individual genes and P values were adjusted by the
Benjamini-Hochberg for multiple hypothesis testing.
Fold change was computed as the ratio between the
mean of ranks across tumor samples and the mean of
ranks across cell lines. Log2 fold change > 2 and q value
<= 0.01 were used to select differentially expressed
genes.

Differentially expressed genes between tumors and non-
tumors

DESeq [35] was used to normalize RNA-Seq data and
compute differentially expressed genes. Log2 fold change
> 2 and q value <= 0.01 were used to select differentially
expressed genes.

Software tools

All the analysis was conducted in R programming lan-
guage. Bioconductor packages Beanplot, ggplot2 and
pheatmap were used for visualization. GO and KEGG
pathway enrichment analysis was conducted in DAVID
[23] (Benjamini < 0.1).

Additional material

Additional file 1: Lists of differentially expressed genes. Table S1:
genes up regulated in HCC tumors comparing to HCC cell lines. Table
S2: genes down regulated in HCC tumors compared to HCC cell lines.
Table S3: genes differentially expressed in tumors compared to non-
tumors. Table S4: genes up regulated in tumors compared to cell lines
and dysregulated in tumors compared to non-tumors. Table S5: genes
down regulated in tumors compared to cell lines and dysregulated in
tumors compared to non-tumors.
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