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Abstract

Epigenetic alterations are considered to be very influential in both the normal and disease states of an organism.
These alterations include methylation, acetylation, phosphorylation, and ubiquitylation of DNA and histone proteins
(nucleosomes) as well as chromatin remodeling. Many diseases, such as cancers and neurodegenerative disorders,
are often associated with epigenetic alterations. DNA methylation is one important modification that leads to
disease. Standard therapies are given to patients; however, few patients respond to these drugs, because of various
molecular alterations in their cells, which may be partially due to genetic heterogeneity and epigenetic alterations.
To realize the promise of personalized medicine, both genetic and epigenetic diagnostic testing will be required.
This review will discuss the advances that have been made as well as the challenges for the future.

Introduction
Modifications in gene expression that are independent
of the DNA sequence of a gene are called epigenetic
alterations. These alterations may contribute to epige-
netic inheritance and epigenetic carcinogenesis or any
other disease related to alterations in an organism. The
epigenetic modifications and/or information are propa-
gated transgenerationally to daughter cells through mul-
tiple somatic cell divisions (figure 1). An organism’s
genome can be modified by various chemical com-
pounds or species in the biological system leading to
changes in gene expression; these modifications are
called the epigenome. Changes in the internal and exter-
nal environment of a biological system, such as oxidative
and nitrosative stress as well as nutritional changes, may
lead to epigenetic alterations [1,2]. An organism’s geno-
type has the ability to exhibit phenotypic variation
caused by the influence of multiple environmental fac-
tors. This ability is called plasticity, and the most favor-
able form of plasticity occurs during development to

increase the survival rate and reproductive success of an
organism [3].
Modifications in gene expression are controlled by these

fundamental epigenetic mechanisms (figure 1): DNA
methylation [4], histone modifications [4,5], chromatin
remodeling and microRNAs that act as regulatory mole-
cules [6]. These mechanisms regulate gene expression as
well as various cellular and biological functions related to
homeostasis, allostasis and disease. The phenotypic varia-
tions in humans caused by epigenetic modifications may
lead to various diseases [7-9] including bone and skin
diseases associated with autoimmune disorders [10],
neurodegenerative diseases such as schizophrenia [11,12]
and cancer [13-16]. Therefore, traditional therapies may
be ineffective to treat patients with epigenetic causes of
disease. As a result, researchers are inclined to find
patient-specific treatments for these patients, which are
referred to as personalized or genomic medicines.

Epigenetic modifications
DNA methylation is considered to be one of the most
important modifications leading to disease. Multiple
processes, including gene expression, X-chromosome
inactivation, imprinting, chromatin organization and
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other biological processes are controlled by DNA
methylation [4]. The addition of a methyl group (-CH3)
to cytosine frequently occurs at gene promoter regions
with CpG islands, which are regions of large repetitive
CpG dinucleotides occupying 60% of the promoter
region [17]. Methylation of CpG dinucleotide(s) has
been associated with disease states including cancer
[18]. The enzymes responsible for DNA methylation are
the DNA methyltransferases (DNMTs), which are cate-
gorized into five classes based on their specific enzy-
matic and physiological functions [4]. Another example
of epigenetic modification is the modification of his-
tones [4,5], which occur through various nuclear,
enzyme-catalyzed mechanisms that lead to modifications
including methylation and acetylation of arginine and
lysine [19], phosphorylation of threonine and serine,
sumoylation of lysine, ubiquitination and ADP-ribosyla-
tion [6]. Multiple diseases such as Parkinson’s disease,
Angelman syndrome and mental retardation have been
associated with ubiquitination (table 1). The acetylation
of histone proteins at various amino acid residues is
regulated by histone acetyltransferases (HATs) and his-
tone deacetylases (HDACs) [18] (figure 1). The process
of methylation occurs through the transfer of a methyl
group to a histone from adenosyl methionine (AdoMet),

and S-adenosylhomocysteine (AdoHcy) inhibits the
action of DNMTs. AdoHcy hydrolase can hydrolyze
AdoHcy into adenosine and homocysteine, and there-
fore, could be employed as a therapeutic agent for epi-
genetic diseases. Catalytic ATPases are involved in the
energy driven alterations of nucleosome positioning and
DNA-histone associations during the process of chro-
matin remodeling [[20], table 1].

Genetic testing/screening
The clinical utility of a medical test is determined by the
ability of the test results to alter the decisions of physi-
cians or the types of health care used to treat the dis-
ease. The diagnosis of a disease is based on signs and
symptoms that may be indicative of several disorders in
a biological system. At present, it is possible to deter-
mine the prognosis and diagnosis of any disorder
through genetic testing or screening for disease-specific
mutations. A large number of molecular biomarkers
related to gene mutations can be identified through
genomic studies. The results of prognostic and diagnos-
tic tests using genomic data or DNA are used by health
care professionals to diagnose disorders or diseases, to
assess the risk of disease in an individual, to establish
appropriate dosage for an individual based on variations

Figure 1 Epigenetic alterations in biological systems
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in metabolism and to determine whether an individual
will benefit from a particular drug intervention for dis-
ease management.
On the other hand, personalized medicine is the applica-

tion of an individual’s personal genetic profile to predict
disease, prevent disease through medical interventions, and
make decisions about lifestyle and disease management
based on the needs of each individual patient. Moreover,
genetic screening is important for the personalization of
treatment for a patient.

Epigenetics and personalized/genomic medicine
The study of the genome and its related information can
shed light on various questions associated with the health
and disease of an individual. Whole-genome DNA
sequence information is now accessible due to the com-
pletion of the Human Genome Project (HGP). Specific
drugs must be used for those patients who are not
responding to traditional medicines as expected and for
whom the rate of successful disease management is very
low. Genomic or personalized medicines are given to
patients after collecting genomic information and asso-
ciated data such as the levels of RNA, proteins and various
metabolites that are crucial factors in medical decision
making for personalized medicine [31].
Genomic approaches such as the identification of DNA

sequence variations, transcriptomics, proteomics and
metabolomics are useful for precise disease management
and prediction [32]. These approaches are useful tools that
bridge epigenetics and personalized medicine: the human
genome sequence (genomics) includes 10-15 million single
nucleotide polymorphisms (SNPs) and copy number var-
iants (CNVs); gene expression profiles (transcriptomics)
consist of approximately 25,000 gene transcripts; the pro-
teome (proteomics) includes approximately 100,000 speci-
fic protein products; and the metabolome (metabolomics)
is a metabolic profile of 1000 to 10,000 metabolites [32].

Moreover, the information from an individual genome
sequence and the associated expressed biomarkers also
are imperative to achieve personalized and genomic
therapies [33].
For a chronic disease, as traditional medicine or treat-

ments may be ineffective for patients, the risk of disease
may be inherited and reflect the patient’s genomic back-
ground. While observing a patient from a healthy state
to a diseased state, genomic applications can be used at
various crucial checkpoints to personalize the indivi-
dual’s health care [34,35].

Pharmacogenomics and personalized medicines
Pharmacogenomics deal with various biological factors
related to drug metabolism including drug transporters,
the contribution of receptors and drug metabolizing
enzymes with polymorphisms that affect the drug
response in a variety of diseases [36,37]; all of these para-
meters are under epigenetic control.
Pharmacogenomics help us to understand the idea of

the precise and accurate drug for a respective patient at
the accurate concentration and time. Moreover, it negates
the concept of “one drug fits all.” As far as multiple drug
responses are concerned, various factors such as nutrition,
age, body weight, sex, genetic behavior, infections, co-
medications and organ function are important considera-
tions that are unavoidable during the course of treatment
for a disease. Furthermore, the integration of relevant data
associated with medical informatics and personalized
medicines is highly targeted for the management of a
disorder.
To understand variable drug responses (traditional and/

or personalized medicines), pharmacokinetics (PK) and
pharmacodynamics (PD) are highly useful. These two dis-
ciplines integrate quantitative measurements of drug expo-
sure and effect (figure 2). Pharmacokinetics data are
associated with drug exposure and the monitoring of drug

Table 1 Multiple diseases related to ubiquitination.

Sr.
No.

Gene Encodes for Disorder Citation

1 Parkin E3 ubiquitin ligase Parkinson’s disease (autosomal recess) [21]

2 uchl1 Ubiquitin C-terminal hydrolase
(UCH-L1)

Parkinson’s disease (autosomal recess) [21]

3 E6-AP Ubiquitin ligase E6-AP (UBE3A) Angelman syndrome [22]

4 Single point mutation in
HUWE/Mule/ ARF-BP

Ubiquitin ligase HUWE/Mule/ ARF-
BP

Mental retardation, X-linked, syndromic Turner type (MRXST) [23,24]

5 Ataxin-3 Deubiquitinating enzyme, ataxin-3 Familial amyotrophic lateral sclerosis, Machado-Joseph
disease/ spinocerebellar ataxia type-3

[25]

6 Hippel Lindau vhl E3-ubiquitin ligase Pheochromocytoma (PCC) [26]

7 cyld Deubiquitinase CYLD Turban tumor syndrome (cylindromatosis) [27]

8 Aberrant expression/
mutations

E3 ubiquitin ligase/
deubiquitinating enzymes (DUBs)

Diverse types of cancer [28-30]
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levels, providing a platform to analyze the phenotypic mar-
kers (epigenetic markers) useful for personalized medicine.
Variability in drug response is often linked to alterations
or mutations in the drug metabolizing enzymes cyto-
chrome P450 and glucuronyl transferase, encoded by the
polymorphic genes of the CYP450 family [38], as well as
drug transporters encoded by several hundred genes [39].
Microarray technology can be used to detect the 29
known variants of two important CYP450 genes, CYP2D6
and CYP2C19; these genes affect the metabolism of 25%
of all prescribed drugs [40].
Moreover, drug receptors are also encoded by poly-

morphic genes [39] and mutations in receptors, such as
the receptor tyrosine kinases, have been linked to various
cancers and neurodegenerative diseases [41-44]. For exam-
ple, over-expression of ErbB2 (v-erb-b2 avian erythroblas-
tic leukemia viral oncogene homolog 2) in breast cancer is
treated with trastuzumab [43], the BCR/ABL fusion pro-
tein is highly sensitive to imatinib in the case of leukemia
[41] and activating mutations of epidermal growth factor
receptor (EGFR) seem to correlate with the responsiveness
to gefitinib [42]. Hence, genotyping becomes very impor-
tant for researchers to better understand a disease, its
management and drug effects within the practice of perso-
nalized medicine. Once functional polymorphisms and
genetic variability have been experimentally established for
well-studied genes, this knowledge can be applied to
future clinical studies.
Genetic variants are transcribed into mRNA and can

affect its processing, including mRNA stability and alter-
native splicing. Studies have revealed that alternative spli-
cing occurs in approximately 35-59% of all human genes
[45]. Allelic expression has been analyzed based on mRNA
expression and revealed that the catechol-O-methyltrans-
ferase gene (COMT) is a susceptibility gene for schizo-
phrenia that is downregulated in the autopsy brain tissues
of patients [46]. Epigenetic changes affect various disor-
ders, including cancer and neurodegenerative diseases and

their treatment outcomes [47-52]. Epigenetic and drug
management data from disease patients are useful for the
personalization of medicine.
Cancer classification is based on the histological analy-

sis of tissues and/or cells. In the case of some tumors,
such as leukemia and breast cancer, molecular biomar-
kers are used. Moreover, the mRNA expression profiles
obtained through microarray analysis also contribute to
the identification and classification of many cancers, such
as colon, hematological and early stage breast cancers
[53-59]. In the case of cancer, targeted therapy is based
on gene alterations in specific cellular pathways, which
aid the application of genomic medicine [42,60].
Targeted cancer therapy involves tumor cell-specific

treatments including monoclonal antibodies and small
molecule inhibitors that are less toxic in their mode of
action. This therapeutic strategy has opened new possibi-
lities for cancer management. Several molecular targets
and signaling pathways such as the aurora kinases, the
FOXO-FOXM1 axis [61] and PI3K/mTOR signaling [62]
are involved in human cancers. For example, the small
molecule VX-680 shows an inhibitory effect and induces
cell death in leukemic cells with a specific aurora expres-
sion profile by increasing the Bax/Bcl-2 ratio, which
induces apoptosis in acute myeloid leukemia with high
aurora-A expression [63].
Similarly, forkhead transcription factors (FOXO and

FOXM1) play crucial roles in cell division, differentia-
tion, angiogenesis, apoptosis, DNA repair and tissue
homeostasis. Moreover, the FOXO-FOXM1 axis plays
an important regulatory role in drug resistance and
tumorigenesis [61].

Current personalized medicines
Some patients with late-stage non-small cell lung cancer
(NSCLC) have rearrangements in the anaplastic lym-
phoma kinase (ALK) gene, and conventional cancer
therapies are ineffective for these patients (table 2).

Figure 2 Roles of pharmacogenomics and pharmacogenetics in disease treatment and personalized medicine
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Hence, crizotinib (Xalkori®), an anti-cancer drug that
inhibits ROS1 (c-ros oncogene 1) and ALK, is used for
the 5% of patients that will respond to this drug because
they have a chromosomal rearrangement that produces a
gene fusion (ALK and EML4, echinoderm microtubule-
associated protein-like 4) that results in carcinogenesis.
Genetic tests are recommended for multiple diseases that
could be treated with personalized medicine; there are
approximately 1,600 molecular diagnostic tests available
that target multiple disorders [64]. Many patients do not
respond to first-line therapies, and studies have shown
that this lack of response is due to differences in the
genes that encode drug targets, transporters and metabo-
lizing enzymes such as cytochrome P450 and glucuronyl
transferase [65-67].
For various types of cancers, molecular diagnoses are

available that assist physicians in improving disease man-
agement and increasing the chance of patient survival
(table 2). For example, melanoma cases are classified

based on the results of the BRAF genetic test. Moreover,
non-small cell lung cancers can test positive for ALK and
BRAF mutations, which is useful for targeting the ALK
and BRAF gene alterations during the course of molecular
treatment [68].
Different cancers exhibit different rates of genetic muta-

tions that drive carcinogenesis: melanoma has the highest
rate of genetic mutation (73%), while thyroid cancer has
the second highest (56%). Following these cancers in dri-
ver mutation prevalence are lung cancer at 41%, gynecolo-
gical cancers at 31% andgastrointestinal cancers at 25%
and both ovarian and head and neck cancers at 21% [68].
For example, patients with mutations in the BRCA1 or
BRCA2 genes have a 36 to 85% chance of developing
breast cancer compared with a 13% risk among the gen-
eral female population [69,70]. In breast cancer cases,
approximately 30% of cancers exhibit over-expression of
the cell surface protein known as human epidermal
growth factor receptor 2 (HER2), and the standard therapy

Table 2 Treatments and diagnostics of some selected personalized (genomic) medicine drugs*

Sr. No. Treatment Genetic test/biomarker Description

1 Mivacurium Cholinesterase gene Used for anesthesia adjunct, metabolized by plasma
cholinesterase

2 Divalproex ornithine transcarbamylase deficiency
(OTC)

Used in bipolar disorder, in patients with urea cycle disorders
(UCD); OTC

3 Trastuzumab, Lapatinib Human epidermal growth factor receptor-
2 (HER2)/neu receptor

Patients with metastatic breast cancer

4 Warfarin Cytochrome P450 (CYP2C9) Used in cardiovascular diseases (CVD), patients with CYP2C9*2
and CYP2C9* 3 alleles

5 Warfarin VKORC1 Used in cardiovascular diseases (CVD), single nucleotide
polymorphism in VKORC1 gene

6 Atorvastatin LDLR Used in cardiovascular diseases (CVD), homozygous familial
hypercholesterolemia and heterozygous

7 Irinotecan UGTIA1 Used in colon cancer, homozygous condition for UGTIA1*28

8 Cetuximab, Panitumumab EGFR expression Used in colon cancer

9 Carbamazepine HLA-B*1502 Used in epilepsy and bipolar disorder

10 Abacavir HLA-B*5701 Used in human immunodeficiency syndrome (HIV)

11 Mercaptopurine,
thioguanine, azathioprine

Thiopurine S-methyltransferase (TPMT)
test

Used in leukemia

12 Chloroquine Glucose 6-dehydrogenase deficiency
(G6PD) test

Used in malaria

13 Capecitabine Dihydropyrimidine dehydrogenase (DPD)
activity test

Used in multiple cancers

14 5-FU Dihydropyrimidine dehydrogenase (DPD)
activity test

Used in skin cancer

15 Trastuzumab, Lapatinib Human epidermal growth factor receptor-
2 (HER2)/neu receptor

Used in stomach cancer

16 Imatinib Platelet derived growth factor receptor
(PDGFR) gene

Used in myelodysplastic syndrome

17 Lenalidomide 5q deletion Used in myelodysplastic syndrome

18 Celecoxib CYP2C9 Used in pain, patients suspected to be P450 2C9 poor
metabolizers

* This list and further details relating to these drugs can be found at the FDA's website (http://www.fda.gov/drugs/scienceresearch/researchareas/
pharmacogenetics/ucm083378.htm).
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is not effective in these HER2-overexpressing patients
(table 2). However, the antibody drug trastuzumab can
decrease the recurrence of HER2-positive tumors by 52%
when combined with chemotherapy, a response greater
than that for chemotherapy alone [71,72]. While patients
with metastatic colon cancer with a KRAS mutation could
be treated with cetuximab (Erbitux®) and panitumumab
(Vectibix®), it is recommended that only patients with a
normal KRAS gene be treated with these drugs in combi-
nation with chemotherapy [73,74].

Conclusion
A given genotype has the ability to confer a variety of
phenotypes in the presence of different environmental
factors; this ability is called plasticity. Modifications in
gene expression are controlled by fundamental epigenetic
mechanisms including DNA methylation, histone modifi-
cations, chromatin remodeling and microRNAs that act
as regulatory molecules. Various tools are used to identify
phenotypic or epigenetic alterations in biological systems.
Such environmentally influenced alterations may lead to
several disorders and patients with epigenetic alterations
and their associated disorders do not respond to conven-
tional therapy. Therefore, drugs used for personalized
medicine can be used to manage these disorders based
on an individual’s personal genomic profile. Many of the
drugs used for personalized medicine have been
approved by the FDA. However, various challenges exist
for the scientists and researchers studying genomic
alterations and their phenotypic expression given that
each patient is unique.
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