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Abstract

High-throughput (HT) RNA interference (RNAi) screens are increasingly used for reverse genetics and drug
discovery. These experiments are laborious and costly, hence sample sizes are often very small. Powerful statistical
techniques to detect siRNAs that potentially enhance treatment are currently lacking, because they do not
optimally use the amount of data in the other dimension, the feature dimension.
We introduce ShrinkHT, a Bayesian method for shrinking multiple parameters in a statistical model, where
‘shrinkage’ refers to borrowing information across features. ShrinkHT is very flexible in fitting the effect size
distribution for the main parameter of interest, thereby accommodating skewness that naturally occurs when
siRNAs are compared with controls. In addition, it naturally down-weights the impact of nuisance parameters (e.g.
assay-specific effects) when these tend to have little effects across siRNAs. We show that these properties lead to
better ROC-curves than with the popular limma software. Moreover, in a 3 + 3 treatment vs control experiment
with ‘assay’ as an additional nuisance factor, ShrinkHT is able to detect three (out of 960) significant siRNAs with
stronger enhancement effects than the positive control. These were not detected by limma. In the context of
gene-targeted (conjugate) treatment, these are interesting candidates for further research.

Introduction
Many clinical genomics studies suffer from low power
and low reproducibility caused by small sample sizes.
Small sample sizes may be due to high costs per sample,
low availability of genomic material (e.g. for rare diseases)
or even juridical restrictions (e.g. when administering an
experimental drug to patients). The philosophy behind
our method is to increase power and reproducibility by
retrieving as much information as possible from the ver-
tical data direction (feature space: genes, tags, small inter-
ference RNAs (siRNAs), etc.) for estimating differential
treatment effects from the horizontal data direction
(sample space).
In statistical terms the latter is referred to as ‘shrinkage’.

In a classical setting, a shrinkage estimator is a weighted

average between the estimator from the concerning fea-
ture and a pooled estimator from all features. Shrinkage of
dispersion-related parameters, like s2 for the Normal dis-
tribution, is now commonly applied to genomics data and
has been implemented in popular analysis software like
limma [1]. We take a step further. We show that shrinking
additional parameters, including the main parameter of
interest, e.g. the treatment effect, may further enhance
power and reproducibility. Our approach is an Empirical
Bayes framework around a Full Bayes fitting method called
Integrated Nested Laplace Approximation (INLA [2]).
Here, INLA provides a fast, flexible, versatile and accurate
alternative to MCMC, whereas our framework uses the
high-dimensional aspect of the data to estimate priors,
which effectuates shrinkage.
For the analysis of RNA-seq count data, we introduced

ShrinkSeq [3]. We showed its improved performance in
terms of Receiver Operating Characteristic (ROC)-curves
with respect to other methods like edgeR, baySeq and
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DESeq, in particular when the data contain many zeros
and sample sizes are small. Here, we provide several
extensions and new insights: 1) ability to handle high-
dimensional Gaussian data; 2) model selection properties
when nuisance parameters are involved; 3) flexible and
powerful inference with potentially asymmetric priors.
High-throughput (HT) RNA interference (RNAi)

screens [4] are increasingly used for reverse genetics and
drug discovery. Statistical methods used for HT screens
data analysis are commonly borrowed from small-
molecule screens or even other types of high-dimensional
data methods. However, HT screens data differs from
other high-dimensional data in fundamental ways. Firstly,
HT screens data are more susceptible to technical effects,
as the cell culture plates are handled several times over a
multiple day period, and the various experimental steps
are performed by a variety of equipment. Secondly, studies
currently involve a very small (1-3) number of replicates
per condition. Hence, statistical inference is often absent
in HT RNAi studies: only fold changes and standard
deviations are mentioned. Thirdly, HT screens data
typically involve a large amount of observations for con-
trols, which serve as references for condition effect but are
not of primary interest, and a very limited number of
observations per siRNA, which are the primary interest.
This highly unbalanced design essentially means that clas-
sic statistical methods are underpowered to find siRNA-
specific effects.
Ideally, HT screens contain two types of controls: a

negative one, which in a treatment sensitization setting
can be used to estimate the effect of treatment alone,
and a positive one, which is a gene known to have an
(additional) effect on the response, e.g. cell viability,
when silenced. While comparisons to both controls are
of interest and our method applies to both, we focus on
the one relative to the positive control. Then the lack of
power is particularly relevant: an siRNA can only be sig-
nificant (in comparison with the positive control) when
the differential siRNA-specific cell viability between
treatment and ‘no treatment’ conditions exceeds that of
the positive control. Most data information then arises
from treatment effect for controls, with generally hun-
dreds of measures per replicate, whilst the main goal
typically is to draw conclusions about siRNA-specific
treatment sensitivity, for which only a single measure is
available per replicate. There is thus great need for
methods that can borrow information across features
(siRNAs), to improve the chance of finding relevant
siRNAs.
In this work, we use data from a cisplatin sensitization

HT screen. Cisplatin is a DNA damaging agent that has
been used for over 30 years to treat cancer and is part
of standard therapy for some cancer-types, including
non-small cell lung cancer. Unfortunately, results are

suboptimal and some patients react better than others.
Chemo-resistance is a major problem, for which the
molecular cause is largely unknown. Cisplatin sensitiza-
tion screens aim at identifying genes involved with the
sensitivity to cisplatin. This knowledge may render use-
ful biomarkers for treatment response, and elucidate
which pathways are involved in resistance to cisplatin.
Moreover, the identified genes are potential targets for
more effective treatment when cisplatin is combined
with an inhibitor of the corresponding gene product.
The data were produced as follows. Cells from the estab-

lished non-small cell lung cancer (NSCLC) cell line A549
were seeded in 96 well plates. Next day, these cells were
transfected with siRNAs targeting a selected set of
960 genes, using a robotic set up. This renders two sets of
24 plates for which each well contains a pool of siRNA tar-
geting one gene. The following day a low dose of cisplatin
was added to the wells of one set of plates, while the other
set received an equal volume of culture medium without
cisplatin. Four days after cisplatin exposure, read out of
viability commenced for both sets. This procedure was
repeated twice. The positive control, BIRC7, is a known
inhibitor of apoptosis-related genes and sensitises A549
cells to cisplatin. The negative control consists of a pool
of siRNAs that do not target a known human mRNA.
The cisplatin concentration used was relatively low:
0.45 μg/ml. At that concentration, the reduction of viabi-
lity by cisplatin in BIRC7 silenced cells, compared to cells
treated with non-targeting siRNAs, is most profound.
Reducing cisplatin in a clinical setting while preserving
toxic effect on the tumor is likely to reduce cytotoxic side
effects like kidney and auditory nerve damage.
The HT screen data was read into R and normalized by

correcting for a plate or assay effect using a linear regres-
sion model on the logarithm of the data values, consider-
ing all six screens simultaneously. Subsequently, the
treatment effect was estimated for positive controls only,
also controlling for possible remaining assay-specific
effects. The remaining siRNA observations, corrected for
control-related treatment effect, were then studied using
two alternative empirical-Bayes approaches. The first one
involved studying treatment effect in the corrected siRNA
data by using limma. This approach shrinks the effect’s
variance only, which leads to a modified t-test. The second
one is ShrinkHT, which shrinks multiple parameters:
effect variance, effect size and possibly also nuisance
effects like the assay-specific ones for data with Gaussian
errors.

Methods
Introduction to (Bayesian) shrinkage
Consider a simple data set, for which features (e.g. siR-
NAs) X2, ..., Xp are measured on n = 6 subjects (divided
in two groups) only. For illustration purpose assume
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feature X1 is measured on the same 6 subjects, but also
in 4 other studies (so 5 in total) with the same technol-
ogy and study design. Feature X1 will be used to illus-
trate the potential beneficial effect of shrinkage. A
simple Analysis of Variance (ANOVA)-type model for
groups j = 1 and j = 2 is:

Yjk = α + βj + εjk, (1)

where Yjk is the data for subject k in group j, a is a com-
mon intercept and εjk follows a central Normal distribu-
tion. In addition, b1 is set to zero, so b2 can be interpreted
as the mean log-fold change between groups. In a Bayesian
setting, model (1) is not complete: priors need to be speci-
fied for all parameters. Let us focus on the prior for b2. In
a conventional Bayesian analysis, a flat prior would be
used, e.g. a Gaussian with very large variance, f.e. N(0;
1002). This reflects a complete lack of prior believe or evi-
dence on the size and direction of the log-fold change.
Refer to model (1) with this prior as model m1. Now our
method allows to estimate a prior from X2 ..., Xp (or from
X1 ..., Xp: because p is large X1 has a negligible effect on
the estimate, so we do not violate the ‘do not use the data
twice’ principle). Suppose the log-fold changes tend to be
much more concentrated, reflected by an estimated
shrinkage prior N(0, τ2), with τ = 0.5. Use of this prior

defines model m2. Suppose their is no effect for feature
X1, so b2 = 0. Figure 1(a) illustrate estimates of b2 for X1

for the five studies under models m1 and m2. We observe
two beneficial effects of the shrinkage prior: the means are
shrunken towards zero (and hence better reproducible),
and the standard deviations are markedly smaller than for
the vague prior. For large sample sizes the differences
between the shrunken estimates and the ones based on a
vague prior diminish (see Figure 1(b)), because the data
then dominates the prior.
Use of a shrinkage prior effectuates (Bayesian) shrink-

age: (posterior) estimates of the feature-specific log-fold
changes are shrunken towards the overall mean log-fold
change by using a prior that is concentrated around this
mean. Here, the high-dimensional aspect of our data
plays an important role: the availability of X1, ..., Xp,
with p large, allows us to estimate a common prior,
rather than assuming it. In our example, the shrunken
prior is correctly positioned for X1. However, if the true
b2 is not well supported by the prior, shrinkage may do
more harm than good, because it may introduce a bias.
This is the reason why we allow flexible, non-parametric
priors, which can accommodate a wide variety of distri-
butional properties such as skewness or heavy tails.
Below we discuss estimation of such priors.

Figure 1 Illustration of shrinkage effect. Estimates of b2 (mean ± standard deviation) for five studies, using model m1 (vague prior; circle/solid
line) and model m2 (shrinkage prior; square/dashed). (a): n = 6, (b): n = 40. Data are generated from model (1) with b2 = b1 = 0 and

εjk=dN(0, 1).
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Design of cisplatin sensitization HT screening experiment
The analysis of the HT screening data consists of three
parts: 1) Estimation of the hyper-parameters (parameters
of priors), which effectuates shrinkage; 2) Estimation of
the model parameters; 3) Inference. The design of the
experiment is given in Table 1. Next, we describe the
model for the HT screening data.

Model
The model is the same for all siRNAs and hence we drop
the siRNA index when not referring to a specific siRNA.
Then, Yjk is the j

th observation for the kth assay for a given
siRNA, where j = 1 corresponds to ‘no treatment’ and
j = 2 to ‘treatment’.

Yjk = offsetjk + β0 + β treat
j + β

assay
k + εjk

εjk=dN(0, σ 2)

β
assay
k =dN(0, τ 2)for k ≥ 2; β

assay
1 = 0

β treat
2 =dFNP; β treat

1 = 0

σ−2=d�(α1, α2)

(2)

Here, offsetjk is trivially computed from the positive con-
trol data. It is the estimated effect of the positive controls
for treatment level j and assay k using the same model as
above, but with vague priors for all parameters. Since the
amount of data on the positive controls is large (288 mea-
surements), and the standard deviations of the estimates
are small, we do not further propagate the uncertainty of
these estimates.
The crux behind our method is that we empirically

estimate hyper-parameters τ2, a1, a2 and FNP, which is a
non-parametric, log-concave distribution function [5].
The latter provides maximum flexibility for the main
parameter of interest, β treat

2 . In the Results section we
show that this flexibility is essential for detecting signifi-
cant siRNAs.

Estimation of hyper-parameters
Let us first consider the empirical estimation of the Gaus-
sian variance parameter τ2. Suppose we initially do not
estimate τ2 and just set it to some large value (eg 106)
which reflects a vague prior for β

assay
k . Likewise other

hyper-parameters are initialized to induce vague priors,
including a vague Gaussian prior to initialize FNP. Then,
INLA provides posterior distributions of all parameters.

Now write mik and vik as the posterior mean and variance
of β

assay
ik , where we add index i to indicate siRNA i. In

other words, mik and vik are means and variances condi-
tional on the data for siRNA i. Using the well-known var-
iance propagation rule, V(A) = VB(E(A|B)) + EB(V(A|B)),
we may now simply re-estimate the unconditional, prior
variance by

τ̂ 2 = V̂(mik) + v̄ik, (3)

where V̂ is the sample variance estimator. Now, the
procedure may be repeated until convergence, where
new posteriors are computed under the updated prior
variance τ̂ 2. Figure 2(b) shows an example of central
Gaussian priors that result from iterative estimates of

τ 2. The rationale behind this iterative procedure is as
follows. Posteriors are a compromise between the prior
and the likelihoods (the data). Hence, as long as the
common prior ‘conflicts’ with the data, pooling the pos-
teriors, which is what (3) does, leads to a prior that, in a
global sense, is more in line with the data. Of course,
here it is quintessential to have much data in the verti-
cal direction, siRNAs, to ensure that the prior does not
tune to one particular siRNA.
For non-Gaussian, parametric distributions the above

moment-estimator is replaced by a maximum likeli-
hood-based one. Importantly, the procedure above may
trivially be extended to estimate multiple priors: at each
iteration INLA provides posteriors given all priors,
hence accounting for potential interdependencies,
whereas the re-estimation of the priors depends only on
the marginal posteriors of the concerning parameter.
Finally, let us shortly explain how FNP in model (2) is

estimated. INLA can currently not deal with non-para-
metric priors. Hence, in the above joint iterative proce-
dure we have to assume a parametric prior for β treat

2 , e.g.
Gaussian. Denote this prior with π(b). Now suppose we
want to replace this prior by a non-parametric one π*
(b), the density corresponding to distribution function
FNP. INLA returns posteriors π(b|Y) under prior π(b).
The following re-weighting allows to compute a poster-
ior π*(b|Y) under prior π*(b):

π∗ (β\Y) =
π (β\Y) π∗ (β) /π (β)

∫
π (β\Y) π∗ (β) /π (β) dβ

,

where the denominator scales the numerator to
ensure that π∗ (β\Y) is a density integrating to one. The
principle for estimating π∗ (β) (and hence FNP) is the
same as with the above joint iterative procedure: itera-
tively and alternatingly update π∗ (β) and π∗ (β\Y).
Here, the new update of π∗ (β) is just a log-concave fit
to a large sample of the empirical mixture of posteriors
of β treat

i2 , where log-concavity helps to stabilize the tails.

Table 1 Design of the study

Measurement

y11 y21 y12 y22 y13 y23

Untreated Treated Untreated Treated Untreated Treated

Assay 1 Assay 1 Assay 2 Assay 2 Assay 3 Assay 3

Design of the cisplatin sensitization HT screening experiment
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Hence, the joint iterative procedure is followed by a
marginal iterative procedure (which updates only one
prior) and together they provide estimates of τ2, a1, a2,
FNP and the posteriors of β treat

i2 . Several (mathematical)
details of the procedure, such as approximate equiva-
lence to maximum marginal likelihood, convergence cri-
teria and various types of parametric priors are further
discussed in [3].

Inference
An important feature of HT screening is that, due to the
interpretation of the β treat

i2 (treatment sensitization effect
relative to a positive control), one is mostly interested in
β treat

i2 > 0 This implies that inference needs to be one-
sided. This is particularly important in an FDR setting: if
the inference is performed two-sided, so also aims at
detecting β treat

i2 < 0, this may heavily bias the results for
β treat

i2 > 0, even when those are a posteriori selected. The
reason is that the many ‘significant’ results for β treat

i2 < 0
(which are to be expected: many siRNAs will have smaller
effects than the positive control) push the FDR down-
wards. This asymmetry for the positive and negative
effects is further highlighted in the Results section.
In [3] we argued that in a shrinkage context the pos-

terior probability p0i = 1 - pi = 1 − P(β treat
i2 > 0|Yi) can

be interpreted as a local false discovery rate [6], which
for cut-off t leads to Bayesian False Discovery Rate
(BFDR [7]) when averaged over all p0i ≤ t. This can be
used analogously to ordinary FDR.

Results
Successful estimation of the priors
To assess whether priors can be successfully estimated in
this very challenging setting with only 6 measurements

per siRNA, two conditions and the presence of a three-
level nuisance factor (assay), we set up a simulation that
is strongly motivated from the data: the model is the
same as (2) except for the offset which is not relevant
here. Moreover, the effect size distribution FNP is an
asymmetric one: Γ(1, 0.5) shifted to the left by Δ = -1,
where our main interest is in the positive tail. Finally, a1

and a2 are set to 12 and 1, respectively, such that the
resulting Gamma distribution mimics the observed one
for the estimates of s-2 and τ = 0.2 which implies small
assay effects, as observed in the data as well. Thousand
siRNAs are simulated. The results of the iterative algo-
rithms are displayed in Figure 2.
Given the sample sizes and the number of model

parameters per siRNA, the results are very accurate.
From (b) and (c) we conclude that the final parametric
estimates (Iteration 20) are fairly close to the true ones
for the nuisance parameter and the precision. For the
first, the final estimate is τ̂ = 0.18, whereas for the latter
it is (α̂1, α̂2) = (10.90, 1.01). From (a) it is clear that the
non-parametric estimate can provide a substantial
improvement with respect to the Gaussian one for the
parameter of interest. Note that the left-tail is somewhat
more difficult to estimate due to its steepness, whereas
the right-tail (reflecting positive effects, in which we are
interested) is very accurately estimated.

Comparison
We compare ShrinkHT with limma in a data-based simu-
lation set-up. Here, the functional screening data serves
as a template for the sample sizes, number of features
and noise levels. More specifically, we simulate two
groups of three samples for 960 features from Gaussian
distributions with standard deviations equalling those of

Figure 2 Iterative estimates of priors. (a) Treatment parameter β treat
2 ; (b) Nuisance parameters β

assay
k ; (c) Precision s-2.
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the corresponding data estimates. For the main para-
meters of interest, the differences of means, we assume
that 80% of these equal exactly 0. The remaining 20% is
simulated from four differential effect size distributions:
Gamma(0.5, 0.75), halfNormal(0, 0.47), Gamma(0.25,
0.75) and halfNormal(0, 0.25). Here, the half-Normal dis-
tributions contain twice the mass of the positive part of
the central Normal ones. The first two distribution corre-
sponds to a mean differential effect of δ = 0.375, whereas
the latter two correspond to δ/2.
The simulated data were analyzed with ShrinkHT and

limma. In this setting, the two approaches differ

essentially in only one aspect: in addition to the stan-
dard deviations, ShrinkHT shrinks the mean differential
effects whereas limma does not. After the analysis, sig-
nificance results are ranked for both approaches,
enabling computation of the False Positive Rate (FPR; 1-
specificity) and True Positive Rate (TPR; sensitivity).
Figure 3 displays the resulting ROC-curves. For all
comparisons we show partial ROC-curves and partial
Area-Under-the-Curve (AUC) because in a testing set-
ting only small FPR (we use FPR ≤ 0.2) is relevant [8].
Partial AUC (pAUC) is expressed in terms of relative
AUC (rAUC), rAUC = pAUC = (0.22 * 0.5), where the

Figure 3 ROC-curves for four effect size distributions. X-axis: False Positive Rate (1-specificity), y-axis: True Positive Rate (sensitivity). (a)
Gamma(0.5; 0.75); (b) halfNormal(0, 0.47); (c) Gamma(0.25, 0.75); (d) halfNormal(0, 0.25).
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denominator is the expected AUC for a non-informative
decision procedure.
Figure 3 clearly shows the benefit of additional shrinkage

in ShrinkHT. For example, for FPR = 0.05, the TPRs of
ShrinkHT are 1.11, 1.29, 1.13 and 1.16 times higher than
those of limma for cases (a)-(d), respectively.

Analysis of HT screening data
To illustrate the effect of several levels of shrinkage, we
compute eqN: the ‘equivalent number of replicates’, which
equals eqN = N/p*, with total sample size N = 6 and p* the
effective number of parameters in the model [9]. High
values of eqN lead to more precise, and hence more repro-
ducible, estimates of the parameters. Shrinkage can poten-
tially decrease p* and hence increase eqN. We consider
four scenarios: 1) no shrinkage (flat priors); 2) shrinkage of
sd s only; 3) shrinkage of s and β treat

2 ; 4) shrinkage of s,
β treat

2 and β
assay
k .

In scenario 1) eqN equals 1.5 for all siRNAs. This is to
be expected, because with flat priors and Gaussian mod-
els p* is just the number of free parameters [9], which is
4 in model (2). In scenario 2) eqN also equals 1.5 for all
siRNAs, because s is a hyper-parameter in the hierarchi-
cal model, which does not contribute to the computation
of p* [9]. Hence shrinkage of this parameter has no effect
on eqN. For scenario 3) the mean eqN equals 1.73 (sd:
0.01), whereas for scenario 4) the mean eqN equals 3.21
(sd: 0.08). Hence, in particular shrinkage of the 2 free
assay parameters has a very beneficial effect on eqN. In
fact, under scenarios 1) and 2) sample size N should be
more than doubled to obtain approximately the same
value of eqN: N′ = 13 would result in eqN′ = 13 = 4 =
3.25. The gain in eqN for scenario 4 is due to the strong
reduction of p*, which results from the very narrow cen-
tral Gaussian prior for β

assay
k : standard deviation

τ̂ = 0.095. Hence, the assay parameters are strongly
shrunken towards 0, which illustrates the quasi-para-
meter-selection property of our method.
An interesting aspect of HT screens data is that when

comparing treatment enhancement effect of siRNAs
with that of the positive control it is likely that relatively
many siRNAs are less effective than the positive control.
Here, we show that it is quintessential to account for
this potential asymmetry in the statistical analysis.
Figure 4 shows the estimated Gaussian (and hence esti-
mated) treatment effect size distribution, and the flex-
ible, non-parametric one, which allows for skewness.
Importantly, the two differ strongly on the area of pri-
mary interest, the positive area, reflected in the 0.0529/
0.0397 = 1.33 times larger mass in this area for the non-
parametric one. More importantly, the practical conse-
quence is that at a 0.1 cut-off for the BFDR the non-para-
metric prior leads to 3 detections of siRNAs that have a
stronger effect than the positive control, whereas the

Gaussian prior results in only 1 detection (see Table 2).
At Benjamini-Hochberg FDR cut-of 0.1, limma returns
no detections when one-sided testing is used. However,
the comparison with limma should be interpreted tenta-
tively, because the true false positive rate is unknown.
Table 2 also shows the posterior mean estimates of

β treat
i2 when using the non-parametric treatment effect

size prior. So, for example, the enhancement effect of
siRNA 608 on cell viability is estimated to be 20.337 =
1.26 times larger than that of the positive control. Note
that our shrinkage implies that this estimate is intrinsi-
cally corrected for selection bias [10].

Conclusion
We discussed ShrinkHT, a new method for analyzing HT
screening data. Its efficiency and power were demon-
strated in both simulation and real data settings. We
showed that it is able to detect siRNAs that sensitize cells
to cisplatin with a stronger effect than the positive control.
It is important to have several candidates that exhibit
strong effects, because in the trajectory of further valida-
tion many siRNAs are likely to fail. HT screens are expen-
sive and laborious which explains the small sample sizes
(often smaller than 3 vs 3) found in literature. Still, even
when such small sample size studies are considered as
pilots it is important to select the right features for further
experiments and to have a good estimate of the false dis-
covery rate to minimize the risk of wasting resources and
time.

Figure 4 Estimates of Gaussian and non-parametric prior.
Gaussian and non-parametric estimates of the treatment

sensitization effect size (β treat
2 ) density and the prior probabilities

P(β treat
2 > 0): the area under the positive part of the curves.
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While we focused on the comparison with the positive
control, the comparison with the negative control is at
least as important. Here, the gain of ShrinkHT with
respect to other methods is relatively less when consider-
ing treatment sensitization, because these effects tend to
be large when compared to the negative control. On the
other hand, the siRNAs that sensitize the treatment less
than the negative control are also of interest, because
these may protect the cells against the treatment. Those
protective effects are likely to be smaller and less prevalent
than enhancement effects. The adaptivity of the prior
towards non-symmetric situations like these renders
ShrinkHT very suitable to find such protective effects.
For some HT screens many siRNAs have significantly

larger effects than the negative control, whereas none of
these has a significantly stronger effect than the positive
control (or a good positive control is lacking). For exam-
ple, silencing of the commonly used positive control gene
PLK1 usually completely kills cells irrespective of the treat-
ment modality. Then, inference with respect to the con-
trols is only partly helpful for selecting siRNAs that
sensitize treatment for further validation. In such a case,
our method allows a potentially useful alternative: infer-
ence with respect to the mean or mode. In an empirical
Bayes setting, the prior can be assumed known when esti-
mating marginal posteriors and hence also when drawing
inference from these. Hence, we may base the ‘null-
hypothesis’ on e.g. the mean of the prior of the primary
parameter of interest, βtreat, and declare an siRNA signifi-
cant if its effect is significantly larger than this mean. Since
the prior mean reflects the average posterior mean over all
siRNAs, such significance should be interpreted as a rela-
tive statement: the concerning siRNA has a significantly
larger effect than the average. In our setting, 181 siRNAs
showed such a significant effect at BFDR ≤ 0.1.
In silico validation of our approach is not straightfor-

ward. Large sample HT screens are not available, which
disallows a sample splitting approach like we performed
for RNA-seq data [3]. For those data we demonstrated
better reproducibility of the results from our approach
with respect to others. On genome-wide screens, pathway
(enrichment) analysis could be useful, but our selected set
of 960 genes is likely too small for this purpose. Biological
validation of significant siRNAs (hits) is planned for the
near future. Follow up in RNAi screens with pools of

siRNAs targeting the mRNA of one gene, such as in our
example data set, starts with the process called deconvolu-
tion; each of the single siRNAs from a hit pool is tested to
see if it elicits the same effect. Often this is accompanied
by quantification of the knock down of the targeted
mRNA, in order to detect possible off target effects of the
siRNAs. In this particular screen, deconvolution will be
combined with a dose response curve to cisplatin to truly
assess the sensitizing effect of siRNAs targeting the gene
of interest.
ShrinkHT is part of the R-package ‘ShrinkBayes’, under

the function name ‘ShrinkGauss’. ShrinkBayes also
includes ShrinkSeq for the analysis of RNA-seq data. The
package is available from http://www.few.vu.nl/~mavdwiel.
We are convinced that ShrinkHT contributes to powerful
and reliable detection of siRNAs which, in the context of
gene-targeted (conjugate) treatment, are interesting candi-
dates for further validation.
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1st column: siRNA id; 2nd to 7th column: log2 cell viability data for untreated and treated cell lines, corrected for the differential effect in positive control; 8th

column: estimate of treatment sensitization effect (’untreated - treated’) in excess of the positive control when ShrinkHT is used with a non-parametric prior; 9th

and 10th column: BFDRs when using a non-parametric and Gaussian prior; 11th column: Benjamini-Hochberg corrected FDR for limma results

van de Wiel et al. BMC Medical Genomics 2013, 6(Suppl 2):S1
http://www.biomedcentral.com/1755-8794/6/S2/S1

Page 8 of 9

http://www.few.vu.nl/~mavdwiel
http://www.biomedcentral.com/bmcmedgenomics/supplements/6/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/6/S2


Oncology, VU University Medical Center, Amsterdam, the Netherlands.
3Department of Pulmonary Diseases, VU University Medical Center,
Amsterdam, the Netherlands.

Published: 7 May 2013

References
1. Smyth GK: Linear models and empirical Bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3:Article3.

2. Rue H, Martino S, Chopin N: Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations
(with discussion). J R Statist Soc B 2009, 71:319-392.

3. Van de Wiel M, Leday G, Pardo L, Rue H, van der Vaart A, van Wieringen W:
Bayesian analysis of RNA sequencing data by estimating multiple shrinkage
priors. Biostatistics 2013, 14:113-128, doi: 10.1093/biostatistics/kxs031.

4. Mullenders J, Bernards R: Loss-of-function genetic screens as a tool to
improve the diagnosis and treatment of cancer. Oncogene 2009,
28:4409-4420.

5. Lutz D, Rufibach K: logcondens: Computations related to univariate log-
concave density estimation. J Statist Software 2011, 39:1-28.

6. Efron B, Tibshirani R, Storey JD, Tusher V: Empirical Bayes analysis of a
microarray experiment. J Amer Statist Assoc 2001, 96:1151-1160.

7. Ventrucci M, Scott EM, Cocchi D: Multiple testing on standardized
mortality ratios: a Bayesian hierarchical model for FDR estimation.
Biostatistics 2011, 12:51-67.

8. Dodd LE, Pepe MS: Partial AUC estimation and regression. Biometrics
2003, 59:614-623.

9. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A: Bayesian measures of
model complexity and fit. J R Statist Soc B 2002, 64:583-639.

10. Crager MR: Gene identification using true discovery rate degree of
association sets and estimates corrected for regression to the mean. Stat
Med 2010, 29:33-45.

doi:10.1186/1755-8794-6-S2-S1
Cite this article as: van de Wiel et al.: Analysis of small-sample clinical
genomics studies using multi-parameter shrinkage: application to high-
throughput RNA interference screening. BMC Medical Genomics 2013
6(Suppl 2):S1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

van de Wiel et al. BMC Medical Genomics 2013, 6(Suppl 2):S1
http://www.biomedcentral.com/1755-8794/6/S2/S1

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22988280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22988280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20577014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20577014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14601762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19960511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19960511?dopt=Abstract

	Abstract
	Introduction
	Methods
	Introduction to (Bayesian) shrinkage
	Design of cisplatin sensitization HT screening experiment
	Model
	Estimation of hyper-parameters
	Inference

	Results
	Successful estimation of the priors

	Comparison
	Analysis of HT screening data

	Conclusion
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

