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Abstract

level of support from multiple assay modalities.

Background: Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial
assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor
invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites
in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant
organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is
known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis.

Methods: We compiled multiple genomic data types (mutations, copy number alterations, gene expression and
methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net
regularized regression method on the combined genomic data to identify genetic aberrations and their associated
cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and

Results: A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic
platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and
ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis.

Conclusions: We conducted an analysis integrating multiple genomic features including mutations, copy number
alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic
features performs better than any individual genomic assay. We identified multiple genes that robustly delineate
advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression.
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Background

Colorectal cancer (CRC) is projected to be the 3rd leading
cause of cancer deaths in the United States in 2013 with
the mortality primarily a result of metastatic disease [1].
Identifying the genetic and genomic basis of CRC has sig-
nificant clinical implications. Our understanding of CRC
requires identification of the critical “driver” genes that are
fundamentally important for CRC development unlike
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“passenger” genetic aberrations that have no functional
relevance to cancer biology [2]. Previous genetic and gen-
omic studies of CRC have identified many of the critical
drivers that are important to CRC development [3-7]. For
example, the cancer genes APC, KRAS and TP53 have a
high frequency of genetic aberrations in CRC and are
known to play an essential role in CRC development [8].
A number of other cancer genes have been identified in
CRC and cluster in several biological pathways including
those responsible for Wnt signaling [9], RAS/RAF path-
way [10] and transforming growth factor § (TGF-p) signal-
ing [11]. While the cancer genes directly responsible for
CRC development have been characterized, less is known
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about which cancer genes delineate advanced versus early
stage CRC.

Currently, the metastatic status of CRC is assessed via
clinical staging which dictates the choice of therapy and
remains the best prognostic indicator for individual CRC
patients [12]. Clinical stage is determined by the TNM
criteria, where T is assigned by extent of tumor inva-
sion, N represents the number of lymph nodes with
metastatic cancer and M represents the presence of
metastatic cancer in other organs outside of the colon
and lymph nodes. Advanced clinical stage either reflects
metastatic cancer spread to the regional lymph nodes
around the colon as in stage III or spread to organs
outside of the colon or rectum as in stage IV. Advanced
(stages III or IV) CRC has a significantly worse progno-
sis compared to early stage (stages I or II) that is
generally considered curable. With the advent of gen-
omic cancer medicine, there is increasing interest in
identifying the specific CRC genetic aberrations and re-
lated cancer genes that define advanced clinical stage.
Identification of these genetic aberrations and their cor-
responding cancer genes may illuminate the underlying
genetics of advanced clinical stage CRC as well as have
relevance in the prognostic assessment.

A recent large-scale study by the Cancer Genome
Atlas (TCGA) is the most comprehensive CRC genomic
survey to date [13]. The TCGA CRC project relied on a
combination of next generation sequencing and micro-
array genomic platforms to characterize different CRC
genetic aberration features and the individual affected
genes. This project also provides clinical information
about the metastatic status of individual patients via
clinical stage information. The breadth of the TCGA
genomic data sets provides a unique opportunity to con-
sider different categories of genetic aberrations at indi-
vidual gene resolution that other genomic studies have
not considered [14-16].

Relying on the TCGA CRC data, we conducted a su-
pervised analysis, integrating all of the multiple classes
of available genomic feature data. The integrated data
set included i) somatic mutations, ii) copy number alter-
ations, iii) gene expression changes and iv) methylation.
Our analysis uses elastic-net regression to estimate an
optimal multiple linear regression of the clinical out-
come on the space of genomic features. We analyzed
this integrated genomic data set against clinical stage to
delineate genes associated with advanced CRC.

Our study is unique and has specific strengths in many
aspects compared to previous studies. Most importantly,
with our integrated analysis method, we considered a full
range of cancer genetic aberrations, otherwise described
as genomic features. We identified specific cancer genes
associated with advanced clinical stage; some of these
genes have not been reported as being associated with
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cancer progression. The results of our analysis can be
queried directly through a website (http://genomeportal.
stanford.edu/tcga-crc).

Methods

TCGA CRC genomic data

Genomic data was obtained from the Broad Firehose
(http://gdac.broadinstitute.org) which is one of the Gen-
ome Data Analysis (GDACs) for TCGA project. The
data files from January 2013 analysis/standardization run
of colorectal (COADREAD) cancer includes five genom-
ics assays for each sample: DNA copy number variation,
mRNA expression level by microarray/RNASeq, somatic
mutations by whole exome sequencing, DNA methyla-
tion, and expression level of miRNA by RNASeq. Micro-
RNA data was analyzed separately in our analysis be-
cause the frequency of missing data is relatively high and
the general ambiguity in regards to identifying the spe-
cific gene targets subject to expression changes.

Clinical information of the samples was obtained from
the Broad Firehose and UCSC cancer genome browser
[17]. The availability of clinical parameter data for each
sample was highly variable; therefore, we focused on
those parameters that had the most complete annotation
among the largest number of samples. We selected two
major clinical parameters for elastic-net analysis: micro-
satellite instability (MSI), a molecular CRC feature asso-
ciated with loss of DNA mismatch repair and clinical
stage information. We also examined the individual vari-
ables of clinical stage via the TMN criteria: i) T is for
extent of primary tumor invasiveness; ii) N derived from
the number of cancer positive lymph nodes; iii) M is
an indicator of metastasis in other organs beyond the
primary site. These clinical outcomes were converted
into ordinal values and used for subsequent elastic-net
regression analysis (Additional file 1: Table S1).

We sought to differentiate between driver genetic ab-
errations in known and putative cancer genes versus
passenger events in genes not related to cancer develop-
ment. To eliminate non-contributing passengers, we re-
lied on cancer genomic data resources cataloging known
and putative cancer gene. These genes were identified
from large-scale studies and curation of the scientific lit-
erature. We chose the genes for inclusion in our initial
set using two data sources: Catalogue of Somatic Muta-
tions in Cancer (COSMIC) and TCGA. We chose COS-
MIC because it has been both curated and validated.
However, we were concerned that by imposing such high
standards on genes that make it into the initial set, we
might miss out on genes that are important, but not yet
validated. To broaden the scope of our study and im-
proved our identification of clinically relevant cancer
genes, we added genes sets obtained from the TCGA
project as part of their discovery studies.
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Overall, the COSMIC database contains 484 genes that
have been shown to be associated with cancer develop-
ment and thus are established or candidate cancer genes
[8]. The TCGA CRC analysis identified a large number
of known and putative cancer genes including: 32 mu-
tated genes, 353 genes with copy number changes, a 30
genes expression signature associated with tumor ag-
gressiveness and a 344 genes methylation signature [13].
In addition, we included 20 genes known to be fre-
quently mutated in colorectal cancer [18,19]. This re-
sulted in a set of 1,192 known or putative cancer genes
where there was significant genomic and literature infor-
mation supporting their role in cancer (Additional file 2:
Table S2).

Data pre-processing and normalization

We conducted our analysis with Matlab (Mathworks,
Natick, MA) and we provide the individual scripts used
(Additional file 3). We used a multi-step procedure to
update, normalize and filter the gene meta-data. First, we
reviewed every gene symbol in all genomic data to the
HUGO Gene Nomenclature (HGNC) [20]. According to
the HGNC gene designation (March 2013), 55 gene sym-
bols were not current and 15 genes were not protein cod-
ing genes. In total, 1,122 genes were in the candidate list
after eliminating these 70 genes.

From the array data, we eliminated any features that
had missing measurements for 3% or more samples. We
imputed remaining missing measurements with the me-
dian across samples for each feature. For instance, there
were 183 methylation array features lacked any values
in 6 or more samples (> 3% of 197 samples) for clinical
stage analysis. The imputation occurred with 26 fea-
tures in methylation data and 6 features in mRNA
microarray data.

Since mRNA levels were measured using both micro-
array and sequencing technology platforms, we com-
bined these measurements for each gene using principal
component analysis (PCA) [21]. PCA performs singular
value decomposition on the probes by platform data
matrix to yield factor weights for each platform. These
weights were used in a linear combination to produce a
single value for each gene,

mRNA-eigen = 0.8972 x mRNA-Array + 0.4417
x mRNA-Seq

where mRNA-array is the microarray measurement in
log-fold change and RNA-Seq is the sequencing meas-
urement in log(RPKM) for a particular gene. The
mRNA-eigen value preserves on average 68.9% of the
variance in the original data. Additional file 4: Figure S1)
shows a scatter plot of mRNA measurements from both
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platforms and the principal eigenvector projection of
the data.

We excluded CRC samples that were not measured in
all genomic platforms. This filtration step retained 200
of the initial total 585 samples in the data set. Subse-
quently, we excluded the samples without clinical infor-
mation (Additional file 5: Table S3). All 200 samples
have clinical information about N status. However, there
were several samples missing some clinical information;
3 samples missing clinical stage, 1 sample missing T sta-
tus, 2 samples missing M status and 2 samples missing
MSI status.

After pre-processing of data, we normalized the scale of
each feature. Briefly, each genomic feature was normalized
by the standard deviation of each gene’s measurement
plus 10 percentile of the global standard deviations in
each assay. This standard deviation correction factor is
standard in microarray analysis [22] and minimizes the
risk of generating outliers due to normalization. The
normalization is,

S(i i) — 8(i,j)
8(iJ) sd(g(i)) + sd1o(g)

where g(i,j) is the value for feature i in sample j, sd(g
(i)) is the standard deviation across samples for fea-
ture i, sdjo(g) is the 10-percentile value of standard
deviations across features and g(i,j) is the normalized
feature value.

To prepare the final data set ready for analysis with
the elastic-net, we simply combined the four genomic
data sets (copy number, mutation, methylation, mRNA-
eigen) into a single matrix representing 197 samples for
clinical stage analysis. The data is available at our web
portal (http://genomeportal.stanford.edu/tcga-crc/pages/
datainformation).

Elastic-net analysis

We used elastic-net regression to estimate an optimal
multiple linear regression of the clinical outcome on the
space of genomic features [23]. The elastic-net algorithm
simultaneously performs linear regression to learn the
coefficient weights associated with each genomic feature
while limiting the number of predictors in the model to
ensure the model is general. It performs well on inde-
pendent data that was excluded from the analysis of
the original primary data set. We used 10-fold cross-
validation to identify the value of the regularization par-
ameter that minimized the average mean-squared error
on this held-out test set. An additional tuning parameter
taking values between zero and one controls the inclu-
sion of correlated predictors. The standard ‘Least Abso-
lute Shrinkage and Selection Operator’ (LASSO), which
is the prototype algorithm of elastic net, sets this value
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to zero to minimize the inclusion of correlated predic-
tors; we set the value to the mid-point of 0.5. The result-
ing coefficients from the regularized regression were
used to rank genes by their association with clinical fea-
tures. It is important to note that the features identified
by this procedure operate as a panel. While each individ-
ual feature may not predict the outcome well, in com-
bination the prediction accuracy is improved as several
other studies have shown this in various goal of using
genomic data [24-29].

Ranking scheme

In the primary results of elastic-net, a gene can appear
at most four times when all four types of genomic data
support the gene. The rank of each genomic feature is
determined by its absolute value of regression coefficient
in descending order. Our scoring scheme by ranks gives
priority to genes in the top ranks or multiple ranks by
two-step calculations. First, we calculated the unit score
to weight the rank proportionally;

Unit point = 1,000 = X" ;r

where r is the rank and n is the total number of ranks in
the result from elastic-net analysis. Second, the score of
top ranked genomic feature will be n times higher than
the score of the bottom ranked genomic feature;

Score of g(i) = (unit point) x (n-r(i) + 1)

where g(i) is the genomic feature, r(i) is the rank of the
genomic feature of i, and n is the total number of ranks
in the list. Finally, the score of a gene will be the sum
of scores of genomic features from the gene. Therefore,
a gene that has a highly ranked genomic feature and/or
has multiple genomic features will have a higher score
in overall.

Assessment of profile robustness to variations in training

data

Nonparametric bootstrap resampling was used to assess
the robustness of the set of top ranked genes to changes
in the training data as has been previously validated
[30]. The complete data set was resampled with replace-
ment 3,000 times and the elastic-net regression was
recomputed for each bootstrap data set. Additional file
6: Table S4 details the count of the number of times a
feature was selected by the elastic-net regression. Fea-
tures that are consistently selected by the bootstrap re-
gression have high rank and low variance in the rank are
robust to variations in the training data set.

Web implementation
To facilitate access to our analysis results, we provide a
website that can be queried: http://genomeportal.stanford.
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edu/tcga-crc/. The TCGA COAD Resource runs on a
2x2.27GHz Quad Core Intel Xeon E5520 server, with
24GB memory, and Ubuntu 9.10 operating system. The
web application is implemented in Ruby on Rails 4.0, run-
ning under Apache2 and Passenger 4. The underlying
database is MySQL 5.1.7, which is hosted on a separate
database server. Query and data download is via any
current web browser. Recommended browsers and ver-
sions are: Chrome 28.0+, Internet Explorer 8.0+, Firefox
22.0+, Safari 5.0 +.

Results

Cancer genome atlas data for CRC

The TCGA CRC genomic data was obtained from the
Broad Institute where the Tier 3 data (gene level calls
that have been fully processed) are archived. Genomic
data files from January 2013 analysis of colon and rectal
cancer included five genomics assays for each sample:
DNA copy number variation by single nucleotide poly-
morphism (SNP) array analysis, gene expression levels
by microarray/RNASeq, somatic mutations by whole ex-
ome sequencing, DNA methylation via arrays and ex-
pression level of micro-RNA by RNASeq. These
genomic data sets were integrated into a single data
matrix for analysis (see Methods). Micro-RNA (miRNA)
data was analyzed separately because the frequency of
missing data is relatively high and the general ambiguity
in regards to identifying the specific gene targets subject
to expression changes.

We used a gene-centric approach for this study. For
each gene, there were four genomic features represented
by i) mutations, ii) copy number variation (CNV), iii)
gene expression and iv) methylation status. We selected
a candidate set of 1,185 known or putative cancer genes
for our analysis. Using this approach i) reduces the issue
of passenger events of no genetic significance, ii) pro-
vides an improved regression analysis and iii) facilitates
interpretation of results according to their potential role
in biological processes related to cancer. The genomic
data of the selected genes was downloaded, pre-
processed and integrated into a single data matrix for
elastic-net analysis (Figure 1). As a normalization step to
facilitate our study, we rescaled the features by their
standard deviation across samples. This step improved
the robustness of the analysis. This single combined
matrix has genomic values of genes (independent vari-
ables) and the clinical table contains specific clinical pa-
rameters such as microsatellite instability (MSI) status
and clinical stage.

Application of elastic net regression to integrated
genomic features

We used elastic-net regression to estimate an optimal
multiple linear regression of the clinical outcome on
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Figure 1 Overview of the data analysis process. Genomic data was collected from TCGA and Broad FireHose websites. Samples have
complete data for mutations, copy number alteration, gene expression and methylation. Gene expression from microarrays and RNASeq were
combined using principal component analysis into a single measure for each gene and then concatenated to the data for the other assays.
Missing data was imputed using the median value across samples. Finally, regularized regression (elastic-net) was used to identify a minimal set
of features that delineated clinical stage, the extent of tumor invasion into the colon, metastasis in lymph nodes, metastasis in other organs and
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| | | | |

Clinical data

the integrated data set of all genomic features [23]. The
elastic-net algorithm performs linear regression to learn
the coefficient weights associated with genomic fea-
tures simultaneously. Each coefficient in the elastic-net
regression measures the partial correlation between the
predictor feature (e.g. CNV, gene expression, methyla-
tion level or mutation status) and the outcome (e.g.
clinical stage).

In general, a partial correlation is a measure of associ-
ation between two variables after controlling for other
variables — in this case the other variables are the other
predictors in the regression (Figure 2). A positive coeffi-
cient — “direct association” - indicates that as the level
of the predictor increases, the outcome increases after
controlling for all other significant features. We indicate
a direct association as a “1”. Likewise, a negative coefti-
cient — “inverse association” - means that as the pre-
dictor decreases, the outcome increases after controlling
for other predictors (Figure 2). We indicate an inverse
association as a “|”.

Figure 2 shows comparison of lower versus higher ad-
vanced stage in direct/inverse association. The individual
dots in each Case graph (Examples) represent stage I, II,
III and IV respectively in order. The X axis represents
clinical stages I through IV while Y axis represents gen-
omic changes. Dotted lines imply normal status. Extra

attention is required for Cases C and F. Citing an ex-
ample, Case C denotes that a reduced copy number such
as might occur with a genomic deletion is more fre-
quently observed in early stage compared to advanced
stage CRC. Citing the reverse scenario, in Case F the
amplification and thus increased gene copy number is
observed in early stage while no copy number changes
are noted in advanced stage CRC.

The resulting coefficients from the regularized regres-
sion were used to rank genomic features by their associ-
ation with clinical features. The score of the genetic
features was determined proportionally to their ranks and
the score of each gene is the sum of all scores of its se-
lected features (see Methods). This scoring scheme priori-
tizes genes that are supported by multiple genomic
features and/or a highly ranked genomic feature. It is im-
portant to note that the features identified by this proced-
ure operate as a panel. Several other genomic analysis
studies have demonstrated that while an individual gen-
omic feature may not predict the outcome, combining
multiple genomic features improves the prediction accur-
acy [24-29].

The performance of elastic-net
To evaluate the utility and performance of elastic-net
regularized regression for integrative genomic analysis,
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Figure 2 The interpretation of elastic net association for the comparison of low versus advanced clinical stage colorectal cancer. This
figure shows comparison of lower versus higher advanced stage in direct/inverse association. The Examples row shows clinical stage | (green), Il
(blue), Il (purple) and IV (red) respectively. The x axis represents clinical stage while y axis represents genomic changes. Dotted lines imply

normal status.

we examined two aspects of its performance: i) selection
of genes that are known to be associated with a clinical
phenotype and ii) combination of heterogeneous gen-
omic data from different assays. First, we applied elastic-
net on a data set in which the true features and clinical
associations are known. We generated four additional
synthetic genes and their corresponding genomic fea-
tures that are associated with clinical stage; values were
generated for copy number alterations, mutation, methy-
lation, and gene expression that were primarily present
in stage III and IV CRC (Additional file 7: Figure S2).
These synthetic data were appended to the fully inte-
grated CRC data matrix. In the case of the mutation fea-
ture, we increased the frequency of mutation in each
stage incrementally. Our elastic net analysis correctly
identified all four synthetic genomic features and their
association with clinical stages of CRC as top candidates.

We applied elastic-net regularized regression method
to a TCGA study of glioblastoma (GBM) [31]. Using the
same reported mutation and clinical outcome data used
in the original publication reporting the TCGA GBM
data, we identified IDHI to be associated with the days
to death outcome. The TCGA GBM study did not iden-
tify mutations in IDHI as being clinically relevant but
more recently, other studies have identified them to be
indicators of poor prognosis [32].

Second, we examined the effects of variable value scales
for any genomic feature occurring with the integrated
CRC heterogeneous genomic data. On the integrated gen-
omic data matrix, we increased each value 100 fold and
determined any variation in the final results after elastic-
net analysis. This multiplication of assay values trans-
formed the scale of each genomic feature. Elastic-net ana-
lysis was run on this modified data set. The list of selected
genes was not significantly altered.

Genomic features and genes associated with MSI

MSI is a molecular phenotype associated with loss of
DNA mismatch repair function. In MSI-positive CRCs,
there is a substantial increase in mutations occurring in

microsatellite sequences within the coding region of crit-
ical cancer genes. The genetic basis of MSI-positive
CRCs has been extensively studied and the identification
of MSI mutations has revealed critical cancer genes. We
conducted a supervised analysis with MSI status. We de-
termined whether our approach could identify the im-
portant cancer genes involved in MSI-positive CRC that
are already known from prior studies.

Elastic-net analysis of mutation data with MSI status
identified 21 genes including TGFBR2, CASP8, and
ACVR2A while the analysis of methylation data listed 30
genes such as MLHI, FLVCR2, and EFNAI (Table 1).
The TGFBR2 gene encodes a receptor for the TGF-$
pathway and is a known cancer driver gene in MSI-
positive CRC. This gene has a homopolymer (A)q tract
in exon 4 which is mutation hotspot in MSI-positive
CRC. This particular deletion markedly reduces mRNA
levels, presumably due to nonsense-mediated decay [33].
The silencing of MLHI by hypermethylation results in
the loss of DNA mismatch repair (MMR) activity and

Table 1 Top 10 genes associated with MSI

Mutation alone  Methylation alone Integrated data

Rank  Gene Sign Gene Sign Gene Sign
1 TGFBR2 1 MLH]1 I MLH1 (methyl) 1
2 CASP8 1 FLVCR2 1 PDE6B (mut) 1
3 ACVR2A 1 EFNAT ! POLRID (mut) 1
4 MSH3 1 CDK12 1 FLVCR2 (methyl) 1
5 MAP3K6 1 HOXCT11 ! DAK (mRNA) 1
6 GATA2 1 ZNF318 1 TGFBR2 (mut) T
7 MACFT I SEPTS i SEPTS (methyl) 1
8 BRAF 1 MIER3 1 EFNAT (methyl) !
9 GPHN 1 ELK4 ! MLHT (mRNA) |
10 MAEA i SDHD l STK32B (mut) 1

Gene ranking is based on the regression coefficient (see Methods). Genomic
assay and associated feature is indicated in parentheses for integrative
analysis of the combined genomic data. The symbol 1 indicates increased
frequency (mutation) or level (methylation) in MSI. The symbol | indicates
decreased frequency (mutation) or level (methylation, gene expression) in MSI.
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methylation of MLHI is frequently observed in sporadic
MSI-positive CRC [34]. Our integrative analysis identi-
fied the methylation of MLHI as the top ranked MSI-
associated candidate and the mutation of TGFBR2 as
6th top candidate among a total of 64 selected features
(Table 1). In addition, the 9th ranked genomic feature
was lower gene expression of MLHI as one would ex-
pect in the context of MLHI hypermethylation. Accord-
ing to TCGA analysis (January 2013), their coefficient
between methylation and mRNA expression was -0.556
with p value of 4.43E-04. We also identified that a lack
of copy number alterations in SMAD4 associated with
MSI. This inverse relationship is consistent with the fact
that MSI-positive mutations demonstrate a significantly
lower level of copy number alterations affecting cancer
genes. Overall, our results demonstrate the success of
our elastic-net based analysis in identifying the MSI-
associated genes. Additional file 8: Table S5 lists the full
list of identified genes associated with MSI status using
separate data sets.

Identification of genes associated with advanced clinical
with integrated analysis

As shown in Figure 3A, the elastic-net algorithm identi-
fied genes across the different platforms that showed
and association with clinical stage (e.g. Stage I, II, III,
and IV). As shown in Figure 3B, 158 genomic features
were selected for their association with stage III and IV
CRC. We determined the ranks of these genes based on
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their absolute value of regression coefficient at the mini-
mum mean squared error (MSE) determined by 10-fold
cross validation. The data and analysis results are avail-
able at open access website (http://genomeportal.stan-
ford.edu/tcga-crc).

Overall, 158 genomic features associated with 143 genes
delineated advanced clinical stage CRC. Fifteen genes
demonstrate multiple genomic features (Additional file 9:
Table S6). Methylation of the gene FOXP4 was the top
ranked genomic feature that has the largest absolute
value of regression coefficient. Since FOXP4 has a
negative coefficient, it implies that FOXP4 is less meth-
ylated in advanced CRC. Only one gene, WRN, had
three selected genomic features (copy number, mRNA,
and methylation) while 13 genes had two genomic fea-
tures. Other top ranked signatures such as REEPS,
PDK4 and OR51E2 show higher gene expression in ad-
vanced stage CRC.

Among the 158 genomics features associated with ad-
vanced clinical stage, 45.5% are methylation, 16.8% are
mutations, 31.8% are gene expression related and 8.4%
are copy number alterations (Figure 3C). Gene expres-
sion features are the most common among the top 15
ranked features (12 out of top 15). An inverse associ-
ation (58.2%) is more common than direct association
(41.8%) although copy number and gene expression had
similar frequency between inverse and direct association.
For example, a higher portion of inverse association in
methylation indicates hypermethylation in advanced

5,188 genomic features from 1,122 genes

A { A ,  Clinical stage
1N I N N N Y |
197
samples Stage I1I
26%

B Rank Gene Assay Chr _ Sign
1 FOXP4  Methyl 6p2l.1 | ¢
2 REEPS mRNA  5g22.2 1 Genomic assay
3 PDK4  mRNA 7q213 1
4 ORSIE2 mRNA 1lpl54 1 Mutation [}
5 WRN CN  8pl2 |
6 SYK  Methyl 9q222 |
7 SI00P  mRNA 4pl6.l | mRNA |
8 HIPI mRNA 7ql11.23 1
9 SDHC mRNA  1q23.3 1
10 DDIT3 ~ mRNA 12q133 1 Copy Number [
1l ADRA2C mRNA 4pl63 1
12 DDX5 mRNA 17q23.3 l .
13 SYK  mRNA 9g222 | Methylation |
14 FCRL4 mRNA  1q23.1 1
15 SLC22411 mRNA 11ql3.1 | 0 20 40 60 80

Top 15 out of 158 selected features Frequency

Figure 3 Model for prediction of clinical stage using regularized regression. (A) We used an integrative matrix of 5,188 genomic features
from 1,122 genes in order to predict clinical stage using elastic net regularized regression. (B) The top 15 features ranked by coefficient in the
model are shown. (C) Methylation features dominate the predictor set, but gene expression, copy number alteration and mutation features also
play a critical role. The darker color indicates the direct association while the lighter color represents the inverse association.
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stage; as a result more genes will have lower expression
in advanced stage disease.

Identification of genes associated with advanced clinical
stage using individual genomic feature data sets

We ran the same elastic net regression analysis using in-
dividual genomic feature data sets (e.g. mutations alone,
copy number alterations alone, etc.) compared to clinical
stage (Figure 4). Elastic-net identified genomic features
associated with advanced clinical stage CRC: this in-
cludes nine copy number aberrations, seven mutations,
65 gene expression changes, and 33 methylation events
affecting specific genes (Additional file 9: Table S6). Only
eight genes were identified with multiple genomic fea-
tures: WRN, SYK, MGMT, CAPSL, ADRA2C, GNAS,
IOPS and SEMA3B. The other 96 genes were associated
with only an individual genomic assay.

Our results overlapped with some of the findings of
the recently published TCGA CRC study (Figure 4). The
TCGA study used each genomic data set separately (e.g.
mutations alone, etc.) without considering the behavior
of other genetic aberration features. For their study, they
determined the association between specific genetic ab-
errations with a number of clinical parameters including
clinical stage by Fisher’s test (p <0.01). Fifteen methyla-
tion features (out of 33), 7 gene expression features (out
of 65), and 1 mutation feature (out of 7) in our study
were shown to have the significant and overlapping asso-
ciation with clinical stage in TCGA study. Unlike our
study, the original TCGA analysis of copy number alter-
ations list large genomic intervals with multiple genes
and did not identify specific genes associated with clin-
ical stage.

We observed several differences between the inte-
grated data set incorporating all genomic features versus
an analysis of individual genomic feature data set (e.g.

Page 8 of 15

mutations alone, copy number alone, etc.). The integra-
tive analysis had a better predictive power based on the
mean squared error (Table 2). Likewise, different genomic
features were selected from both approaches. Seventy-
seven out of 142 genes from integrative analysis were not
listed in any separate assay analysis. This indicates these
features are predictive only in the context of analyzing
other genomic features representing different classes of
genetic aberrations. However, the top ranked genes were
quite consistent between two approaches. Seventeen of
the 20 genes in integrative analysis were also identified in
our analysis of the individual data sets. From the analysis
of individual genomic platform data sets, the relative rank-
ings of genes also changed compared to the fully inte-
grated analysis. For example, when analyzing only the
methylation data, the top ranked gene, WRN, dropped to
a rank of 8th while the 2nd highest ranked gene, FOXP4,
was the top ranked gene.

Candidate genes delineating advanced CRC ranked by
multi-genomic feature score
We used our scoring scheme to prioritize the candidates
(see Methods). As we noted previously, the integrative
genomic analysis obtained total of 142 unique genes
(Table 3, Additional file 9: Table S6) with 158 genomic
features indicative of different genetic aberrations. In
terms of their annotation, 56 genes are annotated in
COSMIC cancer genes, two genes are MSI targets and
95 genes are reported as significant in the TCGA CRC
study. Thirteen genes were listed as cancer genes in both
COSMIC and the TCGA CRC study. Fourteen genes
had genomic features from more than one assay. Gener-
ally, the top ten ranked genes all had multiple genomic
features associated with advanced clinical stage.

WRN was the top ranked gene associated with advanced
clinical stage CRC; WRN was implicated by multiple

- ~ (-

N )

k9 out of 9 genes / \

Copy Number Mutations \ Methylation mRNA
Rank  Gene Chr _ Sign Rank Gene Sign Rank Gene Sign Rank  Gene  Sign

1 FUBPI* 1p31.1 | 1 GNAS* 1 1 WRN#* 1 1 PDK4 1
CUX1 7q22.1 1 2 ESRRA 1 2 FOXP4 | 2 REEPS 1
3 WRN* 8pl2 | 3 RUNXITI* ! 3 HSD3B7 l 3 TH 1
4  MALTI* 18q21.32 | 4 KAT6B* | 4 SYK* | 4 DDX5* |
5 ERCC5* 13q33.1 1 5 GPHN* 1 5 PRELP ! 5 CYP26B1 !
6 HOXAI3* Tpl5.2 1 6 STIL* | 6 MUCI* 1 6 SLC22A11 |
7 HOXAII* 7Tpl5.2 i 7 PALB2* l 7 NTRKI* 1 7 WRN* l
8 HOXA9* 7pl5.2 1 7 out of 7 genes 8 RNF113A 1 8 ORS5I1E2 1
9 IPOS 13322 1 9 GPRI125 1 9 TNFAIP3* |
10 MGMT | 10 DDIT3* 1

J

Figure 4 Prediction of clinical stage from individual genomic assay data sets. Using individual data from separate genomic assays, we
conducted a supervised analysis with clinical stage. Some of these results agree with previous analysis by the TCGA; all of the features shown in
bold to be associated significantly (p value < 0.01) with clinical stage according to TCGA study. All association signs are identical between our
analysis and TCGA analysis. A star symbol indicates cancer genes annotated by COSMIC.

QO out of 33 genes j k 10 out of 65 genes j
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genomic features - copy number alterations, methylation,
and gene expression. The WRN gene demonstrates hyper
methylation (1), lower copy number (|) and decreased
mRNA expression (]) in stages III and IV (Figure 5). Over-
all, these different genomic features suggest that the ex-
pression of WRN is decreased in advanced clinical stage
CRC. To determine the effect of other genes in proximity
to WRN at locus 8p12, we appended the genomic features
from adjacent genes neighboring WRN to the integrated
data matrix. This included 13 genes telomeric and 6 genes
centromeric to the 8pl2 locus of WRN. Afterwards, we
conducted elastic-net analysis of the original matrix. The
analysis continued to identify WRN as the leading candi-
date gene even when taking into account the adjacent
genes. The frequent deletion and methylation of WRN in
advanced/CpG island methylation phenotype (CIMP)
CRC has been reported [35-37]. This is external data sup-
porting WRN’s potential role in CRC.

SYK had the second highest score by mRNA expres-
sion and methylation feature. Given the central role of
SYK in transferring activated immunoreceptors within
B-cells, lower SYK gene expression may be involved in
dampening the immune response against cancer cells.
Furthermore, this gene may have a potential role in the
development of human breast carcinomas [38].

We assessed the robustness of the top ranked candidates
list by nonparametric bootstrap analysis (see Methods).
With a 3,000 bootstrap resampling, we found that the top
25 genomic features from our initial analysis were selected
repeatedly from the complete integrated genomic data set
(Additional files 6: Table S4). For example, elastic-net ana-
lysis of a 3,000 bootstrap resampling data set identified
gene expression of PDK 2,361 times (78.7% among 3,000
bootstrap analysis). The WRN copy number and methyla-
tion features were identified 2,097 times (69.9%) and 1,710
time (57.0%) respectively. When we conducted an inde-
pendent elastic net analysis to the separate individual plat-
form genomic data sets with 3,000 bootstrap resampling,
WRN was again frequently identified; 2,718 times (90.6%)
in copy number alone, 2,511 times (83.7%) in methylation
alone, and 1,749 times (58.3%) in mRNA expression alone.

Table 2 The mean squared errors (MSE) of 10 fold cross
validation from Elastic-net of genomics data against
clinical stages of CRC

Genomics MSE
Integrative genomics 0.78224
Copy Number alone 0.96308

Mutation alone 0.97295
Methylation alone 091856
Gene expression alone 0.79906

Integrative analysis - the combined genomic data — showed the least MSE
compared to separate genomics analysis. Therefore, the improvement was
observed in integration of genomics data.
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We examined the characteristics of multiple genomic
features among the 14 top ranked genes associated with
advanced stage clinical disease. The combination of gene
expression and methylation implicate seven genes; this is
the most frequent combination of features that came from
our analysis. Three genes were selected with both gene ex-
pression and copy number. This suggests that methylation
has a more significant influence on gene expression com-
pared to copy number changes. For example, two genes
have hypo-methylation and higher gene expression. Copy
number changes are directly associated with gene expres-
sion in all three cases. In addition, we also observed the
combination of copy number — methylation (1 case), mu-
tation — methylation (3 cases), and gene expression — mu-
tation (2 cases).

Genomic features associated with individual parameters
of clinical stage

We conducted a separate supervised analysis using the
individual parameters of TNM clinical stage criteria
(Figure 6). As noted, T is assigned by extent of tumor
invasion, N represents regional lymph node cancer
involvement and M represents the presence of meta-
static cancer in other organs. Elastic-net identifies seven
genomic features associated with higher level T status
while 78 genomic features including ones that affected
WRN are associated with N status (Additional file 10:
Table S7). Interestingly, the three top-ranked candidates
(WRN, SYK and DDX5) based on our supervised analysis
of clinical stage are also associated with N status. This
result indicates that lymph node metastasis is critical to
advanced stage compared to T status, which is expected
by AJCC staging method. There are no genes that delin-
eated M status independently. The smaller number of
stage IV samples (15%) may have affected our sensitivity
for identifying genes associated with distant metastasis
in other organs.

Each clinical parameter has its own unique distribu-
tion of genomic features (Figure 7A). When considering
lymph node status (e.g. N), copy number alterations
were most common genomic feature identified while
methylation features were most common in the predic-
tion of tumor invasiveness (e.g. T). As one may expect,
mutations were relatively common feature for MSI sta-
tus compared to other clinical parameters. Inverse asso-
ciations are dominant in tumor invasiveness (T) while
direct associations were predominant in lymph node (N)
status and MSI (Figure 7B). The frequent direct associ-
ation in N status and MSI implies that the gain or higher
expression genetic aberrations occur more frequently in
advanced versus early clinical stage. Dominant inverse
association in T status and clinical stage suggests that
loss of or lower expression of genes is a more frequent
in advanced stage clinical disease. However, all 25
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Table 3 Top 25 candidates associated with advanced clinical stage

Gene Elastic-net Feature Rank
Gene Chr Score Copy Number Gene Expression Methylation Mutation
WRN* 8p12 27.03 51 106 | 291
SYK* 9g22.2 24,09 13 61
DDX5* 179233 18.94 70 ] 12°]
ADRA2C 4p163 18.13 11 81}
GNAS* 2091332 16.9 39 68 1
SEMA3B 3p21.31 16.66 82| 28]
HSD17B2 16923.3 14.45 171 120 1
TIN 2g31.2 13.72 80 | 66 |
FHIT* 3p14.2 13.56 711 77°)
HISTTHA4I* 6p22.1 12.82 3517 122 |
FOXP4 6p21.1 12.74 11
REEP5 5q22.2 12,66 21
PDK4 702123 12.58 31
OR51E2 11p154 1249 41
S100P 4p16.1 12.25 71
HIp1* 7g11.23 1217 81
ZNF570 19g13.12 12.09 501 116 ]
SDHC* 19233 12.09 91
DDIT3* 129133 12 101
CRTCT* 19p13.11 11.92 130 1 38
FCRL4* 1923.1 11.84 14| 155 |
SLC22AT11 119131 11.6 151
FLTT 139122 11.51 161
CYP26B1 2p13.2 11.35 18 |
RNFT13A Xg24 11.27 191

We ranked the genes by selected feature scoring (see Method for scoring scheme). This scoring scheme selects genes that are supported by multiple and/or
highly ranked genomic features. Elastic-net feature rank indicates the rank of individual assay features, where 1 indicates a direct association with the feature value
and | indicates inverse association with the feature value. COSMIC-annotated cancer genes are marked by *.

genomic features common in clinical stage and N status
had identical association directions; 14 with direct asso-
ciations and 11 with inverse associations.

If one includes the results from all of the tested clinical
parameters, a total of 237 genes are identified. There are
no genes selected independently that predicted all four
clinical parameters. The majority of genes (80.5%) are as-
sociated with a single clinical parameter. Three genes were
identified repeatedly among 3 different clinical parameters:
BCL2, TRERF1, and MGMT. Forty-three genes were asso-
ciated with two different clinical parameters.

Identification of miRNAs associated with CRC clinical
stage

As noted previously miRNA data was analyzed separ-
ately because of extensive gaps in the data and the
general ambiguity about which genes are regulated by

miRNAs. We ran an elastic net regression on miRNA
data separately in comparison with clinical stage. We
used the same 197 CRC samples as the integrative gen-
omic analysis. There are two types of genomics data for
miRNA; copy number alterations and expression. The
copy number data included 2,260 miRNAs while the
expression data covered 420 miRNAs. First, we inte-
grated both miRNA copy number and expression into a
single matrix. However, this combined data analysis did
not produce any candidates associated with advanced
clinical stage. Second, we ran the elastic net regression
separately on copy number and expression data. From
the expression data set, our analysis identifies 33 miR-
NAs associated with clinical stage (Additional file 11:
Table S8). The top candidate, MIR21, was suggested as
a potential diagnostic marker of colorectal cancer [39]
and involved in tumor growth in breast cancer [40].
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A WRN Early Stage Advanced Stage
Copy Number Stage 1 (43)  Stage II (73) Stage III (52) Stage IV (29)
Homozyougs deletion 1 1 3 2
Hemizygous deletion 15 24 27 18
% 37.2 342 57.7 69
Amplification 1 1 0
Gain 6 16 3
% 16.3 21.9 N 10.3
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3.0 0.4 -
]
n
L) g =
9 £ =g
e 3
2 25 [ =
S 3 5 <
A= Z é 0 |
[ ] =)
] | |
2.0 -0.2
I I I v 1 11 I v
Clinical Stage Clinical Stage
Figure 5 WRN genomic variations are associated with clinical stage. /WRN copy number alterations (A), methylation (B) and gene expression
(C) show differential levels between stage | & Il disease and stage Ill and IV disease. The deletion of WRN by copy number alterations is higher at
~56% in stage Ill & IV than in stage | & Il (~34%). Methylation is slightly higher and gene expression is generally lower in advanced clinical
stage disease.

Interestingly, MIR21 is located at 17q23.1 in relative
proximity to the top 3rd stage associated gene, DDX3
(17q23.3). None of 33 miRNAs are located in loci for
the other top candidate genes such as 8pl2 (WRN),
9q22 (SYK), or 4p16 (ADRA2C).

Discussion

We conducted a regularized elastic-net regression ana-
lysis of heterogeneous genomic data that encompassed
multiple classes of genetic aberrations (i.e. genomic
features) in colorectal cancer. We identified 158 gen-
omic features associated with advanced clinical stage
with 10-fold cross validation (Figure 3) and ranked these
genes based on by their regression coefficient and level
of support from multiple assay modalities (Table 3). Our
integrative analysis approach provides a better picture
about the distribution of genomic features associated
with clinical parameters, which cannot be obtained by
separately analyzing individual classes of genetic aberra-
tions such as mutations alone (Figure 7). For example,
our integrative analysis identified specific mutations that
delineate clinical stage in the context of overlapping
genomic features. This was not possible when analyzing

mutations alone without the genomic context of other
genetic aberrations. We also demonstrated that the
predictive power was relatively improved using our inte-
grative analysis approach (Table 2) as several other stud-
ies have demonstrated previously [24-29]. Despite of
slight increase in predictive power, integrative analysis
enabled us to identify critical genes that are supported
by more than one genomic biomarker. Several top can-
didates such as GNAS (supported by methylation and
mutation) and FHIT (supported by methylation and mu-
tation) would not be detected if analysis was solely based
on gene expression data.

The leading candidate, WRN, showed the higher num-
ber of genomic features that can delineate advanced
clinical stage CRC (Figure 5). WRN is a known tumor
suppressor. Hereditary germ line mutations in the WRN
gene cause the adult-progerioid genetic disorder known
as Werner’s syndrome (WS). This disorder is associated
with an increased risk of cancer [41-43]. The increased
risk of cancer in individuals with WS has established
the role of WRN as a tumor suppressor gene. However,
genetic aberrations in WRN have never been described
in sporadic CRC development. WRN is a human RecQ
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59%

200 samples
- 78 features

199 samples
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Rank  Gene Assay Rank  Gene Assay
1 KRTAPI19-6 CN, Mehtyl
2 PICALM* Methyl 2 PDK4  CN, mRNA
3 WRN* CN
4  NDUFAI3 Methyl 4 BRIPI* CN
5 OR5IE2 mRNA
6 SOCSI* mRNA 6 PCM1* CN
7 SFTA2 CN
8 POUSFI* CN
9 GPRI25 Methyl
10 RNFI1I3A  Methyl

Top 10 features
Figure 6 Genes delineating T and N status. We conducted
elastic-net analysis with the individual parameters of TNM clinical
stage criteria. The associated number of genes included 7 for T
status and 78 for N status, but no gene for M status.
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DNA helicase family and has both the characteristic 3’
to 5" helicase activity and also a 3" to 5" exonuclease ac-
tivity. Generally, we observed the WRN was subject to
hemizygous gene loss, a category of genetic aberrations
that are increasingly being scrutinized for a specific role
in cancer development. Solimini et al. recently provided
evidence that the gene dosage changes as result of hemi-
zygous deletions play an important role in tumor pro-
gression [44]. We are pursuing translational validation
studies and further experiments to address the role of
WRN in advanced CRC.

The results from analysis of the individual clinical param-
eters of the TMN criteria provided us with additional bio-
logical insight. There was significant overlap between genes
associated with advanced clinical stage and N status, more
so than any other comparison among the various clin-
ical parameters we examined. This may be an indica-
tion that genes associated with lymph node invasion
are relatively critical for delineating advanced stage of
CRC compared to other parameters such as tumor in-
vasiveness level. This conclusion is supported by the
fact that lymph node status remains the most import-
ant and reproducible prognostic clinical parameter for
colon cancer [45]. Interestingly, we did not identify a
gene specific for distant organ metastasis. This may be
related to the smaller number of stage IV CRCs in early
releases of the TCGA data set or the potential greater
role of lymph node metastasis as an early indicator of

Frequency

Figure 7 Predictive value of genomic feature varies by clinical parameter being predicted. (A) Each clinical parameter has different
dominant genomic feature. Methylation features dominate the predictor list for clinical stage and T status while copy number alterations are
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metastatic progression. By grouping stage III and IV
patients as advanced disease, we improve the sample
size at the risk of increasing within-group heterogen-
eity. As the TCGA CRC data set matures, we will have
opportunity to analyze a large data set for associations.

We evaluated the performance of elastic-net on the
large genomic data set with clinical information by using
control data sets. Our analysis successfully identified the
clinically relevant genomic signatures in three cases: i)
Identification of synthetic genes that have stage-associated
genomic features, ii) Identification of the IDHI gene from
GBM mutation data and iii) identification of methylation
on MLHI and mutations on TGFBR2 for MSI status of
CRC. In the case of the CRC stage association, some of
the selected genomic features for CRC stage from each
genomic assay were consistent with the results from the
TCGA CRC study (Figure 4). Our study supports the over-
all reliability of the candidates associated with clinical
stage from elastic-net.

Interestingly, cancer genes (e.g. TP53, KRAS, APC)
with the highest frequency of genetic aberrations were
not among the genes identified in delineating advanced
clinical stage of CRC. These cancer driver genes were
mutated frequently across all clinical stages. For instance,
APC was mutated in 90%, 74%, 77%, and 93% of stage I,
II, III and IV respectively. Therefore, our interpretation is
that while these cancer drivers play a critical role in the
initial neoplastic development and maintenance, they
play lesser role for influencing metastatic progression
and advanced clinical stage.

Our study is distinct and novel compared to the
TCGA CRC study; unlike TCGA, we considered four
major features of genetic aberrations simultaneously ra-
ther than specific genetic aberrations in isolation. As we
demonstrate, this improves the performance of our ap-
proach; it leads us to some gene candidates delineating
advanced clinical stage not previously recognized. Inte-
gration of different genomic data gives us more inform-
ative results as we have shown it in this study. Multiple
genomic features enable us to prioritize the gene aberra-
tion for follow-up validation studies. Another feature of
our study is the flexibility of our analysis approach.
Using elastic net, we can readily modify our bioinformat-
ics pipeline to consider other clinical parameters. In the
future, we anticipate applying additional clinical parame-
ters such as drug response for our analysis as these data
become available.

One of the main limitations of our study is the ab-
sence of an independent data set for validation. We
demonstrated the robustness of our candidates by boot-
strap resampling. We also considered over 11 other gen-
omic studies of CRC that looked at differences among
early versus advanced stage disease [46]. Only two ana-
lyzed tumors from all clinical stages usually with less
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than 80 samples. In addition, all of these studies used
older gene expression microarrays lacking the number of
features see in the TCGA and thus never reached the
level of comprehensive multiple-platform analysis or
high genomic resolution as was conducted by the TCGA.
For this analysis, the ability to integrate heterogeneous
genomic features was critical and the limitations of the
other data sets made them less useful for our integrated
analysis. As a validation analysis with a single platform,
we opted to use an independent set of 354 samples with
both clinical data and copy number variation data from
the expanded TCGA CRC data. This separate analysis
validated MALTI as a top hit when only considering
copy number analysis.

We also considered an integrative analysis of inde-
pendent CRC samples from TCGA. At the time of this
study, many of the TCGA samples have not undergone
analysis with all of the genomic assays. Many of the
other CRC samples, outside of the ones we use, lack suf-
ficient clinical data. In the future, with the completion of
the TCGA study and adequate clinical annotation after-
wards, we will use the additional data sets from inde-
pendent samples from our original analysis.

To improve our analysis, we are testing methods to inte-
grate disparate classes of data; for example, this genomic
data covers a range including binary for mutation, categor-
ical for copy number, and continuous for mRNA and
methylation. One potential approach involves turning the
values of every genomic assay into categorical variable by
discretization. For example, GISTIC is a method for pro-
ducing discrete values for discriminating significant copy
number alterations. However, discretization is less applic-
able to continuous data sets such as gene expression and
methylation. Another possibility involves converting every
genomic assay feature into a continuous value. For
example, we can use several programs that predict the
functional impacts of mutations, thus convert binary mu-
tation values (e.g. stop mutation, substitutions, etc.) into
continuous pathogenicity values. We will test whether
homogeneity in different genomic values may improve
the predictive power of our analysis and improve the
ranking of genes in terms of their importance biologic-
ally and clinically.

Conclusions

Leveraging the expansive and comprehensive data sets
of the TCGA, we developed a robust and straightforward
approach to integrate and analyze heterogeneous cancer
genomic data sets. Based on a supervised comparison of
clinical parameters indicative of advanced CRC, we uti-
lized in parallel mutation, gene expression, copy number
alteration and methylation data and we identify genes
associated with advanced clinical stage, several of which
have not been identified previously.
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