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Abstract

Background: Alterations in epigenetic marks, including methylation or acetylation, are common in human cancers.
For many epigenetic pathways, however, direct measures of activity are unknown, making their role in various
cancers difficult to assess. Gene expression signatures facilitate the examination of patterns of epigenetic pathway
activation across and within human cancer types allowing better understanding of the relationships between these
pathways.

Methods: We used Bayesian regression to generate gene expression signatures from normal epithelial cells before
and after epigenetic pathway activation. Signatures were applied to datasets from TCGA, GEO, CaArray,
ArrayExpress, and the cancer cell line encyclopedia. For TCGA data, signature results were correlated with copy
number variation and DNA methylation changes. GSEA was used to identify biologic pathways related to the
signatures.

Results: We developed and validated signatures reflecting downstream effects of enhancer of zeste homolog 2
(EZH2), histone deacetylase(HDAC) 1, HDAC4, sirtuin 1(SIRT1), and DNA methyltransferase 2(DNMT2). By applying these
signatures to data from cancer cell lines and tumors in large public repositories, we identify those cancers that have
the highest and lowest activation of each of these pathways. Highest EZH2 activation is seen in neuroblastoma,
hepatocellular carcinoma, small cell lung cancer, and melanoma, while highest HDAC activity is seen in pharyngeal
cancer, kidney cancer, and pancreatic cancer. Across all datasets studied, activation of both EZH2 and HDAC4 is
significantly underrepresented. Using breast cancer and glioblastoma as examples to examine intrinsic subtypes of
particular cancers, EZH2 activation was highest in luminal breast cancers and proneural glioblastomas, while HDAC4
activation was highest in basal breast cancer and mesenchymal glioblastoma. EZH2 and HDAC4 activation are
associated with particular chromosome abnormalities: EZH2 activation with aberrations in genes from the TGF
and phosphatidylinositol pathways and HDAC4 activation with aberrations in inflammatory and chemokine
related genes.

Conclusion: Gene expression patterns can reveal the activation level of epigenetic pathways. Epigenetic pathways
define biologically relevant subsets of human cancers. EZH2 activation and HDAC4 activation correlate with growth
factor signaling and inflammation, respectively, and represent two distinct states for cancer cells. This understanding
may allow us to identify targetable drivers in these cancer subsets.
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Background
Epigenetic changes beyond DNA methylation have been
recently recognized as important in human cancers [1].
These epigenetic changes include histone modifications
such as acetylation and methylation. Histone acetylation is
mediated by a balance between histone acetyltransferases
(HATs) and the three classes of histone deacetylases
(HDACs): Class 1 (HDAC1-3,8), class 2 (HDAC4-7,9-11),
and class 3 (Sirt1-7). Histone methylation is mediated by
the balance between histone methylases and demethylases.
Enhancer of zeste homlog 2 (EZH2), a member of the
polycomb repressor complex, is a histone methylase that
acts specifically at lysine 27 of histone 3 [2].
Histone acetylation and methylation are altered in mul-

tiple cancers, usually with increased histone deacetylation
and methylation [3]. Two HDAC inhibitors have been ap-
proved for the treatment of T-cell lymphomas, and EZH2
depleting drugs, such as DZNep, have anticancer activity
in vitro for multiple tumor types. While drugs targeting
these pathways are in development or clinical trials, a de-
tailed map of epigenetic pathway activity in cancer and
their relationships to each other remains elusive. Further-
more, the biological phenotypes driven by each distinct
epigenetic pathway in cancer have been challenging to dis-
cover due to the complex interplay among these enzymes.
Measuring their biologic activity in a laboratory setting is
also difficult because many of their effects may be modu-
lated through acetylation or methylation of the lysine
groups of nonhistone proteins in the cytoplasm, such as
p53. The effects of histone acetylation and methylation can
vary from location to location in the genome based on
other surrounding epigenetic marks. Finally, although tar-
get lysines are known for histone methylases such as EZH2,
the specific targets of different HDACs are not known.
In this study, we use gene expression patterns to explore

the activation of various epigenetic pathways across human
cancers. We capture the acute downstream consequences
of gene deregulation by isolating RNA directly after a given
pathway has been activated and then performing gene
expression analysis. We use mRNA to measure the acute
changes in gene transcription, which integrates all of the
signaling effects of an enzyme. For epigenetic enzymes,
these effects can include modification of both histones and
other proteins by acetylation, methylation and phosphoryl-
ation. Coupling of the signaling pathways to transcriptional
responses is a sensitive and accurate reflection of overall
pathway activity [4]. We developed gene expression signa-
tures for a prototypical class 1 HDAC (HDAC1), class 2
HDAC (HDAC4), class 3 HDAC (Sirt1), histone methylase
(EZH2), and tRNA methylase (DNMT2). We apply these
signatures to large public gene expression datasets from
multiple cell lines and primary tumors. We demonstrate
that some tumor types, such as neuroblastoma, have con-
sistently high EZH2 activation, while pharyngeal cancer
and subsets of glioblastoma, non-small cell lung cancer
(NSCLC), and breast cancer have high HDAC4 activation.
Looking within tumor types, high HDAC4 activation was
seen in basal breast cancer and mesenchymal glioblastoma
(GBM), while high EZH2 activation was seen in luminal
breast cancer and proneural GBM. These analyses led to
the novel conclusion that activation of HDAC4 and the
histone methylase EZH2 are mutually exclusive and repre-
sent two distinct biologic fates in cancer cells, one related
to growth factor signaling and the other related to inflam-
matory signaling.

Methods
Epigenetic signature generation
We used human mammary epithelial cell (HMEC) cultures
to develop the epigenetic pathway signatures, as these cells
have been used previously to generate robust pathway sig-
natures that are accurate across tissue and cancer types [4].
The HMECs were derived from reduction mammoplasties
at the University of Utah from patients who provided in-
formed consent under a protocol approved by the Univer-
sity of Utah Institutional Review Board and performed in
accordance with principles of the Helsinki Declaration. Re-
combinant adenoviruses were used to express the protein
of interest or Green Florescent Protein (GFP) for controls
in HMECs made quiescent by serum starvation. Eighteen
hours after infection, cells were collected for both RNA
and protein isolation, and expression of HDAC1, HDAC4,
SIRT1, DNMT2, and EZH2 were determined by standard
Western blotting (Additional file 1: Figure S1). Eighteen
hours was chosen based on prior work showing that gene
expression changes at this timepoint accurately capture
pathway activity [4]. RNA from multiple independent in-
fections was collected for microarray analysis using the
Affymetrix Human Genome U133 microarray platform.
Microarray data were normalized using the MAS 5.0 al-
gorithm via Affymetrix Expression Console Software
Version 1.0 software and then log-transformed and
quantile normalized. To standardize expression data for
the development of regression models, distance weighted
discrimination (DWD) was applied to correct batch ef-
fects [5].
Before statistical modeling, gene expression data were

filtered to exclude probe sets with signals present at low
levels and for probe sets that did not vary significantly
across samples. A Bayesian binary regression algorithm
was then used to generate multigene signatures that
distinguish activated cells from controls [6]. Detailed de-
scriptions of the statistical methods and parameters for in-
dividual signatures are given in Additional file 2 Methods.
In brief, a multigene signature was developed to represent
the activation of a particular pathway based on first identi-
fying the genes that varied in expression between the
control cells and the cells with the pathway active. The
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expression of these genes in any sample was then summa-
rized as a single value or metagene score corresponding to
the value from the first principal component as deter-
mined by singular value decomposition (SVD). Given a
training set of metagene scores from samples representing
two biological states (for example, pathway-activated and
quiescent control), a binary probit regression model was
estimated using Bayesian methods. Applied to metagene
scores calculated from gene expression data from a new
sample, the model returned a probability for that sample
being from either of the two states, which is a measure of
how strongly the pathway was activated or repressed in
that sample on the basis of the gene expression pattern
[6]. When comparing results across datasets, pathway ac-
tivity predictions from the probit regression were log-
transformed and then linearly transformed within each
dataset to span from 0 to 1.

Testing and validation of pathway signature accuracy
To validate pathway signatures, two types of analyses
were performed. First, a leave-one-out cross validation
(LOOCV) was used to confirm the robustness of each
signature to distinguish between the two phenotypic
states,GFP versus pathway activation. Model parameters
were chosen to optimize the LOOCV and then fixed.
Secondly, an in silico validation analysis was performed
using external and independently generated datasets with
known pathway activation status based on biochemical
measurements of protein knockdown (SIRT1, HDAC1),
inhibitor treatment (HDAC1, DNMT2, EZH2), or activa-
tor treatment (HDAC4, SIRT1). A pathway signature’s
ability to correctly predict pathway status in these datasets
was used to validate the accuracy of the genomic model.

Tumor datasets
Publically available datasets from Gene Expression Omni-
bus (GEO) [7] and ArrayExpress [8] were downloaded if
they satisfied the following conditions: samples included
human primary tumors, the Affymetrix U133 platform
was used (to avoid cross-platform signal loss), and either
raw CEL files or MAS 5.0 normalized data were available.
When CEL files were available, MAS 5.0 normalization
was performed. Individual samples for which the ratio of
expression for the 3’ and 5’ end of the GAPDH control
probes was greater than 3 were considered potentially de-
graded and removed. The selected datasets are described
in Additional file 3: Table S1.
The statistical methods used here to develop gene ex-

pression signatures of pathway activity have been previ-
ously described [4] and are described in detail in the
Additional file 2 Methods. Detailed descriptions of the
generation and validation of each pathway signature are
available in the Additional file 2 methods. All code and
input files are available http://io.genetics.utah.edu/files/
bildres/Epigenetics/. All pathway analyses were performed
in R version 2.7.2 or MATLAB. Survival analyses were
performed using Cox proportional hazards regression with
pathway activation as a continuous variable (http://www.
statpages.org/prophaz.html).

Gene set enrichment analyses
GSEA was performed using Gene Set Enrichment Analysis
v2 sofware downloaded from the Broad Institute (www.
broadinstitute.org/gsea) [9,10]. Gene sets from the c2, c4,
c5, and c6 collections in MsigDB v3.1 [9] were used.
Breast cancer and glioblastoma copy number data were

downloaded via The Cancer Genome Atlas (TCGA) data
portal to identify genes with a log2 tumor-normal ratio
greater than 0.5 or less than -0.5 in at least 20% of the two
subgroups of interest. Commonly altered genes for each
cancer were eliminated by filtering out genes with copy
number alterations in both subgroups. Gene lists were
then analyzed for chromosomal location as well as Gene
Ontology (GO) and KEGG pathways using GATHER [11].
Methylation data were preprocessed using Universal Prob-
ability Codes and differentially methylated sites were iden-
tified using a sliding-window-based paired t-test between
the two subgroups of interest. Genes with p < 0.1 were
kept. The rate of false positives was then estimated by ran-
domly shuffling sample labels 100 times.

Results and discussion
Generation of epigenetic pathway signatures
In order to model epigenetic processes in tumors, we used
a previously described and validated method for generat-
ing genomic pathway signatures (Figure 1A) [4]. Briefly,
genes are overexpressed in senescent primary epithelial
cells to activate a specific signaling pathway. Following
pathway activation, we perform gene expression analysis to
capture the acute transcriptional events that are dependent
upon that pathway’s activity. Bayesian statistical methods
are used to develop pathway-specific gene expression
signatures, which are applied to tumor gene expression
datasets to estimate each pathway’s activity in each pa-
tient tumor sample. The advantages of using genomic
profiling to estimate pathway activity in tumor samples
over standard biochemical methods include the ability to
measure multiple pathways simultaneously in an individual
sample and the ability to profile a large number of tumors
to uncover novel patterns of pathway deregulation.
In order to investigate epigenetic signaling pathways in

cancer, we created a panel of gene expression signatures
that model histone methylation (EZH2 signature), his-
tone deacetylation by class 1 (HDAC1 signature), class 2
(HDAC4 signature), and class 3 (SIRT1 signature) his-
tone deacetylases, and RNA methylation (DNMT2 sig-
nature). (Figure 1B) Internal validation by leave-one-out
cross-validation ensures consistency and robustness of
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Figure 1 Genomic signatures of epigenetic pathways. A. Schematic representation of the process used to generate pathway signatures, first
by virally transfecting human mammary epithelial cells and then isolating RNA for microarray analysis followed by the binary regression algorithm
to generate the signature. B. Heatmaps for the epigenetic pathway signatures. In the heatmaps, each column is a sample, with GFP controls on
the left, and each row is a probe. Red indicates increased expression and blue indicates low expression. C. External in silico signature validation.
Publically available datasets generated by independent groups were used to validate the signatures.
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the signatures. External validation was carried out by
applying the signatures to publically available datasets
obtained from GEO and ArrayExpress (Figure 1C). The
EZH2 signature was validated by showing significantly
lower predicted EZH2 activity in four different datasets: 1)
cells treated with the EZH2-depleting drug DZNep in
GSE18150, 2) EZH2 siRNA knockdown from EM-
EXP1581, 3) cells from EZH2-null mice in GSE20054, and
4) fibroblasts from EZH2-deficient mice from GSE23659.
The last three are shown in Additional file 4: Figure S2.
The HDAC1 signature was validated by showing signifi-
cantly lower predicted HDAC1 activity in cells with
HDAC1 siRNA knockdown in GSE12438. The HDAC4
signature was validated by showing significantly increased
HDAC4 activity in cells treated with interferon gamma, a
known upstream activator of HDAC4, in GSE3920. The
SIRT1 signature was validated by showing significantly in-
creased predicted SIRT1 activity in cells treated with
resveretrol, a known SIRT1 activator, in GSE9008. The
DNMT2 signature was validated by showing it predicted
lower DNMT2 activity in cells from GSE14315 treated
with azacytidine, a hypomethylating agent. Gene lists for
each signature are given in Additional file 5: Table S2. As
an additional negative control we tested the relationship
between predicted pathway activity and proliferation; none
of the signatures correlated with gene proliferation in
breast cancer cell lines (Additional file 6: Figure S3).

Patterns of epigenetic pathway activation across
cancer types
We first examined the pattern of epigenetic pathway acti-
vation across two independent panels of cancer cell lines
(Figures 2A- D). The Glaxo-Smith-Kline (GSK) collection
profiles 310 cancer cell lines placed on microarrays in
one batch (https://array.nci.nih.gov/caarray/project/woost-
00041). Over 40 different cancer types are represented, en-
abling comparisons across cancer type. In all analyses,
pathway predictions for replicate samples were averaged.
Some cancer types have wide variation in pathway activa-
tion, while others have more consistency within cancer
type. Strikingly, cancer types with high EZH2 activation
consistently also have low HDAC4 activation (Figure 2A
and 2B, rs = -0.75, p < 0.000001). This pattern of mutually
exclusive and inverse pathway activity was confirmed in a
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Figure 2 Epigenetic pathway activation across cancer types. Epigenetic signatures were projected into the CCLE (A EZH2 signature, B
HDAC4 signature), GSK cell lines (C EZH2 signature, D HDAC4 signature), and a dataset of primary tumors from GSE5364 (E EZH2 signature,
F HDAC4 signature). Only tumor types represented in both the CCLE and GSK sets are shown. All x-axes are in the same order. Relative
activation between different cancer types of each pathway are similar across the datasets.
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larger dataset of over 900 cell lines from the Cancer Cell
Line Encyclopedia (CCLE, shown in Figure 2C and 2D,
rs = -0.7, p < 0.0001) [12]. Specifically, in both sets, the
more embryonal cancers—neuroblastoma, small cell lung
cancer (SCLC), hepatocellular carcinoma (denoted as liver
cancer in the figure), and melanoma—had the highest
EZH2 activation and lowest HDAC4 activation. Similarly,
medulloblastoma had the highest activation of EZH2 and
lowest activation of HDAC4 in the GSK dataset but this
was not completely replicated in the CCLE. On the other
hand, HDAC4 was highest in pharyngeal, kidney, and
pancreatic cancers. HDAC1 and SIRT1 also had high con-
sistently activation in pharyngeal,kidney, and liver cancers
and low activation in SCLC and neuroblastoma. DNMT2
had higher activation in SCLC, neuroblastoma, and me-
dulloblastoma compared to all other cancers, which were
at a similar low level.(Additional file 7: Figure S4).
Many of our cell line results are consistent with published

research. For example, neuroblastoma has been shown to
have high EZH2 activity and to rely on this activity for
survival [13,14]. In addition, upregulation of HDAC4 in
neuroblastoma cells changes their proliferation rate,
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suggesting it is not otherwise active in neuroblastoma
[15]. Similarly, EZH2 has recently been shown to be
upregulated and active in SCLC [16,17]. Indeed, in a large
Japanese series, 67% of SCLC had tumor-to-normal ex-
pression ratios for EZH2 of greater than 5, compared with
10% of NSCLC and 6% of esophageal carcinomas [18].
Activation of HDAC4 in hypoxic response of kidney
cancer has been described as has high HDAC4 gene
expression [19-21].
To investigate pathway activity in actual patient tu-

mors, we then projected the signatures onto a dataset of
primary tumor and normal samples (GSE5364, Figure 2E
and 2F) [22]. The relative activation of the epigenetic
pathways in the thyroid, breast, non-small cell lung,
liver, colon, and esophagus cancers mirrored what we
saw in the cell lines, confirming the relevance of the pat-
terns seen in the cell lines. Note that the apparent dis-
crepancy between the thyroid cell lines in the CCLE and
the other two sets is likely due to the inclusion of ana-
plastic thyroid cancer cell lines in the CCLE in addition
to differentiated thyroid cancer. Consistent with our cell
line results and prior studies, hepatocellular carcinoma
(HCC) showed high activation of EZH2 and HDAC1
[23-28]. Low DNMT2 expression in HCC has also been
previously reported [29]. We describe less activation of
HDAC4 in HCC than other cancers. Our results are also
consistent with literature showing that most esophageal
cancer has low EZH2 levels [30].
Although most prior research has focused on expression

levels of individual genes, multi-gene expression signa-
tures may be more accurate than interrogating single-gene
mRNA or protein levels. Activation of many signaling
pathways, including the epigenetic pathways investigated
here, does not always correlate with expression, as pathway
activity levels can be determined by many factors, includ-
ing RNA expression, protein ubiquitination, and expression
levels of other proteins in the complexes. Even proposed
end readouts of epigenetic pathways, such as H3K27
trimethylation for EZH2, may miss effects of these proteins
on non-histone proteins or through other mechanisms
[31]. Therefore, gene expression signatures of pathway acti-
vation have the potential to give more comprehensive esti-
mates of how active the epigenetic enzymes are than
simple expression levels or histone changes.

Patterns of epigenetic pathway activation within
cancer subtypes
Because of the variability in epigenetic pathway activation
within certain cancers, we examined the relationship be-
tween epigenetic pathway activation and known subtypes
of two common cancers with well-defined subtypes: breast
cancer and glioblastoma. In order to map epigenetic path-
way activity within specific cancer subtypes, we used The
Cancer Genome Atlas (TCGA) and other public tumor
datasets. Breast cancer subtypes (basal, luminal A, luminal
B, and HER2-enriched) have been well described [32,33].
Glioblastoma subtypes (mesenchymal, neural, proneural,
and classical) were described in the initial TCGA reports
[34]. We first projected the epigenetic pathway signatures
into a metadataset of 1492 primary breast cancer samples
from 12 different datasets that we had integrated pre-
viously (Figure 3A) [35]. Duplicate samples, degraded
samples, as well as samples assigned to the normal-like
subtype were removed. Subtypes were compared using
ANOVA. The basal subtype was characterized by high
overall HDAC4 and HDAC1 activity (p ≤ 0.0001 for both).
Indeed, 61% of tumors with high HDAC4 and HDAC1 ac-
tivation were basal. The luminal A subtype was character-
ized by high EZH2, SIRT1, and DNMT2 activity (p <
0.0001). Overall, 81% of tumors with high EZH2 and low
HDAC4 and 83% of tumors with high EZH2 and high
SIRT1 activity were luminal. These results are consistent
with cell line findings from the CCLE, in which basal
breast cancer cell lines had significantly higher HDAC4
activation than luminal cell lines (p = 0.0004) and luminal
breast cancer cells had significantly higher EZH2 activa-
tion than basal cell lines (p = 0.04).
Although initially our results may seem to contradict

other reports that EZH2 is overexpressed in basal breast
cancers compared to luminal cancers, there are areas of
agreement [36,37]. EZH2 gene expression and pathway ac-
tivity need not correlate. Indeed, our datasets also had
highest EZH2 gene expression in basal breast cancers,
despite having highest EZH2 activity in luminal cancers.
Moreover, even in reports with high EZH2 expression in
basal breast cancers, the activity of EZH2, as measured by
the DNA methylation of EZH2 target genes, which is an-
other proposed marker of EZH2 activity because histone
methylation leads to DNA methylation, is lowest in basal
breast cancers and highest in luminal cancers [36,38,39].
Indeed, EZH2 may be elevated in basal breast cancer
through negative feedback because its downstream path-
way is inactive. Moreover, others have found that EZH2
directly interacts with the estrogen receptor to assist in ac-
tivating estrogen-responsive genes [40]. Finally, EZH2
may have context-dependent functions so that it affects
different genes, depending on the environment, such as
the estrogen-receptor status of a cancer [41]. Therefore,
the genes affected by EZH2 modulation may differ in lu-
minal and basal cancers.
Similarly, epigenetic pathway activation varied among

GBM subtypes (Figure 3B). Again, ANOVA was used to
compare subtypes. EZH2 and HDAC1 pathway activation
were highest in the Proneural subtype, while HDAC4 and
SIRT1 were highest in the Mesenchymal subtype
(p = 1.63 × 10-5, 7.6 × 10-3, 7.97 × 10-19, and 8.04 × 10-22, re-
spectively). DNMT2 activation was relatively lower in the
Mesenchymal and Neural subtypes compared to the others



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Epigenetic pathway activation in individual breast and brain cancers. The same color scale applies to both heatmaps. In each
heatmap, each column gives the pathway activation for all 5 epigenetic pathways for an individual tumor. A. The epigenetic pathway signatures
were projected into a metadataset of breast cancer primary tumors. B. The epigenetic pathways were projected into gene expression microarray
data from the TCGA glioblastoma project. C. Kaplan-Meier survival curves showing improved relapse free survivalwith high HDAC4 activation
specific subtypes of breast cancer from the metadataset of breast cancers and decreased survival with high HDAC4 activation in proneural GBM
from the TCGA.
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(p = 2.8 × 10-7). Of those GBMs with high EZH2 and high
HDAC1 activation, 58% are Proneural, while 73% of GBM
with high HDAC4 and SIRT1 activation are Mesenchymal.
Although these pathways have not been assessed directly
within GBM subtypes before, our results are consistent
with the finding that EZH2 expression is highest in sec-
ondary GBM, which tend to be Proneural, rather than pri-
mary GBM [42].
To assess the potential clinical significance of epigen-

etic pathway activation, we assessed whether EZH2
activation or HDAC4 activation predicted prognosis in
our metadataset of breast cancer or TCGA data of GBM.
EZH2 activation was prognostic in neither cancer. HDAC4
activation was not prognostic in breast cancer overall,
but higher HDAC4 activation predicted better progno-
sis when looking within the HER2-enriched (HR 0.29,
95% CI 0.1-0.85) and luminal B (HR 0.43, 95% CI 0.21-
0.88) subtypes (Figure 3C). On the contrary, higher
HDAC4 activation was a poor prognostic indicator in
GBM (HR 1.85, 95% CI 1.09-3.15). Interestingly, this ef-
fect seen most strongly within proneural subtype GBM
(HR 7.92, 95% CI 2.2-26.9).

General relationship between epigenetic pathways
Not surprisingly, there were significant positive correla-
tions between the HDAC1, SIRT1, and HDAC4 pathways
(Figure 4A).
These correlations reproduce in the independent GSK

dataset, where, again, all p-values are highly significant
(Figure 4B). However, surprisingly, as consistent across all
data sets was a strong negative correlation between EZH2
and HDAC4. A negative correlation was also seem be-
tween EZH2 and SIRT1 in the cell line datasets, but it was
not as robustly and consistently seen in human tumor
datasets as the EZH2/HDAC4 relationship was. Correla-
tions for individual tumor types are given in Additional
file 8: Table S3.
There is a negative correlation between EZH2 activation

and HDAC4 activation in both the CCLE and GSK
datasets (Figures 4C and 4D). However, the relationship
between EZH2 activation and HDAC4 activation is not
linear. Rather, although deactivation of both is common,
EZH2 activation and HDAC4 activation appear to be mu-
tually exclusive. Figure 4E shows EZH2 and HDAC4 acti-
vation in a meta-analysis of 35 publicly available datasets
from GEO (listed in Additional file), including over 5000
primary human tumor samples. Only about 3% have acti-
vation of both EZH2 and HDAC4, despite an expected
rate of 9.5% (p = 1 × 10-88). (30% of tumors had activation
of HDAC4 only, while 25% had activation of EZH2, and
42% had activation of neither). This exclusion is consistent
across cancers of all types, locations, and stages. This rela-
tionship is not simply a mathematical artifact of the for-
mulas for the two signatures because it is not seen when
the signatures are applied to non-biologically meaningful
samples, such as microarrays run on degraded RNA
(Additional file 9: Figure S5). Together, these data sug-
gest a strong and consistent inverse relationship be-
tween EZH2 and HDAC4 pathways that has previously
remain undiscovered.

Epigenetic pathway exclusivity in cancer and normal tissue
To investigate whether the mutually exclusive relationship
between EZH2 and HDAC4 was seen only in cancers, we
applied these signatures to 7 datasets that contained a mix-
ture of primary human cancers, cell lines, primary human
pre-cancers, and normal tissues that were not adjacent to
cancers (Figure 4F). All datasets show a mutually exclusive
relationship. Activation of both EZH2 and HDAC4 was
rare in cancers, pre-cancers, and in normal tissues.
As discussed above, activation of epigenetic pathways

often correlated with cancer subtypes. The mutual ex-
clusion of HDAC4 and EZH2 gives us another way of
understanding the relationship between cancer subtypes.
Figure 4G shows the distribution of EZH2 and HDAC4
activation across a meta-analysis of 1700 breast tumors
(datasets listed in Additional file 3: Table S1). Tumors
with high HDAC4 activation and low EZH2 activation
tend to be basal, while tumors with low HDAC4 activation
and high EZH2 activation tend to be luminal. Figure 4H
shows, using the same data as Figure 3B,the distribution
of EZH2 and HDAC4 activation across the TCGA GBM
samples, demonstrating that Mesenchymal GBM tend to
have high HDAC4 activation while proneural GBM tend
to have high EZH2 activation.

Biological phenotypes of EZH2/HDAC4 tumors
To determine the biologic basis for the mutual exclusivity
of EZH2 activation and HDAC4 activation, we explored
the effect of EZH2 activation and HDAC4 activation in
a number of ways. As shown below, the two pathways
seemed to represent distinct biologic states, where HDAC4



Figure 4 EZH2 and HDAC4 activation are mutually exclusive. A. Table of Spearman correlation coefficients for all 5 epigenetic pathways in
the CCLE dataset. All coefficients have p < 0.000004. B. Table of Spearman correlation coefficients for all 5 epigenetic pathways in the GSK dataset.
All coefficients have p < 0.04. C. Graph of EZH2 and HDAC4 activation in the 300 CCLE samples. D. Graph of EZH2 and HDAC4 activation in the
GSK cell line samples. E. Graph of EZH2 and HDAC4 activation in over 5000 primary cancers from a wide variety of cancers. There is a significant
lack of cancers in the upper right quadrant, showing the rarity of coactivation of EZH2 and HDAC4. F. Graph of EZH2 and HDAC4 activation in
datasets including precancers, normal tissues, benign tumors, and cell lines, showing that the inverse relationship of EZH2 and HDAC4 is not
cancer specific. G. Patterns of activation of EZH2 and HDAC4 mirror intrinsic subtypes of breast cancer. H. Patterns of activation of EZH2 and
HDAC4 mirror subtypes of glioblastoma.

Cohen et al. BMC Medical Genomics 2013, 6:35 Page 9 of 13
http://www.biomedcentral.com/1755-8794/6/35
is related to inflammatory or chemokine signaling and
EZH2 relates to signaling from downstream effectors of re-
ceptor tyrosine kinases.
We interrogated the TCGA glioblastoma and breast can-
cer datasets to investigate pathways enriched in EZH2 or
HDAC4 positive tumors. For this analysis, we used the copy



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Biologic correlates of the EZH2 and HDAC4 pathways. A. Copy number variations in the TCGA breast cancer samples. Each point
on the x-axis is a gene. The y-axis gives the average of the log2 ratio of tumor to normal copy number. B. Copy number variations in the TCGA
glioblastoma cancer samples. Each point on the x-axis is a gene. The y-axis gives the average of the log2 ratio of tumor to normal copy number.
C. GSEA curves for EZH2 enriched pathways from the PI3K and MAP kinase pathways. D. GSEA curves for HDAC4 enriched pathways involved in
cytokine and chemokine signaling.
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number alteration data to link unique genetic variants with
epigenetic pathway status. First, we identified two groups of
tumors: those with high EZH2 activity and low HDAC4 ac-
tivity and those with low EZH2 activity and high HDAC4
activity, using a cutoff of 0.5 for GBM and 0.2 for breast
cancers. For breast tumors in TCGA, EZH2 low/HDAC4
high tumors are more likely to have copy-number gains in
11q13 and losses in 8p11 and 17q21 and are less likely to
have gains in 8p11, 20q11-13, and gains in 17q21 (all Bayes
Factors >30). Representative loci are shown in Figure 5A,
and the others are shown in Additional file 10: Figure S6.
For GBM in TCGA, EZH2 low/HDAC4 high tumors are
more likely to have losses of 22q11-13 and gains of 8p11
and17q21 and are less likely to have gains of 5q31(all Bayes
Factors > 30). Representative loci are shown in Figure 5B,
and the others are shown in Additional file 10: Figure S6.
Genes with copy number variation in EZH2 low/HDAC4
high GBM tumors were enriched for genes in the KEGG
toll-like receptor pathway and the cytokine-cytokine signal-
ing pathway (Bayes Factors 16-18). These results suggest
that the opposing EZH2/HDAC4 pathway activity repre-
sents two distinct tumor phenotypes.
In addition to leveraging copy number data, we ap-

plied GSEA to the gene-expression data used to ge-
nerate the EZH2 and HDAC4 signatures to identify
pathways associated with either EZH2 activation or
HDAC4 activation in the signature samples. EZH2 ac-
tivation was associated with TGF-beta signaling, phos-
phatidylinositol binding, and negative regulation of MAPK
(Figure 5C). HDAC4 activation was associated with path-
ways involved in cytokine signaling, inflammation, and
infection response (Figure 5D). Similar results were found
using GATHER (http://gather.genome.duke.edu) to as-
sess GO and KEGG pathways. Thus, the GSEA re-
sults matched the copy-number results, indicating that
HDAC4 activation and EZH2 inactivation are associated
with increased activation of cytokine and immune-related
pathways. These connections between HDAC4 activa-
tion and inflammatory cytokines match the cancer sub-
type results. For example, basal breast cancers, which we
found to have high HDAC4 activation, are known to have
higher levels of tumor-infiltrating macrophages and higher
chemokine receptor expression than luminal cancers
[43,44]. Mesenchymal glioblastoma, which we found have
higher HDAC4 activation, also have greater infiltration
by immune cells than proneural glioblastomas [45].
Alternatively, luminal breast cancers, which have high
EZH2 activation, are associated with higher serum TGF
levels [46].
Lastly, we used DNA methylation data to investigate fur-

ther the differences between EZH2 high/HDAC4 low and
EZH2 low/HDAC4 high tumors. We identified genes that
are differentially methylated between the two groups in the
TCGA GBM and breast datasets. With a false discovery rate
less than 5%, gene ontology analysis showed that genes with
decreased methylation in EZH2 low/HDAC4 high GBM
were enriched for T-cell activation (Bayes Factor 5.5). In
breast cancer, EZH2 high/HDAC4 low had increased
methylation of TNFRSF10D, a stimulator of inflammatory
pathways including NF-κB. Thus, the methylation data also
show that expression of genes in inflammatory signaling
pathways is higher in tumors with high HDAC4 activation
than in tumors with high EZH2 activation.
Conclusions
Using genome-wide gene expression signatures, we have
mapped patterns of epigenetic pathway activation in large
panels of tumors, enabling discrimination of patterns across
and within cancer phenotypes. Looking broadly across all
cancers, our results highlight that EZH2 is active in more
primitive cancers of childhood, and HDAC4 is active in
more mature adenocarcinomas and squamous cell carcin-
omas. Our analysis indicates two distinct and mutually ex-
clusive types of cancers, one associated with a gene
expression pattern of EZH2 activation and tyrosine kinase
signaling and the other with HDAC4 activation with in-
creased cytokine signaling and immune cell infiltration.
Looking within cancers, epigenetic pathways highlight dif-
ferences between subtypes of a cancer and similarities be-
tween subtypes of different cancers. In particular, EZH2
activation is seen in luminal breast cancers and proneural
GBM, while HDAC4 activation is seen in basal breast can-
cers and mesenchymal GBM. These results raise the possi-
bility for a histology-independent categorization of cancers
using epigenetic pathways. Further studies are needed to
elucidate the mechanisms for the mutual exclusiveness of
EZH2 and HDAC4 and to determine therapeutic targets
for the distinct epigenetic-specific cancer phenotypes.
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Additional file 1: Figure S6. Western blot of HMECs infected with
viruses expressing epigenetic pathway proteins.
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Additional file 2: Figure S1. Supplementary methods with detailed
instructions for running pathway predictions.

Additional file 3: Table 1. Description of all publically available datasets
used.

Additional file 4: Table S1. Additional external in silico validation
graphs for the EZH2 signature using publicallyavailable data.

Additional file 5: Figure S2. Gene lists for the five epigenetic pathway
signatures.

Additional file 6: Table S2. Graph showing the lack of correlation
between each of the 5 epigenetic pathway signatres and proliferation, as
measured by doubling time, in a panel of breast cancer cell lines.

Additional file 7: Figure S3. Epigenetic pathway predictions for
HDAC1, DNMT2, and SIRT1 in (A) GSK and (B) CCLE cell line collections.

Additional file 8: Figure S4. Table of correlation coefficients for the 5
epigenetic pathway signatures within individual cancer types.

Additional file 9: Table S3. Graph of EZH2 and HDAC4 activation in
samples obtained from autopsies on the brains of people with
Parkinson’s, showing a frequency of coactivation not seen in any dataset
of samples from living people.

Additional file 10: Figure S5. Copy number variations in the TCGA (A)
breast cancer and (B) glioblastoma samples. Each point on the x-axis is a
gene. The y-axis gives the average of the log2 ratio of tumor to normal
copy number.
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