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Direct integration of intensity-level data from
Affymetrix and Illumina microarrays improves
statistical power for robust reanalysis
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Abstract

Background: Affymetrix GeneChips and Illumina BeadArrays are the most widely used commercial single channel
gene expression microarrays. Public data repositories are an extremely valuable resource, providing array-derived
gene expression measurements from many thousands of experiments. Unfortunately many of these studies are
underpowered and it is desirable to improve power by combining data from more than one study; we sought to
determine whether platform-specific bias precludes direct integration of probe intensity signals for combined
reanalysis.

Results: Using Affymetrix and Illumina data from the microarray quality control project, from our own clinical
samples, and from additional publicly available datasets we evaluated several approaches to directly integrate
intensity level expression data from the two platforms. After mapping probe sequences to Ensembl genes we
demonstrate that, ComBat and cross platform normalisation (XPN), significantly outperform mean-centering and
distance-weighted discrimination (DWD) in terms of minimising inter-platform variance. In particular we observed
that DWD, a popular method used in a number of previous studies, removed systematic bias at the expense of
genuine biological variability, potentially reducing legitimate biological differences from integrated datasets.

Conclusion: Normalised and batch-corrected intensity-level data from Affymetrix and Illumina microarrays can be
directly combined to generate biologically meaningful results with improved statistical power for robust, integrated
reanalysis.
Background
In the clinical sciences, systematic review is a valuable tool
to synthesise high-quality empirical evidence from inde-
pendent investigations in order to determine a consensus
view. Such reviews, or meta-analyses have greater statis-
tical power to identify true effects from study-specific arte-
facts and, as such, are capable of identifying subtle effects
that might be missed or deemed insignificant in smaller
datasets. In the context of gene-expression analyses, meta-
analysis of results from microarray studies has great
potential, but also presents significant challenges due to
differences between the platforms and analysis approaches
employed in each study [1-5]. Direct integration of probe-
level expression data from multiple studies is potentially
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reproduction in any medium, provided the or
even more powerful, but is further complicated due to dif-
ferences in the conditions under which each dataset was
generated, such as the amplification or labelling method,
the scanner used or even just the date on which the
samples were processed. A recent comprehensive review
found that the aims of different microarray meta-analysis
studies were quite distinct, with the majority combining
p-values, effect size or ranked analysis, with only 27% (51
studies) seeking to directly merge the data and most of
these were studies used the same platform [1]. We and
others have previously demonstrated that non-trivial sys-
tematic bias or ‘batch effects’ can occur within both Affy-
metrix GeneChips and Illumina Beadarrays [3,4,6,7], but
that they can largely be removed from each with appro-
priate correction methods.
Gene expression profiling has been applied to many areas

of translational cancer research, including identification of
new drug-targets, monitoring response to treatment,
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revealing mechanisms of resistance, and predicting progno-
sis [8]. Although the majority of datasets are now made
publicly available, many studies are limited in size and
therefore cannot accurately reflect the general population,
as they lack statistical power [9,10]. A consequence of this
is that gene signatures generated from a small cohort of
patients (the ‘training set’), will never perform as well in
subsequent cohorts (‘test sets’) which inevitably have subtle
differences in composition of patient or tumour variables.
We previously showed that combining several similar Affy-
metrix datasets leads to a greater overlap in differentially
expressed genes and more accurate prognostic predictions
[5]. Collection of clinical material often remains the
rate-limiting step, particularly with valuable ‘window-of-
opportunity’ studies that utilise matched before- and after-
intervention samples from the same patient [6,11-14]. Due
to the reduced patient-patient variation, these studies can
be highly effective for identifying consistent gene-
expression changes, such as the effects of (neoadjuvant)
cancer treatment.
The extensive patient- and tissue-diversity inherent in

molecular studies of cancer, which often contribute to
underpowered studies [9] and confounding [15], mean
that it is currently not necessarily critical (or appropri-
ate) to measure gene-expression at the greatest reso-
lution or specificity now offered by exon-arrays and
RNA-sequencing. Rather, it may be of greater utility to
maximise the number of existing biologically independ-
ent observations by combining the growing numbers of
datasets in the public repositories, instead of simply gen-
erating another small independent dataset with limited
statistical power [8].
Previous comparisons of expression measurements

derived from Affymetrix and Illumina platforms have
reported, ‘generally consistent’ [16], ‘very high agreement’
[17] or ‘correspondence across platforms was high’ [18].
However these studies are often based on titrated or
technical replicates rather than clinical samples and have
not sought to integrate the intensity-level data directly.
Cross-platform analysis of microarray data has previ-
ously been shown to be possible and worthwhile, al-
though this has normally been performed using
transformed relative values [19], analogous to those from
two-colour microarrays and have been shown to result
in fold change compression [18].
Considering the fundamental differences in the design

of the two platforms, it is not clear whether data derived
from Affymetrix and Illumina microarrays can be reli-
ably compared directly. In this study we demonstrate
that it is possible to directly combine appropriate data-
sets at the intensity level to improve statistical power.
We show that the inter-platform bias can be sufficiently
reduced to expose previously obscured biological vari-
ation and that such data correction does not amplify
meaningless noise in the results. Despite intrinsic differ-
ences between these technologies, suitably similar stud-
ies can be directly integrated for robust and powerful
meta-analysis.

Results
Direct cross-platform integration of MAQC data
The Microarray Quality Control (MAQC) consortium
[18] investigated the reproducibility of microarray-derived
gene expression measurements by assessing performance
across platforms, chips, and processing sites using a titra-
tion of Universal Human Reference RNA (UHRR) and
Human Brain Reference RNA (UBRR). We combined the
complete MAQC Affymetrix and Illumina datasets by re-
annotating probes on each platform in terms of their
Ensembl gene targets (see Methods and Figure 1). As
expected, sample A (100% UHRR) replicates from the
same platform were found to be more highly correlated
with sample C (75% UHRR, 25% HBRR) replicates than
the other samples. This was also the case for sample B
(100% HBRR) and D (25% UHRR, 75% HBRR) replicates,
reflecting their relative biological similarity (Additional file
1A). Without adjustment, correlations between the same
samples (A, B, C, or D) processed on different platforms
were much lower (R= 0.70-0.77) than the same samples
processed only on the Illumina Beadarrays (R= 0.98-1.00;
Figure 2A and Additional file 1A) or Affymetrix Gene-
Chips (R= 0.99-1.00).
Adjusting for the platform differences using the mean-

centring method [5] provided only a marginal improve-
ment compared to uncorrected data, whilst the Distance
Weighted Discrimination (DWD) method [20] sup-
pressed not only the platform-specific bias but also legit-
imate biological variability between samples (Figure 2
and Additional file 1A). The greatest improvement was
observed following correction by ComBat, a method that
exploits variance moderation during data adjustment
[21]. Similar correlations were found both across and
within platforms, suggesting that whilst removing the
platform bias, ComBat method retains legitimate bio-
logical variation between the biologically distinct sam-
ples (Figure 2, Additional file 1A). Another promising
method, Cross-Platform Normalisation (XPN) [22],
could not be evaluated with these data due to the small
number of independent biological replicates.
In addition to correlating expression values, we calcu-

lated variance estimates for each of the 15,781 Ensembl
genes probed by the two platforms at the inter-sample,
inter-platform, inter-laboratory, and inter-chip levels
using a nested analysis of variance described in methods
(Figure 2B). As expected, and in agreement with the cor-
relation analysis, the difference between the platforms
was responsible for the majority of the overall variance
in raw (58%), quantile-normalised (47%), and mean-



Figure 1 Summary of the data analysis workflow to assess direct integration of Illumina and Affymetrix gene expression data. The
same/similar processing steps were used wherever possible, Affymetrix in green, Illumina in blue.
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centered (44%) expression data. Inter-platform variance
was significantly reduced by both DWD and ComBat, to
15% and 7% of the total, respectively. Consistent with
the correlation analysis, the DWD method also substan-
tially reduced inter-sample variance, which is likely to
obscure differences between the samples (Figure 2B and
methods). Conversely, the ComBat method slightly
increased inter-sample variance, potentially uncovering
meaningful biological differences between the UHRR/
UBRR titrations.
To examine the effects of cross-platform integration

on the identification of genes differentially expressed be-
tween UHRR and HBRR, we analysed Affymetrix and
Illumina data both separately and as a combined dataset.
Differential expression was assessed using the Signifi-
cance Analysis of Microarrays (SAM) method [23], iden-
tifying the top 1000 differentially expressed genes and
comparing the resulting gene-lists, as described previ-
ously [5]. Analysis of the 60 combined Affymetrix plus
Illumina HBRR and UHRR samples together, resulted in
lower false discovery rates and a greater number of sta-
tistically significant differentially expressed genes (Add-
itional file 1B) than when the Affymetrix or Illumina (15
‘A’ and 15 ‘B’) samples were analysed separately. There
were also many more overlapping genes in the combined
analysis and either of the platforms following cross-
platform correction, again with ComBat performing best
(Figure 2C). The overlap of differentially expressed genes
identified by samples processed on either of the two
platforms independently (15 ‘A’ and 15 ‘B’ samples) was
also much more consistent following ComBat, than
DWD or mean centering correction (Additional file 1C).
Taken together, these results indicate that combining
data across the two platforms increases specificity and



Figure 2 Affymetrix and Illumina data from the Microarray Quality Control project can be directly integrated. A) Pairwise Pearson
correlation heatmaps (left) demonstrate cross platform bias and the effects of three correction methods, mean-centering, distance-weighted
discrimination (DWD) and an Empirical Bayes method (ComBat). R values range from low correlation (red) to high correlation (white) through
shades of orange and yellow reflecting the overall similarity of expression profiles based upon biological and platform-specific variation. The
shades of purple to pink indicate the samples (A = 100% UHRR, B = 100% HBRR, C = 75% UHRR+ 25% HBRR, D = 25% UHRR+ 75% HBRR). Samples
are ordered by replicate and lab name rather than by platform. Green bars for Affymetrix samples and blue for Illumina samples. Boxplots of
correlation coefficients within and between labs are shown in (Additional file 1. B) Cross-platform correction minimises technical variation whilst
maintaining biological variation and differential expression. C) Venn diagrams demonstrate the overlap between the 1000 most differentially
expressed genes between the MAQC UHRR and HBRR (A and B samples) using significance analysis of Microarrays (SAM) method with either
Affymetrix (Green) or Illumina (Blue) alone, or Affymetrix and Illumina together (Purple).
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reduces the number of predicted false positives, suggest-
ing improved statistical power.

Increasing statistical power through integration of clinical
datasets
In order to evaluate the feasibility of directly comparing
intensity level gene expression of clinical samples pro-
cessed separately on the two platforms, we first gener-
ated a new dataset of Illumina Beadarray data from RNA
derived from breast tumour samples that were assessed
as part of a larger published study using Affymetrix Gen-
eChips [13,24,25] (Figure 3A). These samples comprised
matched baseline, two-week, and three-month primary
breast tumours from 6 patients with a clinical response
to neoadjuvant Letrozole. As with the MAQC data,
pairwise Pearson correlations of samples processed on
the two platforms were significantly increased following
correction with the ComBat method, which again out-
performed mean-centering and DWD by maintaining
variation between biologically independent samples
(Figure 3B and Additional file 2A-C). A fourth method,
cross platform normalisation (XPN) [22] generated simi-
lar results to ComBat, although Pearson correlations for
the majority of matched samples across both platforms
were marginally higher (Additional file 2A-C). In
addition, a greater number of pairs of Affymetrix and
Illumina samples clustered together with the XPN
method than with ComBat (Additional file 2E).
We next expanded the cross-platform dataset with 48

new Illumina baseline and matched three-month samples
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Figure 3 Clinical samples processed on Affymetrix and Illumina platforms. A) Experiment Layout of the overlapping 18 matched clinical
breast cancer samples from 6 patients from similar Affymetrix and Illumina datasets studying the of the effect of Letrozole in the neoadjuvant
setting. B) Pairwise Pearson correlation heatmaps (left) from 18 matched clinical breast cancer samples from 6 patients demonstrate cross
platform bias and the effects of three correction methods, mean-centering, distance-weighted discrimination (DWD), an Empirical Bayes method
(ComBat) and cross platform normalisation (XPN). R values range from low correlation (red) to high correlation (white) through shades of orange
and yellow reflecting the overall similarity of expression profiles based upon biological and platform-specific variation. The inner diamond
represents the matched samples from the two platforms. Each patient sample is numbered as untreated (−1), 14 days (−2) and 3 months (−3)
post treatment. Uncorrected data is NOT shown (to show it on the same colour scale as the other plots would not demonstrate the differences
between the correction methods).
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from 24 independent patients to give a total of 60 Illumina
samples to compare with 60 Affymetrix samples from the
original dataset. All patients and tumours had similar
characteristics and were shown to clinically respond to
3 months of neoadjuvant Letrozole treatment with tumour
ultrasound measurements showing a stable volume reduc-
tion of 70% over the three-month period. The twelve sam-
ples common to both microarrays were retained
(Figure 4A). It was necessary to correct for batch effects
within the platforms due to date of sample processing
using ComBat as described previously [3-5]. Without
cross-platform correction, plotting the fold changes be-
tween baseline and three-month samples across the two
platforms results in reasonable concordance (R= 0.68),
however following XPN correction we see a dramatic
improvement in the correlation of fold changes (R= 0.99)
demonstrating that XPN has greatly reduced the variation
between both platforms while maintaining a sufficient
range of highly-concordant fold changes to account for
biological variability (Figure 4B). Multidimensional scaling
(MDS) demonstrated that the samples common to the
Affymetrix and Illumina datasets cluster together and that
intra- and inter-platform batch effects have been mini-
mised (Figure 4C). Prior to XPN correction samples from
the Affymetrix and Illumina datasets form independent
clusters, however after correction baseline samples from
the same patient cluster closely together as do the three-
month samples from the same patient. XPN correction
significantly reduces the bias between samples from differ-
ent platforms, but the baseline and three-month samples
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Figure 4 Integration of partially overlapping Affymetrix and Illumina datasets. A) Relationship between the baseline and 3 month samples
processed on Affymetrix and Illumina platforms. R = repeated samples processed on Illumina BeadChips B) Scatterplot demonstrating the fold
changes between the Affymetrix and Illumina datasets before (grey) and after XPN correction (black). C) Multidimensional scaling plots before
and after XPN correction demonstrating the relationship between overlapping samples (circles = baseline, squares = 3 months post treatment with
Letrozole, open symbols = Affymetrix, filled symbols = Illumina, triangles = Illumina repeated samples, different colours represent different patients).
D) Hierarchical clustering and heatmap based on published list of genes identified as most changed between baseline and 3 month samples in
patients treated with neoadjuvant Letrozole. Colour bar indicates the platform the sample was processed on with Affymetrix in green and
Illumina in blue. E) Effect of cross-platform Integration and correction on differential gene expression analysis. Plot shows the relationship
between the estimated false discovery rate relative to the number of significant differentially expressed genes identified using SAM analysis of
Affymetrix and Illumina datasets independently and when combined both before and after XPN correction. Venn diagrams showing the
overlapping genes between the 1000 most differentially expressed genes using the SAM method are available in Additional file 3.
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from the same patients still cluster independently, indicat-
ing that the true biological differences (due to treatment)
are maintained. The standard deviation across genes for
all baseline or three-month samples was higher in Affyme-
trix than Illumina, but was dramatically increased after
combining the data. Correction with either ComBat or
XPN reduced variation to a level similar to that seen in
either dataset independently, further suggesting that gene-
wise cross-platform bias is reduced, while true biological
variation is maintained (Additional File 2D). When all
samples of the combined XPN-corrected dataset were
clustered by a published list of genes identified as most
changed in response to neoadjuvant Letrozole [13,24] the
baseline and three-month samples clustered together re-
gardless of platform (Figure 4D).
Increasing sample number by integration of the Affyme-

trix and Illumina datasets resulted in the identification of
a greater number of significantly differentially expressed
genes using pairwise SAM (i.e. there was greater
consistency of the changes between baseline and three-
month samples from the same patients) at a given false
discovery rate (Figure 4E). Interestingly, correction of the
combined data by XPN showed only minor improvement
compared with uncorrected data in a pairwise SAM
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analysis with an impressive 93.8% overlap of genes (Add-
itional file 3A). However, when a non-pairwise SAM
method was used (i.e. two unmatched groups: (i) all base-
line samples and (ii) all three-month samples), XPN cor-
rection of the integrated data was essential (Additional file
3B&C). There was an impressive 90% overlap of common
differentially expressed genes following XPN correction
when comparing the baseline samples from one platform
with the three-month samples from the other. By contrast,
the overlap between baseline and three-month groups in
each dataset (Affymetrix or Illumina) independently was
only 42.4% (Additional file 3A&B). Finally, comparing the
uncorrected Affymetrix baseline versus Illumina three-
month samples (and vice versa) with the XPN-corrected
equivalent resulted in a very poor overlap (12.1%), indicat-
ing the importance of XPN correction for robust differen-
tial gene expression of cross-platform integrated datasets.

Published Affymetrix and Illumina datasets can be
successfully integrated
Two publicly available non-subtype specific primary breast
cancer datasets of comparable size and composition
(Nadiri et al. [26] n= 153 on Illumina WG6v1 and Des-
medt et al. [27] n= 198 on Affymetrix HGU133A) were
assigned to molecular subtypes using centroids from the
intrinsic gene signatures of Sorlie et al. (2003) [5], Parker
et al. [28], and Hu et al. [29]. This was performed on each
dataset independently and then both datasets were com-
bined, both before and after XPN correction. Clustering
the integrated data before correction resulted in two dis-
tinct clusters representing the two datasets, highlighting
the platform-specific systematic bias (Figure 5). Following
XPN correction the integrated data clustered based on
true biological differences with two clear clusters repre-
senting the basal/Her2 intrinsic subtype and the luminal
subtype for each of the intrinsic centroids (Figure 5). As-
signment of molecular subtype was highly consistent (Sor-
lie: 96.6%, Hu: 94.9% and Parker: 96.6%) between
uncorrected and XPN-corrected datasets, further suggest-
ing that the XPN correction method does not adversely
affect the biological interpretation of the data.
Once again, increasing sample number through integrat-

ing datasets results in a greater number of significantly dif-
ferentially expressed genes, between the Sorlie et al. basal
and luminal-A or the more subtle comparison of luminal
A and luminal B subtype samples, at a given FDR (Add-
itional file 4). Uncorrected integrated data performs poorly
in comparison to the integrated data after XPN correction
or indeed to either dataset independently.

Discussion
The biggest obstacles to the direct comparison of data
obtained from different microarray platforms are differences
in the sequence and the number of probes that target each
transcript. Many studies simply use the most highly or vari-
ably expressed probe to represent a gene, despite evidence
that some probes hybridise to multiple genes and others have
out-dated or incorrect annotation [30-34]. Limiting integra-
tion of data to only those genes where the probe sequences
are identical, or comparing measurements simply based
upon the official gene symbol would severely restrict our
ability to evaluate whether data from different platforms can
be directly integrated. For this reason, probes were re-
annotated in this study using alternative CDFs [32] for Affy-
metrix and a validated composite look-up list for Illumina
[35].
The microarray quality control (MAQC) project

declared that expression values generated on different
platforms cannot be directly compared because unique
labelling methods and probe sequences will result in
variable signals for probes that hybridize to the same tar-
get [18]. However in the interests of making the best use
of published data on valuable clinical material, we asked
whether it would be reasonable to integrate Affymetrix
and Illumina data in the interests of improving statistical
power and unearthing true biological findings. It has
previously been shown that robust classifiers developed
using data generated from one platform can accurately
predict the phenotype of samples assessed on a different
platform [36]. In this study we demonstrate that it is
possible to combine Affymetrix and Illumina gene ex-
pression data for meaningful integrative reanalysis. As
we have previously demonstrated for either platform
alone, integration of microarray data should only be per-
formed with appropriately similar datasets [3-5], al-
though exactly where the similarity threshold lies is an
important consideration that is still to be determined.
During our analyses we found the Distance Weighted

Discrimination (DWD) method [20], which has been
used for cross-platform normalisation in a number of
published studies (cited by more than 50), inadequate in
terms of its ability to remove technical noise and pre-
serve biological variability. Perhaps this method is best
suited to transformed data such as that generated by
two-colour cDNA studies. We used relatively strict
filter-thresholds in our analyses, including conservative
detection p-values to limit the analysis to clearly
expressed genes as a previous meta-analysis approach
found low or intermediate expressing genes to have
poorer inter-platform reproducibility than highly
expressed genes [14]. Another recently published com-
parison of cross-platform normalization methods also
found XPN to have the highest inter-platform concord-
ance [37]. Like our study this focused on direct adjust-
ment approaches, where the major batch effect
(platform used) is clearly identifiable rather than surro-
gate variable analysis (SVA) approaches [38,39], which
look at latent or unknown variables, such as when
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samples are processed on different days, in different
groups or by different people. Direct integration
approaches are only appropriate for small numbers of
highly similar datasets specifically selected to answer
clearly defined questions, as opposed to recent global
survey-based approaches used to identify common tis-
sues or expression profiles across all available datasets
[40-42]. Whilst integrating data across platforms
increases the number of samples, it also has an impact
on the number of genes represented. Genes may be ‘lost’
at the reannotation stage if not present on both arrays.
Therefore integration is a trade-off between increased
sample numbers and decreased gene number. Sample
numbers are perhaps the biggest factor in the reliability
of microarray studies. Ein-Dor et al. suggested that
thousands of samples are needed to generate a robust
gene list for predicting outcome in cancer [9]. The over-
lap of differentially expressed genes between single and
integrated Affymetrix and Illumina datasets was found
to be high, although it should be remembered that it has
previously been demonstrated that greater biological re-
liability is seen between studies at the pathway, rather
than individual gene level [8].

Conclusion
In this study we sought to evaluate whether it is reason-
able to directly combine appropriate Affymetrix and Illu-
mina datasets for reanalysis. We found that despite
fundamental differences in the technology, data from
these platforms can legitimately be combined at the nor-
malised and corrected intensity level, rather than the
fold change level for robust reanalysis with improved
statistical power than the original datasets alone.

Materials and Methods
Data generation
Affymetrix gene expression data was generated from pri-
mary breast tumour core biopsies before, 10–14 days
after and approximately 3 months following neoadjuvant
Letrozole treatment as part of a previously described
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clinical study [13,25]. The research was carried out in
compliance with the Helsinki Declaration, with all
patients giving informed consent to be included in the
study which had been approved by the local ethics com-
mittee (LREC; 2001/8/80 and 2001/8/81). RNA was
extracted, amplified and labelled as previously described
[25], before hybridisation to HGU-133A GeneChips
(Affymetrix) according to the standard protocol. RNA
from a subset of 18 samples (baseline, 10–14 days and
3 month samples from 6 patients defined as clinical
responders to treatment) used in the aforementioned
study [13,25] was then amplified using the WT-Ovation
FFPE System Version 2 (NuGEN), purified using the
Qiaquick PCR Purification Kit (Qiagen), biotinylated
using the IL Encore Biotin Module (NuGEN), purified
using minElute Reaction Cleanup Kit (Qiagen) and
quantified using a Bioanalyser 2100 with RNA 6000
Nano Kit (Agilent). cRNA was then hybridised to
Human HT-12v3 expression Beadarrays (Illumina, Cam-
bridge, United Kingdom) according to the standard
protocol for NuGEN amplified samples. A new Illumina
gene expression dataset was also generated from primary
breast tumour core biopsies before, 10–14 days after and
approximately 3 months following neoadjuvant Letro-
zole treatment. RNA was extracted using the miRNeasy
Mini Kit with RNAse Free DNAse treatment (Qiagen).
RNA was then amplified, labelled, purified, quantified
and hybridised as described above for the Illumina 18
sample subset. All raw gene expression files and clinical
annotation generated in this study are publicly available
from the caBIG supported Edinburgh Clinical Research
Facility Data Repository (https://catissuesuite.ecmc.ed.ac.
uk/caarray/).

Published MAQC and breast cancer datasets
Methods for the MAQC Illumina Human-6 Expression
BeadChip (v1) and Affymetrix U133 Plus 2.0 array hybri-
disations are provided in the original study [18]. The
NCBI GEO accession is GSE5350. Publicly available pri-
mary breast cancer datasets [26,27] were downloaded
datasets from NCBI GEO and ArrayExpress. Breast can-
cer subtypes were assigned using three signatures from
Sorlie et al. (2003) [5], Parker et al. [28] and Hu et al.
[29] as described previously [43].

Data processing and analysis
All data was processed using the R/Bioconductor soft-
ware and packages [44], see Figure 1 for the workflow,
scripts are available from the authors by request. A cus-
tom Chip Definition File (CDF) file [32] was used to
map the Affymetrix data to Ensembl gene annotations
and RMA implemented by the affy package used for
normalisation. Illumina probe profiles were quantile nor-
malised using the lumi package and mapped to Ensembl
gene sequences using a composite list comprising map-
pings from reMOAT [35], BioMart and a custom BLAST
sequence search of the online Ensembl gene database
where there was agreement between at least two of the
resources (Additional File 5). Where multiple Illumina
probes represented an Ensembl gene the mean expres-
sion level was calculated. The data was then filtered
using Illumina or Affymetrix probe detection P-values,
removing probes that were undetected (p > 0.05 in the
total minus 3 samples).
A number of batch-correction and cross-platform nor-

malisation methods were evaluated, including mean center-
ing [5], ComBat [21], Distance Weighted Discrimination
[20] and cross-platform normalisation (XPN) [22] in order
to determine the most effective method for reducing the
bias imposed by the different platforms. Principal com-
ponent analysis and hierarchical clustering analysis was
performed using Cluster [45]. Significance analysis of
Microarrays (SAM) [23] pairwise differential gene expres-
sion analysis was performed using the siggenes package
(R/Bioconductor).
We applied a linear additive model to log-scale expres-

sion data to estimate the variances in the MAQC data-
set. The variation introduced at a given level propagates
additively throughout subsequent levels, allowing these
variance contributions to be modelled. The total vari-
ance for a given gene was assumed to be the aggregate
of individual contributions from the inter-sample, -plat-
form, -laboratory, and -replicate variability. These con-
tributions are assumed to be independent and randomly
drawn from log-normal distributions and, as all factors
meet in unique combinations a nested variance model is
individually applied to each gene such that the model of
the measured expression, Xijkl, of each probe is defined
as Xijkl = μ+Ai + Bij +Cijk +Dijkl + Eijkl.(i = 1,. . . ,s; j = 1,. . .,
t; k = 1,. . .,u; l = 1,. . .,v) where μ is the geometric-mean
expression of the gene from the given sample-type, Ai is
the effect attributed to the ith sample, Bij is the random
effect of the jth platform, Cijk is the random effect of the
kth lab, Dijkl is the random effect of the lth replicate hy-
bridisation, and Eij is the residual measurement error. Fi-
nally, s is the total number of samples, t is the number
of platforms on which the samples were assessed, u is
the number of labs processing the arrays, and v is the
number of replicate samples in the corresponding plat-
form processed in each lab. The variance of any given
observation, Xijkl, is σ2A+ σ2B+ σ2C+ σ2D+ σ

2; these compo-
nents represent the inter-sample, inter-platform, inter-
laboratory, and inter-replicate variance respectively. The
estimation of σ2A σ2B, σ

2
C , σ2D, and σ2 is performed inde-

pendently for each gene as stated in [46]. Models of this
kind are formally defined in [47,48] and have previously
been used to optimise gene-expression experimental de-
sign [49,50]. All variance estimates were performed

https://catissuesuite.ecmc.ed.ac.uk/caarray/
https://catissuesuite.ecmc.ed.ac.uk/caarray/
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using a REML procedure implemented in the nlme pack-
age in R [51,52].
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